Contents III

Total Page:16

File Type:pdf, Size:1020Kb

Contents III Contents III Contents Foreword VII Habitat Adaptation and Distribution BUNNELL, D.B., ESHENRODER, R.L., KRAUSE, A.E., ADAMS, J.V.: Depth segrega­ tion of deepwater ciscoes (Coregonus spp.) in Lake Michigan during 1930-1932 and range expansion of Coregonus hoyi into deeper waters after the 1990s (with 5 figures and 5 tables) 3-24 PRATT, T.C.: The distribution and abundance of deepwater ciscoes in Canadian waters of Lake Superior (with 8 figures and 5 tables) 25—41 TYAGUN, M.L.: Relief structure of scales in Coregonid fishes from Lake Baikal: differences between morpho-ecological groups of omul (Coregonus migratorius Georgy) and Siberian whitefish (Coregonus lavaretus pidschian Gmelin) (with 5 figures and 2 tables) 43-53 TYAGUN, M.L. & KHODZHER, T.A.: Relief Structure of Coregonid Scale through Reconstruction of Stereopair Three-dimensional Images (with 5 figures) 55-63 YULE, D.L., SCHREINER, D.R., ADDISON, P.A., SEIDER, M.J., EVRARD, L.M., GEVING, S.A., QUINLAN, H.R.: Repeat surveys of spawning cisco (Coregonus artedi) in western Lake Superior: timing, distribution and composition of spawning stocks (with 8 figures and 4 tables) 65-87 WANZENBOCK, J., PAMMINGER-LAHNSTEINER, B., WINKLER, K., WEISS, S.J.: Experi­ mental evaluation of the spawning periods of whitefish (Coregonus lavaretus complex) in Lake Mondsee, Austria (with 2 figures and 1 table) 89-97 Life History Variation and Migration BROWN , R .JDAUM, D.W., ZURAY , S J.CARTER III, W.K.: Documentation of Annual Spawning Migrations of Anadromous Coregonid Fishes in a Large River using Maturity Indices, Length and Age Analyses, and CPUE (with 8 figures and 1 table) 101-116 JOKIKOKKO, E., HUHMARNIEM, A., LESKELA, A., VAHA, V.: Migration to the sea of river spawning whitefish (Coregonus lavaretus L.) fry in the northern Baltic Sea (with 5 figures and 1 table) 117-125 ROESCH, R.: Gonadosomatic index of pelagic spawning female whitefish (Core­ gonus lavaretus L.) in Lake Constance-Upper Lake (with 2 figures) 127-132 http://d-nb.info/1021677973 IV Contents TALLMAN, R.F. & HOWLAND, K.L.: Seasonal migration patterns of lower Macken­ zie River coregonids (with 5 figures and 1 table) 133-146 THOMAS, G. & ECKMANN, R.: Reproduction vs. growth: indications for altered energy fluxes in Lake Constance whitefish through size-selective fishery (with 5 figures and 1 table) 147-157 VANGERWEN-TOYNE, M., TALLMAN, R.F., GILLIS, D.: Comparison of life history traits between anadromous and lacustrine stocks of broad whitefish (Coregonus nasus): An intra-specific test of Roff's hypothesis (with 4 figures and 1 table).. 159-173 Evolutionary Genetics and Systematics BYCHENKO, O.S., SUKHANOVA, L.V., AZHIKINA, T.L., SVERDLOV, E.D.: Search for genetic bases of species differences between Lake Baikal coregonid fishes: whitefish, C. baicalensis, and omul, C. migratorius (with 2 figures and 1 tables) 177-186 GORDEEVA, N.V., KARMANOVA, O.G., SHITOVA, M.V.: Biological and genetic diver­ sity in peled (Coregonus peled) populations, introduced beyond south edge ofthe range, into Tuvinian lakes (with 5 figures and 2 tables) 187-196 PAMMINGER-LAHNSTEINER, B., WINKLER, K.A., WEISS, S., WANZENBOCK, J.: Does segregated spawning time prevent the introgression of stocked whitefish species into native species? A morphometric and genetic study in Lake Mondsee, Austria (with 4 figures and 3 tables) 197-208 SENDER, D.S., NOVOSELOV, A.P., STUDENOV, I.I., GURICHEV, RA.: The Origin of Coregonid Fishes of the White Sea Kuloi Plateau (with 4 figures and 5 tables) ... 209-227 SIWERTSSON, A., KNUDSEN, R., AMUNDSEN, P.-A.: Temporal stability in gill rak­ er numbers of subarctic European whitefish populations (with 3 figures and 2 tables) 229-240 STOTT, W.,EBENER, M.P.,MOHR, L., SCHAEFFER, J., ROSEMAN, E.F., HARFORD, W.J., JOHNSON, J.E., FIETSCH, C.-L.: Genetic structure of lake whitefish, Coregonus clu- peaformis, populations in the northern main basin of Lake Huron (with 4 figures and 6 tables) 241-260 SUKHANOVA, L.V., SMIRNOV, V.V., SMIRNOVA-ZALUMI, N.S., BELOMESTNYKH, T.V., KIRILCHIK, S.V.: Molecular Phylogeography of Lake Baikal Coregonid Fishes (with 6 figures and 2 tables) 261-283 YAKHNENKO, V., KLIMENKOV, I., MAMONTOV, A., YAKHNENKO, M.: Intra- and inter­ specific features of the composition and structure of blood cells of coregonid 285-297 fishes from the East-Siberian region (with 8 figures and 3 tables) Contents V VECSEI, P., BLACKIE, C.T., MUIR, A.M., MACHTANS, H.M., REIST, J.D.: A prelimi­ nary assessment of cisco (Coregonus spp.) diversity in Yellowknife Bay, Great Slave Lake, Northwest Territories (with 8 figures and 5 tables) 299-322 Fisheries and Stock Assessment ECKMANN, R.: Massive stocking with hatchery larvae may constrain natural recruitment of whitefish stocks and induce unwanted evolutionary changes (with 1 figure and 2 tables) 325-336 GORMAN, O.T.: Successional Change in the Lake Superior Fish Community: Population Trends in Ciscoes, Rainbow Smelt, and Lake Trout, 1958-2008 (with 8 figures and 1 table) 337-362 JAPOSHVILI, B.: Long-term assessment of a vendace (Coregonus albula L.) stock in Lake Paravani, South Georgia (with 5 figures and 2 tables) 363-369 SANDLUND, O.T., DISERUD, O.H.,N/ESJE,T.F.: Lessons to Learn from 123 Years of Catch Data from a Small Scale Whitefish Fishery (with 5 figures) 371-382 URPANEN.O., KESKINEN,T., MARJOMAKI,T.J.,SAKOMAA, V., SALO, H.,SYRJANEN, J., VIUANEN, M.,KARJALAINEN, J.: Effects of mass fish removal on coregonid larval abundance in a large mesotrophic lake (with 6 figures and 2 tables) 383-395 Impacts of multiple stressors: Climate Change, Industrial Development, and Invasive Species FAGAN, K.-A., KOOPS, M.A., ARTS, M.T., SUTTON, T.M., POWER, M.: Lake whitefish feeding habits and condition in Lake Michigan (with 3 figures and tables) 399^15 JACOBSON, P.C., CROSS, T.K., ZANDLO, J., CARLSON, B.N., PEREIRA, D.P.: The effects of climate change and eutrophication on cisco Coregonus artedi abun­ dance in Minnesota lakes (with 6 figures) 417—427 LUMB, C.E. & JOHNSON, T.B.: Retrospective growth analysis of lake white- fish (Coregonus clupeaformis) in Lakes Erie and Ontario, 1954-2003 (with 12 figures and 4 tables) 429-454 RENNIE, M.D., EBENER, M.P., WAGNER, T.: Can migration mitigate the effects of ecosystem change? Patterns of dispersal, energy acquisition and allocation in Great Lakes lake whitefish (Coregonus clupeaformis) (with 7 figures, 3 tables and 2 appendices) 455^476 VI Contents ROSEMAN, E.F., KENNEDY, G., MANNY, B.A., BOASE, J., MCFEE, J.: Life History Characteristics of a Recovering Lake Whitefish Coregonus clupeaformis Stock in the Detroit River, North America (with 8 figures and 4 tables) 477-501 Conservation and Species at Risk ETHERIDGE, E.C., BEAN,C.W., MAITLAND, P.S., BALLANTYNE, S., ADAMS,C.E.: Dis­ continuous infraspecific variation in ecological and morphological traits has con­ sequences for conservation of powan (Coregonus lavaretus) in Scotland (with 7 figures) 505-517 HAAKANA, H.& HUUSKONEN, H.:The endangered whitefish (Coregonus lavaretus pallasi) population in the Koitajoki River, eastern Finland: the present state and threats (with 10 figures and 1 table) 519-533 TOLENTINO, S. & MOON, M.: Artificial Reef Construction and use by three endemic Coregonid whitefishes in Bear Lake, Utah, USA (with 2 figures and 1 table) 535-546 WINFIELD, I.J., ADAMS, C.E., BEAN, C.W., CAMERON DURIE, N., FLETCHER, J.M., GOWANS, A.R., HARROD, C., JAMES, J.B., LYLE, A.A., MAITLAND, P.S., THOMPSON, C., VERSPOOR, E.: Conservation of the vendace (Coregonus albula), the U.K.'s rarest freshwater fish (with 3 figures) 547-559 .
Recommended publications
  • Lake Baikal Russian Federation
    LAKE BAIKAL RUSSIAN FEDERATION Lake Baikal is in south central Siberia close to the Mongolian border. It is the largest, oldest by 20 million years, and deepest, at 1,638m, of the world's lakes. It is 3.15 million hectares in size and contains a fifth of the world's unfrozen surface freshwater. Its age and isolation and unusually fertile depths have given it the world's richest and most unusual lacustrine fauna which, like the Galapagos islands’, is of outstanding value to evolutionary science. The exceptional variety of endemic animals and plants make the lake one of the most biologically diverse on earth. Threats to the site: Present threats are the untreated wastes from the river Selenga, potential oil and gas exploration in the Selenga delta, widespread lake-edge pollution and over-hunting of the Baikal seals. However, the threat of an oil pipeline along the lake’s north shore was averted in 2006 by Presidential decree and the pulp and cellulose mill on the southern shore which polluted 200 sq. km of the lake, caused some of the worst air pollution in Russia and genetic mutations in some of the lake’s endemic species, was closed in 2009 as no longer profitable to run. COUNTRY Russian Federation NAME Lake Baikal NATURAL WORLD HERITAGE SERIAL SITE 1996: Inscribed on the World Heritage List under Natural Criteria vii, viii, ix and x. STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee issued the following statement at the time of inscription. Justification for Inscription The Committee inscribed Lake Baikal the most outstanding example of a freshwater ecosystem on the basis of: Criteria (vii), (viii), (ix) and (x).
    [Show full text]
  • Burbot Management Plan
    BURBOT MANAGEMENT PLAN DEPARTMENT OF INLAND FISHERIES AND WILDLIFE DIVISION OF FISHERIES AND HATCHERIES PREPARED BY SCOTT A. ROY ASSISTANT REGIONAL FISHERIES BIOLOGIST REGION E MARCH 2001 BURBOT LIFE HISTORY The burbot, Lota lota (Linnaeus), is a unique member of the cod family. It is the only species in the family, which spends its entire life in fresh water. However, the burbot is similar to its marine relatives in that its distribution is circumpolar. It can be found in cool, fresh waters throughout northern Europe, Asia and North America. In North America its range extends as far south as the northern tier of States across the United States. In Maine, the burbot is commonly known as the cusk, although in other areas it is also called the ling, eelpout, loche and lawyer. Unlike the salmonids and Maine’s other coldwater species, the burbot is not noted for its grace and beauty. The body is elongate, almost eel-shaped, with long, soft-rayed dorsal and anal fins that meet a rounded tail. Although it is smooth and slimy to the touch, the skin is embedded with very small, cycloid scales. The head of the burbot is broad and somewhat flattened. It has a large mouth containing several rows of small teeth on the jaws. A single, whisker-like barbell protrudes from the tip of the chin. There are no obvious external differences between males and females. In general, adults are olive brown to dark brown on the back and sides. This background is overlaid with distinctive patterns of dark brown or black markings and spots.
    [Show full text]
  • Sport-Fish-Identification.Pdf
    Walleye Walleye have two distinct fins on their back, the first with large spines. Lake Sturgeon They have a yellow-olive back, brassy, silvery sides with yellow spots, a white underside, and white on the lower lobe of the tail. Dusky vertical Lake Sturgeon are a Threatened Species due to population size and bars are often found on the body as well. concerns with viability. Lake Sturgeon have a large brown or grey body covered with tough, leather- like tissue and five rows of bony plates. They have a shark-like, upturned tail and a pointed snout with four barbels. Sauger Lake Whitefish are olive-green to blue on the back, with silvery sides.They Sauger are a Threatened Species due to hybridization, habitat Lakehave a small Whitefish mouth below a rounded snout, and a deeply forked tail. degradation and overharvest. Sauger are golden olive on the back with silver-yellow sides and a white underside. They also have a large spiny dorsal fin, distinct rows of spots on the dorsal fins and three or four dusky vertical bars on the body. Mountain Whitefish have large scales, no spots and small mouths with no Burbot Mountainteeth. Their general Whitefish body colour is a bronze-white or greenish white. Burbot have a slim, brownish black body with smooth skin, a flattened head, and a fin that stretches along the back half of the body. Distinctive barbels hang from the lower jaw and nostrils. Goldeye Northern Pike Goldeye have prominent eyes with bright yellow pupils, a blunt head, and Northern Pike are a long, slender fish with duck-like jaws and a long, flat a deep, compressed body.
    [Show full text]
  • (Coregonus Lavaretus (L.)) Caused by Competitor Invasion
    Speciation Reversal in European Whitefish (Coregonus lavaretus (L.)) Caused by Competitor Invasion Shripathi Bhat1*, Per-Arne Amundsen1, Rune Knudsen1, Karl Øystein Gjelland3, Svein-Erik Fevolden1, Louis Bernatchez2, Kim Præbel1 1 Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway, 2 Institut de Biologie Inte´grative et des Syste`mes (IBIS), Universite´ Laval, Que´bec, Canada, 3 Norwegian Institute for Nature Research, Tromsø, Norway Abstract Invasion of exotic species has caused the loss of biodiversity and imparts evolutionary and ecological changes in the introduced systems. In northern Fennoscandia, European whitefish (Coregonus lavaretus (L.)) is a highly polymorphic species displaying adaptive radiations into partially reproductively isolated and thus genetically differentiated sympatric morphs utilizing the planktivorous and benthivorous food niche in many lakes. In 1993, Lake Skrukkebukta was invaded by vendace (Coregonus albula (L.)) which is a zooplanktivorous specialist. The vendace displaced the densely rakered whitefish from its preferred pelagic niche to the benthic habitat harbouring the large sparsely rakered whitefish. In this study, we investigate the potential influence of the vendace invasion on the breakdown of reproductive isolation between the two whitefish morphs. We inferred the genotypic and phenotypic differentiation between the two morphs collected at the arrival (1993) and 15 years after (2008) the vendace invasion using 16 microsatellite loci and gill raker numbers, the most distinctive adaptive phenotypic trait between them. The comparison of gill raker number distributions revealed two modes growing closer over 15 years following the invasion. Bayesian analyses of genotypes revealed that the two genetically distinct whitefish morphs that existed in 1993 had collapsed into a single population in 2008.
    [Show full text]
  • First Record of a Coregonid Fish Species, Coregenus Albula (Linnaeus, 1758) (Salmoniformes: Salmonidae) in Aktaş Lake Shared Between Turkey and Georgia
    J. Black Sea/Mediterranean Environment Vol. 25, No. 3: 325-332 (2019) SHORT COMMUNICATION First record of a coregonid fish species, Coregenus albula (Linnaeus, 1758) (Salmoniformes: Salmonidae) in Aktaş Lake shared between Turkey and Georgia Sedat V. Yerli Department of Biology, Hacettepe University, SAL, Beytepe, Ankara, TURKEY Corresponding author: [email protected] Abstract The genus Coregenus (Salmoniformes: Salmonidae) was recently considered not to be represented in Turkey. European cisco or vendace, Coregonus albula (Linnaeus, 1758) was reported for the first time for Turkey in this article with fifteen samples in Aktaş Lake, Ardahan. This species should be added to the checklist of Turkish fish fauna. Turkish name is proposed as “Akbalık” for this species. Keywords: Coregonus albula, first record, Aktaş Lake, Kartsakhi, alkaline lake, Georgia, Turkey Received: 30.10.2019, Accepted: 26.11.2019 Vendace or European cisco Coregonus albula (Linnaeus, 1758) is a native species for northern Europe. Berg (1948) reported the distribution of this species its morphological measurements in the former USSR and adjacent countries. Froese and Pauly (2019) summarized the natural distribution of vendace as Baltic basin, several lakes of upper Volga drainage; some lakes of White Sea basin and North Sea basin east of Elbe drainage; anadromous in Gulf of Finland and marine in northernmost freshened part of Gulf of Bothnia between Finland and Sweden; in Lake Inari, northern Finland; lower Rhine (now extirpated). The vendace was introduced, intentionally in some countries in Europe and United States of America. Vendace was introduced in 1959, 1982-1987 in the Irtysh River Basin and in 1960-61 in Lake Balkhash in Kazakhstan (Mitrofanov and Petr 1999).
    [Show full text]
  • Westslope Cutthroat Trout
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; Chapter 1 however, some errors may remain. Westslope Cutthroat Trout John D. IVIclntyre and Bruce E. Rieman, USDA Forest Service, Intermountain Research Station, 316 E. iViyrtle Street, Boise, Idaho 83702 Introduction Westslope cutthroat trout begin to mature at age 3 but usually spawn first at age 4 or 5 (table 2). Sexu­ The westslope cutthroat trout inhabits streams on ally maturing adfluvial fish move into the vicinity of both sides of the Continental Divide. On the east side tributaries in fall and winter where they remain un­ of the divide, they are distributed mostly in Mon­ til they begin to migrate upstream in the spring tana but also occur in some headwaters in Wyoming (Liknes 1984). They spawn from March to July at and southern Alberta (Behnke 1992). They are in the water temperatures near 10°C (Roscoe 1974; Liknes Missouri Basin downstream to about 60 km below 1984; Shepard et al. 1984). A population of adult fish Great Falls and in the headwaters of the Judith, Milk, in the St. Joe River, Idaho, included 1.6 females for and Marias rivers. On the west side of the Continen­ each male (Thurow and Bjornn 1978). Average length tal Divide the subspecies occurs in the upper was 334 mm for females and 366 mm for males. A Kootenai River; the Clark Fork drainage in Montana similar population in Big Creek, Montana, included and Idaho downstream to the falls on the Fend Oreille 4.1 females for each male (Huston et al.
    [Show full text]
  • Coregonus Lavaretus Complex 1.4 Alternative Species Scientific Name 1.5 Common Name (In National Language) Whitefish 2
    European Community Directive on the Conservation of Natural Habitats and of Wild Fauna and Flora (92/43/EEC) Fourth Report by the United Kingdom under Article 17 on the implementation of the Directive from January 2013 to December 2018 Supporting documentation for the conservation status assessment for the species: S6353 ‐ WhitefishCoregonus ( lavaretus) SCOTLAND IMPORTANT NOTE ‐ PLEASE READ • The information in this document is a country‐level contribution to the UK Reporton the conservation status of this species, submitted to the European Commission aspart of the 2019 UK Reporting under Article 17 of the EU Habitats Directive. • The 2019 Article 17 UK Approach document provides details on how this supporting information was used to produce the UK Report. • The UK Report on the conservation status of this species is provided in a separate doc‐ ument. • The reporting fields and options used are aligned to those set out in the European Com‐ mission guidance. • Explanatory notes (where provided) by the country are included at the end. These pro‐ vide an audit trail of relevant supporting information. • Some of the reporting fields have been left blank because either: (i) there was insuffi‐ cient information to complete the field; (ii) completion of the field was not obligatory; (iii) the field was not relevant to this species (section 12 Natura 2000 coverage forAnnex II species) and/or (iv) the field was only relevant at UK‐level (sections 9 Future prospects and 10 Conclusions). • For technical reasons, the country‐level future trends for Range, Population and Habitat for the species are only available in a separate spreadsheet that contains all the country‐ level supporting information.
    [Show full text]
  • Decision of the Government of the Russian Federation No. 908 of December 31, 2004 on the Approval of the Lists of the Codes of T
    DECISION OF THE GOVERNMENT OF THE RUSSIAN FEDERATION NO. 908 OF DECEMBER 31, 2004 ON THE APPROVAL OF THE LISTS OF THE CODES OF THE TYPES OF FOODSTUFFS AND GOODS FOR CHILDREN IMPOSABLE WITH VALUE-ADDED TAX AT THE 10 PER CENT TAX RATE (with the Amendments and Addenda of March 23, October 12, 2005, February 27, November 27, December 30, 2006, July 9, 23, 2007) In accordance with Subitems 1 and 2 of Item 2 of Article 164 of the Tax Code of the Russian Federation, the Government of the Russian Federation resolves as follows: 1. To approve the annexed: List of the Codes of the Types of Foodstuffs in Accordance with the All-Russia Classifier of Products Imposable with Value-Added Tax at the 10 per Cent Tax Rate in Their Realisation; List of the Codes of the Types of Foodstuffs in Accordance with the Commodity Classification of Foreign Economic Activity of the Russian Federation Imposable with Value-Added Tax at the 10 per Cent Tax Rate in Their Importation into the Customs Territory of the Russian Federation; List of the Codes of the Types of Goods for Children in Accordance with the All-Russia Classifier of Products Imposable with Value-Added Tax at the 10 per Cent Tax Rate in Their Realisation; List of the Codes of the Types of Goods for Children in Accordance with the Commodity Classification of Foreign Economic Activity of the Russian Federation Imposable with Value-Added Tax at the 10 per Cent Tax in Their Importation into the Customs Territory of the Russian Federation.
    [Show full text]
  • Lake Superior Food Web MENT of C
    ATMOSPH ND ER A I C C I A N D A M E I C N O I S L T A R N A T O I I O T N A N U E .S C .D R E E PA M RT OM Lake Superior Food Web MENT OF C Sea Lamprey Walleye Burbot Lake Trout Chinook Salmon Brook Trout Rainbow Trout Lake Whitefish Bloater Yellow Perch Lake herring Rainbow Smelt Deepwater Sculpin Kiyi Ruffe Lake Sturgeon Mayfly nymphs Opossum Shrimp Raptorial waterflea Mollusks Amphipods Invasive waterflea Chironomids Zebra/Quagga mussels Native waterflea Calanoids Cyclopoids Diatoms Green algae Blue-green algae Flagellates Rotifers Foodweb based on “Impact of exotic invertebrate invaders on food web structure and function in the Great Lakes: NOAA, Great Lakes Environmental Research Laboratory, 4840 S. State Road, Ann Arbor, MI A network analysis approach” by Mason, Krause, and Ulanowicz, 2002 - Modifications for Lake Superior, 2009. 734-741-2235 - www.glerl.noaa.gov Lake Superior Food Web Sea Lamprey Macroinvertebrates Sea lamprey (Petromyzon marinus). An aggressive, non-native parasite that Chironomids/Oligochaetes. Larval insects and worms that live on the lake fastens onto its prey and rasps out a hole with its rough tongue. bottom. Feed on detritus. Species present are a good indicator of water quality. Piscivores (Fish Eaters) Amphipods (Diporeia). The most common species of amphipod found in fish diets that began declining in the late 1990’s. Chinook salmon (Oncorhynchus tshawytscha). Pacific salmon species stocked as a trophy fish and to control alewife. Opossum shrimp (Mysis relicta). An omnivore that feeds on algae and small cladocerans.
    [Show full text]
  • Coregonus Maraena) Ecological Risk Screening Summary
    Maraena Whitefish (Coregonus maraena) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, September 2014 and June 2017 Web Version, 09/14/2017 Image: E. Östman. Public domain. Available: http://eol.org/data_objects/26779416. (June 2017). 1 Native Range, and Status in the United States Native Range From Froese and Pauly (2017): “Europe: In the Baltic Sea: Swedish coast (including Bothnian Gulf, not in Gotland); in southern Baltic, extending from the Schlei to Gulf of Finland. Southeast North Sea Basin: Ems, Weser and Elbe drainages 1 and small rivers of Schleswig-Holstein and Denmark. Landlocked in several lakes in Poland, Sweden, and Russia.” Status in the United States From Neilson (2017): “Failed introduction.” “A shipment of 409 individuals from Lake Miedwie (formerly Madue Lake), Poland was stocked in Garnder Lake, Michigan in 1877 (Baird 1879; Todd 1983).” Means of Introductions in the United States From Neilson (2017): “Coregonus maraena, along with other species of Coregonus, was intentionally stocked as a food fish by the U.S. Fish Commission (Todd 1983). According to Baird (1879), 1,000 eggs of C. maraena were shipped from Poland to Michigan in 1877 and hatched in captivity at the State Hatching House in Detroit. A total of 409 of the young fish were stocked in Gardner Lake (Baird 1879; Todd 1983). Baird (1879) considered the stocking an experimental introduction of a European food fish.” Remarks From Neilson (2017): “There is much confusion regarding the identity of whitefish imported from Germany in the late 1800s by the U.S. Fish Commission, primarily due to the uncertain taxonomy and systematics of Coregonus (Kottelat and Freyhof 2007).
    [Show full text]
  • Differences in Brain Transcriptomes of Closely Related Baikal Coregonid Species
    Differences in brain transcriptomes of closely related baikal coregonid species Bychenko, O. S., Sukhanova, L. V., Azhikina, T. L., Skvortsov, T. A., Belomestnykh, T. V., & Sverdlov, E. D. (2014). Differences in brain transcriptomes of closely related baikal coregonid species. BioMed Research International, 2014, [857329]. DOI: 10.1155/2014/857329 Published in: BioMed Research International Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2017 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:06. Nov. 2017 Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 857329, 11 pages http://dx.doi.org/10.1155/2014/857329 Research Article Differences in Brain Transcriptomes of Closely Related Baikal Coregonid Species Oksana S.
    [Show full text]
  • Bear Lake Whitefish Prosopium Abyssicola
    Bear Lake Whitefish Prosopium abyssicola Actinopterygii — Salmoniformes — Salmonidae CONSERVATION STATUS / CLASSIFICATION Rangewide: Critically imperiled (G1) Statewide: Critically imperiled (S1) ESA: No status USFS: Region 1: No status; Region 4: No status BLM: Rangewide/Globally imperiled (Type 2) IDFG: Game fish BASIS FOR INCLUSION Endemic to Bear Lake. TAXONOMY The Bear Lake whitefish is 1 of 3 sympatric members of the genus Prosopium. No subspecies has been proposed. DISTRIBUTION AND ABUNDANCE This species is endemic to Bear Lake. POPULATION TREND Monitoring for >20 years indicates the population is stable (Nielson and Tolentino 2002). HABITAT AND ECOLOGY The Bear Lake whitefish typically occurs in the benthic zone at water depths greater than 40 m (130 ft). Spawning occurs in mid–February to mid–March in shallow, rocky areas. Ostracods comprise the majority of the diet, but other invertebrates found on the lake bottom may be consumed. ISSUES The lowering of lake levels due to natural events and anthropogenic actions could limit spawning and rearing habitat. Increasing human development around the lake could lead to lowering of water quality due to waste water discharges. Legal and illegal introductions of piscivorous fish could affect populations by increased predation rate. RECOMMENDED ACTIONS Continue programs that (1) monitor the population status and trend; (2) evaluate the relationship between water quality and level and fish populations; (3) stock sterile triploid lake trout; and (4) removal of illegally introduced non–native fish (e.g., walleye) in conjuction with adjacent states. Bear Lake Whitefish Prosopium abyssicola Ecological Section Species Range 10 August 2005 Fish information is from Idaho Fish and Wildlife 0 20 40 80 Kilometers Information System, Idaho Deptartment of Fish and Game and displayed at the 6th code hydrologic unit.
    [Show full text]