Biology, Ecology & Population Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Coregonus Lavaretus (L.)) Caused by Competitor Invasion
Speciation Reversal in European Whitefish (Coregonus lavaretus (L.)) Caused by Competitor Invasion Shripathi Bhat1*, Per-Arne Amundsen1, Rune Knudsen1, Karl Øystein Gjelland3, Svein-Erik Fevolden1, Louis Bernatchez2, Kim Præbel1 1 Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway, 2 Institut de Biologie Inte´grative et des Syste`mes (IBIS), Universite´ Laval, Que´bec, Canada, 3 Norwegian Institute for Nature Research, Tromsø, Norway Abstract Invasion of exotic species has caused the loss of biodiversity and imparts evolutionary and ecological changes in the introduced systems. In northern Fennoscandia, European whitefish (Coregonus lavaretus (L.)) is a highly polymorphic species displaying adaptive radiations into partially reproductively isolated and thus genetically differentiated sympatric morphs utilizing the planktivorous and benthivorous food niche in many lakes. In 1993, Lake Skrukkebukta was invaded by vendace (Coregonus albula (L.)) which is a zooplanktivorous specialist. The vendace displaced the densely rakered whitefish from its preferred pelagic niche to the benthic habitat harbouring the large sparsely rakered whitefish. In this study, we investigate the potential influence of the vendace invasion on the breakdown of reproductive isolation between the two whitefish morphs. We inferred the genotypic and phenotypic differentiation between the two morphs collected at the arrival (1993) and 15 years after (2008) the vendace invasion using 16 microsatellite loci and gill raker numbers, the most distinctive adaptive phenotypic trait between them. The comparison of gill raker number distributions revealed two modes growing closer over 15 years following the invasion. Bayesian analyses of genotypes revealed that the two genetically distinct whitefish morphs that existed in 1993 had collapsed into a single population in 2008. -
First Record of a Coregonid Fish Species, Coregenus Albula (Linnaeus, 1758) (Salmoniformes: Salmonidae) in Aktaş Lake Shared Between Turkey and Georgia
J. Black Sea/Mediterranean Environment Vol. 25, No. 3: 325-332 (2019) SHORT COMMUNICATION First record of a coregonid fish species, Coregenus albula (Linnaeus, 1758) (Salmoniformes: Salmonidae) in Aktaş Lake shared between Turkey and Georgia Sedat V. Yerli Department of Biology, Hacettepe University, SAL, Beytepe, Ankara, TURKEY Corresponding author: [email protected] Abstract The genus Coregenus (Salmoniformes: Salmonidae) was recently considered not to be represented in Turkey. European cisco or vendace, Coregonus albula (Linnaeus, 1758) was reported for the first time for Turkey in this article with fifteen samples in Aktaş Lake, Ardahan. This species should be added to the checklist of Turkish fish fauna. Turkish name is proposed as “Akbalık” for this species. Keywords: Coregonus albula, first record, Aktaş Lake, Kartsakhi, alkaline lake, Georgia, Turkey Received: 30.10.2019, Accepted: 26.11.2019 Vendace or European cisco Coregonus albula (Linnaeus, 1758) is a native species for northern Europe. Berg (1948) reported the distribution of this species its morphological measurements in the former USSR and adjacent countries. Froese and Pauly (2019) summarized the natural distribution of vendace as Baltic basin, several lakes of upper Volga drainage; some lakes of White Sea basin and North Sea basin east of Elbe drainage; anadromous in Gulf of Finland and marine in northernmost freshened part of Gulf of Bothnia between Finland and Sweden; in Lake Inari, northern Finland; lower Rhine (now extirpated). The vendace was introduced, intentionally in some countries in Europe and United States of America. Vendace was introduced in 1959, 1982-1987 in the Irtysh River Basin and in 1960-61 in Lake Balkhash in Kazakhstan (Mitrofanov and Petr 1999). -
Coregonus Lavaretus Complex 1.4 Alternative Species Scientific Name 1.5 Common Name (In National Language) Whitefish 2
European Community Directive on the Conservation of Natural Habitats and of Wild Fauna and Flora (92/43/EEC) Fourth Report by the United Kingdom under Article 17 on the implementation of the Directive from January 2013 to December 2018 Supporting documentation for the conservation status assessment for the species: S6353 ‐ WhitefishCoregonus ( lavaretus) SCOTLAND IMPORTANT NOTE ‐ PLEASE READ • The information in this document is a country‐level contribution to the UK Reporton the conservation status of this species, submitted to the European Commission aspart of the 2019 UK Reporting under Article 17 of the EU Habitats Directive. • The 2019 Article 17 UK Approach document provides details on how this supporting information was used to produce the UK Report. • The UK Report on the conservation status of this species is provided in a separate doc‐ ument. • The reporting fields and options used are aligned to those set out in the European Com‐ mission guidance. • Explanatory notes (where provided) by the country are included at the end. These pro‐ vide an audit trail of relevant supporting information. • Some of the reporting fields have been left blank because either: (i) there was insuffi‐ cient information to complete the field; (ii) completion of the field was not obligatory; (iii) the field was not relevant to this species (section 12 Natura 2000 coverage forAnnex II species) and/or (iv) the field was only relevant at UK‐level (sections 9 Future prospects and 10 Conclusions). • For technical reasons, the country‐level future trends for Range, Population and Habitat for the species are only available in a separate spreadsheet that contains all the country‐ level supporting information. -
Coregonus Maraena) Ecological Risk Screening Summary
Maraena Whitefish (Coregonus maraena) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, September 2014 and June 2017 Web Version, 09/14/2017 Image: E. Östman. Public domain. Available: http://eol.org/data_objects/26779416. (June 2017). 1 Native Range, and Status in the United States Native Range From Froese and Pauly (2017): “Europe: In the Baltic Sea: Swedish coast (including Bothnian Gulf, not in Gotland); in southern Baltic, extending from the Schlei to Gulf of Finland. Southeast North Sea Basin: Ems, Weser and Elbe drainages 1 and small rivers of Schleswig-Holstein and Denmark. Landlocked in several lakes in Poland, Sweden, and Russia.” Status in the United States From Neilson (2017): “Failed introduction.” “A shipment of 409 individuals from Lake Miedwie (formerly Madue Lake), Poland was stocked in Garnder Lake, Michigan in 1877 (Baird 1879; Todd 1983).” Means of Introductions in the United States From Neilson (2017): “Coregonus maraena, along with other species of Coregonus, was intentionally stocked as a food fish by the U.S. Fish Commission (Todd 1983). According to Baird (1879), 1,000 eggs of C. maraena were shipped from Poland to Michigan in 1877 and hatched in captivity at the State Hatching House in Detroit. A total of 409 of the young fish were stocked in Gardner Lake (Baird 1879; Todd 1983). Baird (1879) considered the stocking an experimental introduction of a European food fish.” Remarks From Neilson (2017): “There is much confusion regarding the identity of whitefish imported from Germany in the late 1800s by the U.S. Fish Commission, primarily due to the uncertain taxonomy and systematics of Coregonus (Kottelat and Freyhof 2007). -
Age, Growth, and Size of Lake Superior Pygmy Whitefish (Prosopium Coulterii) Author(S): Taylor R
Age, Growth, and Size of Lake Superior Pygmy Whitefish (Prosopium coulterii) Author(s): Taylor R. Stewart and Derek H. OgleOwen T. Gorman and Mark R. Vinson Source: The American Midland Naturalist, 175(1):24-36. Published By: University of Notre Dame DOI: http://dx.doi.org/10.1674/amid-175-01-24-36.1 URL: http://www.bioone.org/doi/full/10.1674/amid-175-01-24-36.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Am. Midl. Nat. (2016) 175:24–36 Age, Growth, and Size of Lake Superior Pygmy Whitefish (Prosopium coulterii) 1 TAYLOR R. STEWART AND DEREK H. OGLE Department of Natural Resources, Northland College, Ashland, Wisconsin 54806 AND OWEN T. GORMAN AND MARK R. VINSON U. S. Geological Survey, Great Lakes Science Center, Lake Superior Biological Station, Ashland, Wisconsin 54806 ABSTRACT.—Pygmy Whitefish (Prosopium coulterii) are a small, glacial relict species with a disjunct distribution in North America and Siberia. -
Population Dynamics of Whitefish ( Coregonus Suidteri Fatio) in Artificially Oxygenated Lake Hallwil, with Special Emphasis on L
Diss. ETH No. 13706 Population dynamics of whitefish ( Coregonus suidteri Fatio) in artificially oxygenated Lake Hallwil, with special emphasis on larval mortality and sustainable management Dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY, ZURICH for the degree of Doctor of Natural Sciences presented by Carole Andrea Enz Dipl. Natw. ETH Zurich bon1 August 3, 1972 Citizen of Sch(1nholzerswilen (TG), Switzerland accepted on the recommendation of Prof. Dr. J. V. Ward, examiner Prof. Dr. H. Lehtonen, co-examiner Dr. R. Muller, co-examiner Kastanienbaum, 2000 Meinen Eltern und Max Copyright ~;i 2000 by Carole A. Enz, EA WAG Kastanienbaurn All rights reserved. No part of this book rnay be reproduced, stored in a retrieval systen1 or transmitted, in any fonn or by any ineans, electronic, rnechanical, pho- tocopying, recording or otherwise, without the prior written permission of the copyright holder. First Edition 2000 PUBLICATIONS CHAPTER 3 OF THE THESIS HAS BEEN ACCEPTED FOR PUBLICATION: ENZ, C. A., SCHAFFER E. & MOLLER R. Growth and survival of Lake Hallwil whitefish (Co reg onus suidteri) larvae reared on dry and live food. - Archiv fUr Hyclrobiologie. CHAPTERS 4, 5, 6 Ai~D 7 OF THESIS HA VE BEEN SUBMITTED FOR PUBLICATION: ENZ, C. A., MBWENEMO BIA, M. & MULLER. R. Fish species diversity of Lake Hallwil (Switzerland) in the course of eutrophication, with special reference to whitefish ( Coregonus suidteri). Submitted to Conservation Biology. ENZ, C. A .. SCHAFFER, E. & MULLER, R. Importance of prey movement, food particle and tank circulation for rearing Lake Ha11wil whitefish (Coregonus suidteri) larvae. Submitted to North Alnerican Journal of Aquaculture. -
Northern Whitefish (Coregonus Peled) ERSS
U.S. Fish and Wildlife Service Northern Whitefish (Coregonus peled) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, March 2011 Revised, September 2014 and July 2015 Photo not available. 1 Native Range, and Status in the United States Native Range From Froese and Pauly (2015): “Europe and Asia: lakes and rivers from Mezen to Kolyma River, Russia.” Status in the United States This species has not been reported as introduced in the United States. Means of Introductions in the United States This species has not been reported as introduced in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2015): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Protacanthopterygii Order Salmoniformes Family Salmonidae Subfamily Coregoninae Genus Coregonus Linnaeus, 1758 – whitefishes Species Coregonus peled (Gmelin, 1789) – peled” “Taxonomic Status: valid” Size, Weight, and Age Range From Froese and Pauly (2015): “Maturity: Lm ?, range 22 - 36 cm Max length : 50.0 cm TL male/unsexed; [Berg 1962]; max. published weight: 5.0 kg [Berg 1962]; max. reported age: 13 years [Kottelat and Freyhof 2007]” Environment From Froese and Pauly (2015): “Marine; freshwater; brackish; demersal; anadromous [Riede 2004].” Climate/Range From Froese and Pauly (2015): “Polar; 74°N - 64°N” Distribution Outside the United States Native From Froese and Pauly (2015): “Europe and Asia: lakes and rivers from Mezen to Kolyma River, Russia.” Introduced From Freyhof and Kottelat (2008): “Hybrids involving C. peled introduced in many reservoirs and lakes (Onega) throughout Russia, eastern and central Europe.” Means of Introduction Outside the United States From Savini et al. -
Coregonus Nigripinnis) in Northern Algonquin Provincial Park
HABITAT PREFERENCES AND FEEDING ECOLOGY OF BLACKFIN CISCO (COREGONUS NIGRIPINNIS) IN NORTHERN ALGONQUIN PROVINCIAL PARK A Thesis Submitted to the Committee on Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Faculty of Arts and Science Trent University Peterborough, Ontario, Canada © Copyright by Allan Henry Miller Bell 2017 Environmental and Life Sciences M.Sc. Graduate Program September 2017 ABSTRACT Depth Distribution and Feeding Structure Differentiation of Blackfin Cisco (Coregonus nigripinnis) In Northern Algonquin Provincial Park Allan Henry Miller Bell Blackfin Cisco (Coregonus nigripinnis), a deepwater cisco species once endemic to the Laurentian Great Lakes, was discovered in Algonquin Provincial Park in four lakes situated within a drainage outflow of glacial Lake Algonquin. Blackfin habitat preference was examined by analyzing which covariates best described their depth distribution using hurdle models in a multi-model approach. Although depth best described their distribution, the nearly isothermal hypolimnion in which Blackfin reside indicated a preference for cold-water habitat. Feeding structure differentiation separated Blackfin from other coregonines, with Blackfin possessing the most numerous (50-66) gill rakers, and, via allometric regression, the longest gill rakers and lower gill arches. Selection for feeding efficiency may be a result of Mysis diluviana affecting planktonic size structure in lakes containing Blackfin Cisco, an effect also discovered in Lake Whitefish (Coregonus clupeaformis). This thesis provides insight into the habitat preferences and feeding ecology of Blackfin and provides a basis for future study. Keywords: Blackfin Cisco, Lake Whitefish, coregonine, Mysis, habitat, feeding ecology, hurdle models, allometric regression, Algonquin Provincial Park ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr. -
Developing Research Priorities for Lake Whitefish in the Upper Great
DEVELOPING RESEARCH PRIORITIES FOR LAKE WHITEFISH IN THE UPPER GREAT LAKES: RESULTS OF A WORKSHOP SPONSORED BY THE GREAT LAKES FISHERY TRUST AND GREAT LAKES FISHERY COMMISSION Michigan State University February 27-28, 2018 Michigan Sea Grant Executive Summary ......................................................................................................................... 3 Workshop Proceedings ................................................................................................................... 3 Introduction ................................................................................................................................ 3 Workshop Goals and Desired Outcomes ............................................................................. 4 Presentations ....................................................................................................................... 4 Impacts of Whitefish Decline on the Tribal Commercial Fishery ..................................... 4 Lake Huron Lake Whitefish Status and Trends ................................................................ 5 Lake Michigan Lake Whitefish Status and Trends ............................................................ 7 Lake Superior Lake Whitefish Status and Trends ............................................................. 8 Lower Trophic Levels ........................................................................................................ 9 Factors affecting recruitment to fisheries and management implications .................. -
Fishes and Decapod Crustaceans of the Great Lakes Basin
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/267883780 Ichthyofauna of the Great Lakes Basin Conference Paper · September 2011 CITATIONS READS 0 26 5 authors, including: Brian M. Roth Nicholas Mandrak Michigan State University University of Toronto 33 PUBLICATIONS 389 CITATIONS 173 PUBLICATIONS 2,427 CITATIONS SEE PROFILE SEE PROFILE Greg G Sass Thomas Hrabik Wisconsin Department of Natural Resources University of Minnesota Duluth 95 PUBLICATIONS 796 CITATIONS 68 PUBLICATIONS 1,510 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Ecological Grass Carp Risk Assessment for the Great Lakes Basin View project All content following this page was uploaded by Greg G Sass on 14 September 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Fishes and Decapod Crustaceans of the Great Lakes Basin Brian M. Roth, Nicholas E. Mandrak, Th omas R. Hrabik, Greg G. Sass, and Jody Peters The primary goal of the first edition of this chapter (Coon 1994) was to provide an overview of the Laurentian Great Lakes fish community and its origins. For this edition, we have taken a slightly diff erent approach. Although we have updated the checklist of fishes in each of the Great Lakes and their watersheds, we also include a checklist of decapod crustaceans. Our decision to include decapods derives from the lack of such a list for the Great Lakes in the literature and the importance of decapods (in particular, crayfishes) for the ecology and biodiversity of streams and lakes in the Great Lakes region (Lodge et al. -
Ecoloyy Coregonus Lavaretus
0 Institi m Fresh tt)9 4- 0 Ecoloy y Ecology of the Schelly, Coregonus lavaretus, in Haweswater I J Winfield, J M Fletcher & P R Cubby April 1994 Natural Environment Research Council á ECOLOGY OF THE SCHELLY, COREGONUS LAVARETUS, IN HAWESWATER I J Winfield; J M Fletcher & P R Cubby Project Leader: Winfield Contract Start Date 1 April1991 Report Date: 30 May 1994 Report To: North WestWaterLimited TFS ProjectNo: T-1-1-G5Ast-r iio SO%- [FE Report RefNo 311114454€416%-s tit fo s Or1/6 INTELLECTUAL PROPERTY RIGHTS CONFIDENTIALITY STATEMENT 'In accordancewith our normal practice, this report is for the use only of the party to whom it is addressed, and no responsibility is accepted to any third party for the whole or any part of its contents. Neitherthe whole nor any part of this report or any reference thereto may be included in anypublisheddocument, circularor statement,nor published or referred to in any way without our written approval of the form and context in which it may appear'. CONTENTS Page Summary Chapter 1 Introduction 1 1.1 Background to the present investigation 1.2 General ecology of schelly 1.3 Haweswater as a schellyhabitat 1.4 Objectives of the present investigation Chapter 2 Population biology and distribution of schelly 2.1 Introduction /./ Methods 2.3 Results 2.4 Discussion Chapter 3 Spawning grounds of schelly 21 3.1 Introduction 3.2 Methods 3.3 Results 3.4 Discussion Chapter 4 Lone-term records of lake levels and abstraction volumes 25 4.1 Introduction 4.2 Methods 4.3 Results 4.4 Discussion Chapter 5 Lone-term records of entrapment of schellyand other fish species 32 5.1 Introduction 5.2 Methods 5.3 Results 5.4 Discussion Chapter 6 Biology of entrapped schelly and charr 39 6.1 Introduction 6.2 Methods 6.3 Results 6.4 Discussion Chapter 7 General discussion 45 Acknowledgements 49 References 50 á SUMMARY The ecology of the rare schelly (Coregonus lavaretus) in Haweswater was investigated over the period from April 1990 to March 1994, with particular reference to the impact of the water abstraction system. -
Powan in the Classroom.Pdf
Powan in the classroom Carolyn Bryce Powan in the Classroom Introduction The Powan in the Classroom project is an education project that offers students within the Loch Lomond catchment area the opportunity to care for incubating Powan eggs and learn about the natural life history of Powan. Project Aims • School students within Loch Lomond have an understanding of the natural history of Powan, their habitats and the local environment. • To create an understanding of the delicate balance within aquatic environments and how the impacts of humans can positively and negatively influence this balance. • Encourage students to be part of a real-life environmental story, and to be instrumental in making things better for the Powan population. Powan in the Classroom Why Powan (Coregonus lavaretus)? • Coregonus lavaretus is a nationally rare species. • Only native to 7 locations. • The Scottish form of C. lavaretus aka Powan is native only to Loch Eck and Loch Lomond. • A local fish! • The Loch Lomond population of Powan is thought to be in decline possibly due to the accidental introduction of a non-native species. Powan in the Classroom Project History • Developed by Jennifer Dodd and taken on by Andy Burrows at the Loch Lomond Fisheries Trust. • Started in 2009. • Small scale education project designed for Primary school students. • A number of different schools within the catchment area have participated with the project. Powan in the Classroom Project Structure Primary schools: • Primary 5-7 students. • Luss Primary is an exception (Primary 2 - 7). • 5 week project. • Links in with the National Curriculum. • Practical elements to the project.