Utilization of the Internal Transcribed Spacer Regions As Molecular Targets

Total Page:16

File Type:pdf, Size:1020Kb

Utilization of the Internal Transcribed Spacer Regions As Molecular Targets Medical Mycology 2002, 40, 87±109 Accepted 9July 2001 Review article Utilizationof the internaltranscribed spacer regions as molecular targets to detect andidentify human fungal pathogens P.C.IWEN*, S.H.HINRICHS* & M.E.RUPP Downloaded from https://academic.oup.com/mmy/article/40/1/87/961355 by guest on 29 September 2021 y *Department ofPathology and Microbiology,University ofNebraska MedicalCenter, Omaha, Nebraska, USA; Internal Medicine, y University ofNebraska MedicalCenter, Omaha, Nebraska, USA Advancesin molecular technology show greatpotential for the rapiddetection and identication of fungifor medical,scienti c andcommercial purposes. Numerous targetswithin the fungalgenome have been evaluated, with much of the current work usingsequence areas within the ribosomalDNA (rDNA) gene complex. This sectionof the genomeincludes the 18S,5 8Sand28S genes which codefor ribosomal ¢ RNA(rRNA) andwhich havea relativelyconserved nucleotide sequence among fungi.It alsoincludes the variableDNA sequence areas of the interveninginternal transcribedspacer (ITS) regionscalled ITS1 and ITS2. Although not translatedinto proteins,the ITScoding regions have a criticalrole in the developmentof functional rRNA,with sequencevariations among species showing promiseas signature regionsfor molecularassays. This review of the current literaturewas conducted to evaluateclinical approaches for usingthe fungalITS regions as molecular targets. Multipleapplications using the fungalITS sequences are summarized here including those for cultureidenti cation, phylogenetic research, direct detection from clinical specimensor the environment,and molecular typing for epidemiologicalinvestiga- tions. Thebreadth of applicationsshows that ITSregions have great potential as targetsin molecular-basedassays for the characterizationand identi cation of fungi. Developmentof rapidand accurate ampli cation-based ITS assays to diagnose invasivefungal infections could potentiallyimpact care and improve outcome for affectedpatients. Keywords fungalPCR, fungalITS, internal transcribed spacer, rDNA gene complex Introduction been used in clinical microbiology applications for the classication and identication of bacteria and eukar- The ability to determine the nucleic acid sequence of yotic pathogens, such as fungi for many years [1]. The genomic DNAhas revolutionized mostareas of con- ribosomal DNA(rDNA) genes are found in all micro- temporary biomedical research. DNAand RNAhave organisms and known toaccumulate mutations at aslow constant rate over time. Nucleotide sequence hetero- geneity within this region can be used to phylogenetically classify microorganisms. Interspaced among the highly Correspondence:Peter C. Iwen,Department of Pathology and Microbiology,University of Nebraska Medical Center, Omaha, conserved sequences of the rDNAgenes are regions of NE68198-6495,USA. Tel.: 1402-559-7774;fax: 1402-559-4077; variable sequences called spacer regions. The function of ‡ ‡ e-mail:[email protected]. these regions is not completely known; however, they are ã 2002 ISHAM,ISHAM Medical Mycology , 40, 87±109 88 Iwen et al. historically referred to as spacers since they separate the gene) [19–22]. The comparison of nucleotide sequences functional DNAsequences of the various rDNAgenes. within these gene regions has been successful for the Since mutations within the spacer regions of the separation of fungal genera and species. However, rDNAgene complex occurwith greater frequency than limited sequence variability within these rDNAgenes, with the rDNAgenes, the sequence heterogeneity within together with aneed to compare large sequence regions, this area has been useful for the separation of both has led to ashift to evaluate the shorter spacer regions as genera and species. Early molecular studies showing the targets to separate fungal species. usefulness of the rDNAcomplex to classify bacteria The dramatic increase in the incidence of opportunis- were done by Gutel et al.[2]. In this group of ticfungal infections along with the development of new microorganisms, the operon organization consists of a antifungal agents with various spectra of activity and the Downloaded from https://academic.oup.com/mmy/article/40/1/87/961355 by guest on 29 September 2021 promoter region followed by asequence coding for the emergence of antifungal resistance has led to acritical 16S rDNAgene, aspacer (also referred to as the need for diagnostic methods that can rapidly and intergenic spacer), the 23S rDNAgene coding sequence, accurately identify fungal pathogens [23–25]. The re- another short spacer, and nally the sequence coding for ported molecular techniques, using areas within the 5S rDNAgene. With the subsequent development of the rDNAgene complex as atarget, have shown promise for polymerase chain reaction (PCR)technique in combina- the detection and identication of fungal pathogens. The tion with this previous knowledge about the rDNA purpose of this paper is to review amplication methods complex, techniques to identify bacteria using the 16S/ that use ITS regions as molecular targets to diagnose and 23S ribosomal spacer as atarget were developed [3,4]. classify fungal pathogens. The commercialand industrial This ability to amplify and to compare sequences within approaches using the ITS regions as targets have been the 16S/23S-spacer region has had an enormous impact evaluated in numerous other studies and will only be on the classication of bacteria [5,6]. Additionally, discussed in limited detail in this review [26–36]. Finally, utilization of primers that recognize universally con- for amore thorough discussion of PCRmethods for the served sequences within the rDNAgenes of prokaryotic diagnosis of invasive fungal infections, the reviews of cells which ank the variable signature sequence within Reiss et al.[37] and Walsh and Chanock [38] are the spacer region has allowed for the identication of recommended. pathogens which previously could not be cultivated [7– 9]. Similarly, it is also recognized that eukaryotic cells Biologyof theITS regions such as fungi have arDNAgene complex region with Introduction comparable characteristics. The organization of this complex in fungi includes asequence coding for the Afascinating feature of biological life is the commonuse 18S rDNAgene, an internal transcribed spacer region of the DNAgenetic code and its subsequent processing (ITS)1, the 5 8S rDNAgene coding region, another ITS into functional units of protein through the intermediate ¢ region (called ITS2) and the sequence coding for the 28S RNAmolecule. The transcription of DNAinto RNA rDNAgene. As in the case of the 16S and the 23S rDNA and translation of RNAinto protein are both highly genes, the coding regions of 18S, 5 8S and 28S nuclear regulated and compartmentalized in all living organisms. ¢ rDNAgenes evolved slowly, and are relatively con- The cellular factory responsible for the production of served among fungi, providing amolecular basis of protein is the ribosome. As the essential functions of establishing phylogenetic relationships [10]. Between ribosomes are critical for survival, their physical para- these rDNAgene-coding regions are the ITS1 and meters have been conserved in all formsof life, from ITS2 regions, which are similar to the spacer regions in bacteria to humans. Some components within the the bacterial rDNAthat evolved more rapidly, leading to ribosomal factories have, however, changed during the sequence variability among genera and species of fungi. evolutionary process. These similarities, as well as the Early work in molecular testing using the rDNA changes within genetic material can be used as tools for complex as atarget concentrated inthe region of the 18S the identication of microorganisms including fungi, rDNAgene (also referred to as the small-subunit rDNA which is the focus of this review. The sequence homology gene or the 16S-like rDNAgene) [11–16]. Other genes within the rDNAgenes of fungi (18S, 5 8S and 28S ¢ within the rDNAcomplex have also been used for the genes) and differences within the spacer regions (ITS1 molecular evaluation of fungi. These include the 5S and ITS2) are the genetic basis for the organization of rDNAgene [17], the 5 8S rDNAgene [18] and the 28S the fungi into taxonomic groups. After adetailed ¢ rDNAgene (also referred to as the large-subunit rDNA discussion of the principles that are known about the gene, the 25S to 27S rDNAgene, or the 28S-like rDNA biological aspects of the ITS regions, the application of ã 2002 ISHAM, Medical Mycology , 40, 87±109 ITS regionas a moleculartarget for fungi 89 The 18S-gene region is about 1800 bp in size with both conserved and variable domain sequences. Sequence variations within this region have been used to assess the taxonomic relationships of the major groups of Fig. 1 Representationof the rDNA genecomplex in fungi denotinggene order and position of theITS regions. living organisms and to separate genera and species based on sequence polymorphism [12]. However, the drawback to using this region for the identication of using these spacer regions as molecular targets will be species is the relative sequence homology among fungal considered. species and the need to sequence alarge number of bases in order to do comparative analysis. The 5 8S Downloaded from https://academic.oup.com/mmy/article/40/1/87/961355 by guest on 29 September 2021 ¢ rDNA complex region on the other hand is only about 160 bp long and The ITS regions are located in the rDNAgene complex highly conserved within major organism
Recommended publications
  • Introduction to Bacteriology and Bacterial Structure/Function
    INTRODUCTION TO BACTERIOLOGY AND BACTERIAL STRUCTURE/FUNCTION LEARNING OBJECTIVES To describe historical landmarks of medical microbiology To describe Koch’s Postulates To describe the characteristic structures and chemical nature of cellular constituents that distinguish eukaryotic and prokaryotic cells To describe chemical, structural, and functional components of the bacterial cytoplasmic and outer membranes, cell wall and surface appendages To name the general structures, and polymers that make up bacterial cell walls To explain the differences between gram negative and gram positive cells To describe the chemical composition, function and serological classification as H antigen of bacterial flagella and how they differ from flagella of eucaryotic cells To describe the chemical composition and function of pili To explain the unique chemical composition of bacterial spores To list medically relevant bacteria that form spores To explain the function of spores in terms of chemical and heat resistance To describe characteristics of different types of membrane transport To describe the exact cellular location and serological classification as O antigen of Lipopolysaccharide (LPS) To explain how the structure of LPS confers antigenic specificity and toxicity To describe the exact cellular location of Lipid A To explain the term endotoxin in terms of its chemical composition and location in bacterial cells INTRODUCTION TO BACTERIOLOGY 1. Two main threads in the history of bacteriology: 1) the natural history of bacteria and 2) the contagious nature of infectious diseases, were united in the latter half of the 19th century. During that period many of the bacteria that cause human disease were identified and characterized. 2. Individual bacteria were first observed microscopically by Antony van Leeuwenhoek at the end of the 17th century.
    [Show full text]
  • Developments in Fungal Taxonomy
    CLINICAL MICROBIOLOGY REVIEWS, July 1999, p. 454–500 Vol. 12, No. 3 0893-8512/99/$04.00ϩ0 Copyright © 1999, American Society for Microbiology. All Rights Reserved. Developments in Fungal Taxonomy JOSEP GUARRO,* JOSEPA GENE´, AND ALBERTO M. STCHIGEL Unitat de Microbiologia, Departament de Cie`ncies Me`diques Ba`siques, Facultat de Medicina i Cie`ncies de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain INTRODUCTION .......................................................................................................................................................454 THE CONCEPT OF SPECIES IN FUNGI .............................................................................................................455 PHYLOGENY AND EVOLUTION...........................................................................................................................455 NOMENCLATURE.....................................................................................................................................................456 CURRENT MYCOLOGICAL TYPING METHODS..............................................................................................457 Morphology..............................................................................................................................................................457 Downloaded from Molecular Techniques ............................................................................................................................................459 Other Techniques....................................................................................................................................................460
    [Show full text]
  • Revision of Agents of Black-Grain Eumycetoma in the Order Pleosporales
    Persoonia 33, 2014: 141–154 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X684744 Revision of agents of black-grain eumycetoma in the order Pleosporales S.A. Ahmed1,2,3, W.W.J. van de Sande 4, D.A. Stevens 5, A. Fahal 6, A.D. van Diepeningen 2, S.B.J. Menken 3, G.S. de Hoog 2,3,7 Key words Abstract Eumycetoma is a chronic fungal infection characterised by large subcutaneous masses and the pres- ence of sinuses discharging coloured grains. The causative agents of black-grain eumycetoma mostly belong to the Madurella orders Sordariales and Pleosporales. The aim of the present study was to clarify the phylogeny and taxonomy of mycetoma pleosporalean agents, viz. Madurella grisea, Medicopsis romeroi (syn.: Pyrenochaeta romeroi), Nigrograna mackin­ Pleosporales nonii (syn. Pyrenochaeta mackinnonii), Leptosphaeria senegalensis, L. tompkinsii, and Pseudochaetosphaeronema taxonomy larense. A phylogenetic analysis based on five loci was performed: the Internal Transcribed Spacer (ITS), large Trematosphaeriaceae (LSU) and small (SSU) subunit ribosomal RNA, the second largest RNA polymerase subunit (RPB2), and transla- tion elongation factor 1-alpha (TEF1) gene. In addition, the morphological and physiological characteristics were determined. Three species were well-resolved at the family and genus level. Madurella grisea, L. senegalensis, and L. tompkinsii were found to belong to the family Trematospheriaceae and are reclassified as Trematosphaeria grisea comb. nov., Falciformispora senegalensis comb. nov., and F. tompkinsii comb. nov. Medicopsis romeroi and Pseu­ dochaetosphaeronema larense were phylogenetically distant and both names are accepted. The genus Nigrograna is reduced to synonymy of Biatriospora and therefore N.
    [Show full text]
  • Boards' Fodder
    boards’ fodder Medical Mycology By Adriana Schmidt, MD, and Natalie M. Curcio, MD, MPH. (Updated July 2015*) SUPERFICIAL ORGANISM CLINICAL HISTO/KOH TREATMENT MYCOSES* Pityriasis Malessezia furfur Hypo- or hyper-pigmented Spaghetti & meatballs: Antifungal shampoos and/or versicolor macules short hyphae + yeast PO therapy Tinea nigra Hortaea werneckii (formerly Brown-black non-scaly Branching septate hyphae Topical imidazoles or palmaris Phaeoannellomyces werneckii) macules + budding yeast allylamines Black piedra Piedraia hortae Hard firm black Dark hyphae around concretions acrospores Cut hair off, PO terbinafine, White piedra Trichosporon ovoides or inkin Soft loose white Blastoconidia, imidazoles, or triazoles (formely beigelii) concretions arthroconidia Fluorescent small Microsporum Canis KOH: spores on outside spore ectothrix: M. audouinii of the hair shaft; “Cats And Dogs M. distortum Wood’s lamp --> yellow Sometimes Fight T. schoenleinii fluorescence & Growl” M. ferrugineum+/- gypseum Large spore Trichophyton spp. (T. tonsurans in North America; T. violaceum in KOH: spores within hair Topical antifungals; PO endothrix Europe, Asia, parts of Africa). shaft antifungals for T. manuum, Tinea corporis T. rubrum > T. mentag. Majocchi’s granuloma: T. rubrum capitis, unguium T. pedis Moccasin: T. rubrum, E. floccosum. Interdigital/vesicular: T. mentag T. unguium Distal lateral, proximal and proximal white subungual: T. rubrum. White superficial: T. mentag. HIV: T. rubrum SUBQ MYCOSES** ORGANISM TRANSMISSION CLINICAL HISTO/KOH TREATMENT
    [Show full text]
  • Pathogenicity Classification of Fungi Status December 2014 (CGM/141218-03)
    Classification of Organisms: Pathogenicity classification of fungi Status December 2014 (CGM/141218-03) COGEM advice CGM/141218-03 Pathogenicity classification of fungi COGEM advice CGM/141218-03 Dutch Regulations Genetically Modified Organisms In the Decree on Genetically Modified Organisms (GMO Decree) and its accompanying more detailed Regulations (GMO Regulations) genetically modified micro-organisms are grouped in four pathogenicity classes, ranging from the lowest pathogenicity Class 1 to the highest Class 4.1 The pathogenicity classifications are used to determine the containment level for working in laboratories with GMOs. A micro-organism of Class 1 should at least comply with one of the following conditions: a) the micro-organism does not belong to a species of which representatives are known to be pathogenic for humans, animals or plants, b) the micro-organism has a long history of safe use under conditions without specific containment measures, c) the micro-organism belongs to a species that includes representatives of class 2, 3 or 4, but the particular strain does not contain genetic material that is responsible for the virulence, d) the micro-organism has been shown to be non-virulent through adequate tests. A micro-organism is grouped in Class 2 when it can cause a disease in humans or animals whereby it is unlikely to spread within the population while an effective prophylaxis, treatment or control strategy exists, as well as an organism that can cause a disease in plants. A micro-organism is grouped in Class 3 when it can cause a serious disease in humans or animals whereby it is likely to spread within the population while an effective prophylaxis, treatment or control strategy exists.
    [Show full text]
  • Monograph on Dematiaceous Fungi
    Monograph On Dematiaceous fungi A guide for description of dematiaceous fungi fungi of medical importance, diseases caused by them, diagnosis and treatment By Mohamed Refai and Heidy Abo El-Yazid Department of Microbiology, Faculty of Veterinary Medicine, Cairo University 2014 1 Preface The first time I saw cultures of dematiaceous fungi was in the laboratory of Prof. Seeliger in Bonn, 1962, when I attended a practical course on moulds for one week. Then I handled myself several cultures of black fungi, as contaminants in Mycology Laboratory of Prof. Rieth, 1963-1964, in Hamburg. When I visited Prof. DE Varies in Baarn, 1963. I was fascinated by the tremendous number of moulds in the Centraalbureau voor Schimmelcultures, Baarn, Netherlands. On the other hand, I was proud, that El-Sheikh Mahgoub, a Colleague from Sundan, wrote an internationally well-known book on mycetoma. I have never seen cases of dematiaceous fungal infections in Egypt, therefore, I was very happy, when I saw the collection of mycetoma cases reported in Egypt by the eminent Egyptian Mycologist, Prof. Dr Mohamed Taha, Zagazig University. To all these prominent mycologists I dedicate this monograph. Prof. Dr. Mohamed Refai, 1.5.2014 Heinz Seeliger Heinz Rieth Gerard de Vries, El-Sheikh Mahgoub Mohamed Taha 2 Contents 1. Introduction 4 2. 30. The genus Rhinocladiella 83 2. Description of dematiaceous 6 2. 31. The genus Scedosporium 86 fungi 2. 1. The genus Alternaria 6 2. 32. The genus Scytalidium 89 2.2. The genus Aurobasidium 11 2.33. The genus Stachybotrys 91 2.3. The genus Bipolaris 16 2.
    [Show full text]
  • A Comparative Study of in Vitro Susceptibility of Madurella
    Original Article A comparative Study of In vitro Susceptibility of Madurella mycetomatis to Anogeissus leiocarpous Leaves, Roots and Stem Barks Extracts Ikram Mohamed Eltayeb*1, Abdel Khalig Muddathir2, Hiba Abdel Rahman Ali3 and Saad Mohamed Hussein Ayoub1 1Department of Pharmacognosy, Faculty of Pharmacy, University of Medical Sciences and Technology, P. O. Box 12810, Khartoum, Sudan 2Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan 3Commission of Biotechnology and Genetic Engineering, National Center for Research, Khartoum, Sudan ABSTRACT Objective: Anogeissus leiocarpus leaves, roots and stem bark are broadly utilized as a part of African traditional medicine against numerous pathogenic microorganisms for treating skin diseases and infections. Mycetoma disease is a fungal and/ or bacterial skin infection, mainly caused by filamentous Madurella mycetomatis fungus. The objective of this study is to investigate and compare the antifungal activity of A. leiocarpus leaves, roots and stem bark against the isolated mycetoma pathogen, M. mycetomatis fungus. Methods: The alcoholic crude extracts, and their petroleum ether, chloroform and ethyl acetate fractions of A. leiocarpus leaves, roots and stem bark were prepared and their antifungal activity against the isolated M. mycetomatis fungus were assayed according to the Address for NCCLS antifungal modified method and MTT assay compared to the Correspondence Ketoconazole, standard antifungal drug. The most bioactive fractions were subjected to chemical analysis using LC-MS/MS Department of chromatographic analytical method. Pharmacognosy, Results: The results demonstrated the potent antifungal activity of A. Faculty of Pharmacy, leiocarpus extracts against the isolated pathogenic M. mycetomatis University of Medical compared to the negative and positive controls. The chloroform Sciences and fractions showed higher antifungal activity among the other extracts, Technology, P.
    [Show full text]
  • 1 §4-71A-24 LIST of NONRESTRICTED MICROORGANISMS October 25, 2001 SCIENTIFIC NAME FUNGI Absidia Coerulea Absidia Corymbifera Ab
    §4-71A-24 LIST OF NONRESTRICTED MICROORGANISMS October 25, 2001 SCIENTIFIC NAME FUNGI Absidia coerulea Absidia corymbifera Absidia ramosa Absidia spinosa Acremonium falciforme Acremonium kiliense Acremonium recifei Acremonium vitis Agaricus bitorquis Agaricus bisporus Agaricus campestris Agaricus sp. (Portabello mushroom) Alternaria alternata Alternaria geophilia Apiotrichum humicola Arthrobotrys - all species in genus Aspergillus candidus Aspergillus clavatus Aspergillus cremeus Aspergillus flavipipes Aspergillus flavus Aspergillus fumigatus Aspergillus glaucus Aspergillus nidulans Aspergillus niger Aspergillus ochraceus Aspergillus restrictus Aspergillus terreus Aspergillus ustus Aspergillus versicolor Aspergillus wentii Asteromyces cruciatus Aureobasidium pullulans Auricularia polytricha Bipolaris hawaiiensis Blastomyces dermatitidis Blastoschizomyces capitatus Boletus californicus Boletus granulatus Boletus luteus 1 Nonrestricted Microorganisms §4-71A-24 SCIENTIFIC NAME Boletus variegatus Byssochlamys fulva Candida albicans Candida famata Candida geochares Candida glabrata Candida humicola Candida kefyr Candida krusei Candida lipolytica Candida lusitaniae Candida parapsilosis Candida pseudotropicalis Candida quilliermondii Candida rugosa Candida stellatoidea Candida tropicalis Candida zeylanoides Candelabrella - all species in genus Chaetomium globosum Chrysosporium keratinophilum Chrysosporium liquorum Chrysosporium pruinosum Cladosporium bantianum Cladosporium carrionii Cladosporium trichoides Collybia velutipes Cryptococcus albidus
    [Show full text]
  • Chromoblastomycosis Patricia Chang1, Elba Arana2, Roberto Arenas3
    2XU'HUPDWRORJ\2QOLQH Case Report Chromoblastomycosis Patricia Chang1, Elba Arana2, Roberto Arenas3 1Department of Dermatology, Hospital General de Enfermedades IGSS and Hospital Ángeles, Guatemala, 2Elective student, Hospital General de Enfermedades IGSS and Hospital Ángeles, Guatemala, 3Mycology section, “Dr. Manuel Gea González” Hospital, Mexico City, Mexico Corresponding author: Dr. Patricia Chang, E-mail: [email protected] ABSTRACT Chromoblastomycosis is a subcutaneous, chronic, granulomatous mycosis that occurs more frequently in tropical and subtropical countries. We report a case of chromoblastomycosis of the earlobe due to Fonsecaea sp in a male patient of 34 years old, due to its uncommon localization. Key words: Chromoblastomycosis; Fonsecaea pedrosoi; Fonsecaea compacta; Cladosporium carrionii; Fumagoid cells INTRODUCTION plate, hematic crusts and one retroauricular nodule with slightly warty appearance (Figs. 1 and 2). The rest of the The chromoblastomycosis is a sub cutaneous mycosis physical exam was within normal limits. in tropical and subtropical areas considered as an American disease, the main agents are Fonsecaea The patient says that his disease started 3 years ago pedrosoi, in endemic areas of tropical and subtropical with a small asymptomatic “pimple” in his right ear environments; Fonsecaea compacta, Cladosporium that slowly increased its size until he decided to consult. carrionii. The diagnosis of the disease is through the In the last 6 months he had an occasional itch and presence of fumagoids cells. was prescribed different antibiotics and non-specific creams. He does not remember bruising the area. In our environment, chromoblastomycosis is the third most common subcutaneous mycosis. It predominates Three clinical diagnosis were made based on the in the lower limbs in warty form and F pedrosoi is the clinical data: chromoblastomycosis; leishmaniasis; most frequent etiological agent.
    [Show full text]
  • Therapies for Common Cutaneous Fungal Infections
    MedicineToday 2014; 15(6): 35-47 PEER REVIEWED FEATURE 2 CPD POINTS Therapies for common cutaneous fungal infections KENG-EE THAI MB BS(Hons), BMedSci(Hons), FACD Key points A practical approach to the diagnosis and treatment of common fungal • Fungal infection should infections of the skin and hair is provided. Topical antifungal therapies always be in the differential are effective and usually used as first-line therapy, with oral antifungals diagnosis of any scaly rash. being saved for recalcitrant infections. Treatment should be for several • Topical antifungal agents are typically adequate treatment weeks at least. for simple tinea. • Oral antifungal therapy may inea and yeast infections are among the dermatophytoses (tinea) and yeast infections be required for extensive most common diagnoses found in general and their differential diagnoses and treatments disease, fungal folliculitis and practice and dermatology. Although are then discussed (Table). tinea involving the face, hair- antifungal therapies are effective in these bearing areas, palms and T infections, an accurate diagnosis is required to ANTIFUNGAL THERAPIES soles. avoid misuse of these or other topical agents. Topical antifungal preparations are the most • Tinea should be suspected if Furthermore, subsequent active prevention is commonly prescribed agents for dermatomy- there is unilateral hand just as important as the initial treatment of the coses, with systemic agents being used for dermatitis and rash on both fungal infection. complex, widespread tinea or when topical agents feet – ‘one hand and two feet’ This article provides a practical approach fail for tinea or yeast infections. The pharmacol- involvement. to antifungal therapy for common fungal infec- ogy of the systemic agents is discussed first here.
    [Show full text]
  • Tinea Capitis: Current Concepts in Clinical Practice
    CONTINUING MEDICAL EDUCATION Tinea Capitis: Current Concepts in Clinical Practice Matthew J. Trovato, MD; Robert A. Schwartz, MD, MPH; Camila K. Janniger, MD GOAL To understand tinea capitis to better treat patients with the condition OBJECTIVES Upon completion of this activity, dermatologists and general practitioners should be able to: 1. Describe the etiology of tinea capitis. 2. Recognize and diagnose tinea capitis. 3. Effectively treat tinea capitis. CME Test on page 88. This article has been peer reviewed and is accredited by the ACCME to provide continuing approved by Victor B. Hatcher, PhD, Professor of medical education for physicians. Medicine, Albert Einstein College of Medicine. Albert Einstein College of Medicine designates Review date: January 2006. this educational activity for a maximum of 1 This activity has been planned and implemented category 1 credit toward the AMA Physician’s in accordance with the Essential Areas and Policies Recognition Award. Each physician should of the Accreditation Council for Continuing Medical claim only that credit that he/she actually spent Education through the joint sponsorship of Albert in the activity. Einstein College of Medicine and Quadrant This activity has been planned and produced in HealthCom, Inc. Albert Einstein College of Medicine accordance with ACCME Essentials. Drs. Trovato, Schwartz, and Janniger report no conflict of interest. The authors discuss off-label use of fluconazole, itraconazole, ketoconazole, and terbinafine. Dr. Hatcher reports no conflict of interest. Tinea capitis is a common infection, particularly seen in Europe and many other countries, which among young children in urban regions. The emit a green fluorescence. However, T tonsurans, infection often is seen in a form with mild scaling like other fungi, also may less often produce an and little hair loss, a result of the prominence of intense inflammatory reaction, which is sugges- Trichophyton tonsurans (the most frequent cause tive of an acute bacterial infection.
    [Show full text]
  • STUDIES on INVASIVE KERATINOPHILIC DERMATOPHYTES of HUMAN HAIR *Brajesh Kumar Jha1, S
    Brajesh et al Journal of Drug Delivery & Therapeutics; 2013, 3(2), 70-74 70 Available online at http://jddtonline.info RESEARCH ARTICLE STUDIES ON INVASIVE KERATINOPHILIC DERMATOPHYTES OF HUMAN HAIR *Brajesh Kumar Jha1, S. Mahadeva Murthy2 1Research Scholar, Department of Microbiology, Yubraja College, Mysore, India 2Associate Professor, Department of Microbiology, Yubraja College, Mysore, India *Corresponding Author’s Email: [email protected] Phone: +977- 9845087892 ABSTRACT: Background: Tinea Capitis (TC) is a dermatophyte infection of the scalp hair follicles and intervening skin. TC is mainly caused by anthropohilic and zoophilic species of the genera Trichophyton and Microsporum. On the basis of the type of hair invasion, dermatophytes are also classified as endothrix, ectothrix or favus. Despite the availability of effective antifungal agents, dermatophytic infections continue to be one of the principal dermatological diseases in Mysore. Objectives: To study the genus and species variants, of fungus causing Tinea Capitis infection and epidemiological factors responsible for the disease in Central Mysore. Materials and methods: Clinically suspected 527 patients with dermatophytes infection cases were included in our study, where 58 cases were diagnosed and confirmed as a Tinea Capitis patients only selected for our study. Suspected lesion like scalp skin scraping and hair plucking samples were collected after disinfecting the site with 70% of ethyl alcohol. Samples were collected in a sterile thick black envelope, folded, labelled and brought to the laboratory for further processing according to slandered Mycological protocol. Results: A total of 527 patients with dermatophytes infection suspected cases were included in our study, where 58 cases (11.0%) were confirmed as a Tinea Capitis.
    [Show full text]