A Comparative Study of in Vitro Susceptibility of Madurella

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Study of in Vitro Susceptibility of Madurella Original Article A comparative Study of In vitro Susceptibility of Madurella mycetomatis to Anogeissus leiocarpous Leaves, Roots and Stem Barks Extracts Ikram Mohamed Eltayeb*1, Abdel Khalig Muddathir2, Hiba Abdel Rahman Ali3 and Saad Mohamed Hussein Ayoub1 1Department of Pharmacognosy, Faculty of Pharmacy, University of Medical Sciences and Technology, P. O. Box 12810, Khartoum, Sudan 2Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan 3Commission of Biotechnology and Genetic Engineering, National Center for Research, Khartoum, Sudan ABSTRACT Objective: Anogeissus leiocarpus leaves, roots and stem bark are broadly utilized as a part of African traditional medicine against numerous pathogenic microorganisms for treating skin diseases and infections. Mycetoma disease is a fungal and/ or bacterial skin infection, mainly caused by filamentous Madurella mycetomatis fungus. The objective of this study is to investigate and compare the antifungal activity of A. leiocarpus leaves, roots and stem bark against the isolated mycetoma pathogen, M. mycetomatis fungus. Methods: The alcoholic crude extracts, and their petroleum ether, chloroform and ethyl acetate fractions of A. leiocarpus leaves, roots and stem bark were prepared and their antifungal activity against the isolated M. mycetomatis fungus were assayed according to the Address for NCCLS antifungal modified method and MTT assay compared to the Correspondence Ketoconazole, standard antifungal drug. The most bioactive fractions were subjected to chemical analysis using LC-MS/MS Department of chromatographic analytical method. Pharmacognosy, Results: The results demonstrated the potent antifungal activity of A. Faculty of Pharmacy, leiocarpus extracts against the isolated pathogenic M. mycetomatis University of Medical compared to the negative and positive controls. The chloroform Sciences and fractions showed higher antifungal activity among the other extracts, Technology, P. O. Box while the bark chloroform fraction was found to be the highest one. 12810, Khartoum, The chromatographic analysis of the chloroform fractions showed the Sudan presence of important bioactive compounds such as ellagic and flavellagic acids derivatives, known for their antifungal activity and E-mail: kramela_07 toxicity to the filamentous fungi, steilbenoid compounds known as @yahoo.com phytoalexins secondary metabolites with potent antifungal activities American Journal of Phytomedicine and Clinical Therapeutics www.ajpct.org Mohamed Eltayeb et al_______________________________________ ISSN 2321 – 2748 and the antimicrobial agents, flavonoids Conclusion: These studies present that the A. leiocarpus extracts posse’s potent antifungal activity against mycetoma causing pathogen compared to the ketoconazole standard drug and the highest activity was found to be in the stem bark of the plant. Keywords: In vitro, Susceptibility, Madurella, mycetomatis, Anogeissus, leiocarpus, Leaves, Roots, Stem barks, extracts. INTRODUCTION Combretaceae is a family of require amputation leading to loss of the flowering plants, widely distributed in the infected limbs33, 23, 34. tropical climates of Africa, Asia and South In Sudan mycetoma is a serious America. It incorporates 20 genera and common disease leading to the loss of around 600 species of shrubs, trees numerous limbs. The rate of mycetoma (evergreen or deciduous) or woody lianas1-3. infections in Sudan has not changed and The family is an important resource in around 400 new cases are found in clinics traditional medical practices for many and outpatient centers every year35, 33, 23, 34. human diseases3-8, many of these indications There is no potent and effective drug are related to treating infections7. The for treating mycetoma infection. efficacy of the plants may be due to the Ketoconazole is the favored antifungal presence of different classes of antimicrobial medication utilized for mycetoma secondary metabolites4, 5, 9. treatment36,23,34. Adequate treatment requires Anogeissus leiocarpus, is an African a prolonged antifungal drug combined with evergreen tree10 of genus Anogeissus extensive surgical treatment33, 23, 34. Meager belonging to this family with different uses data is available for susceptibility of M. in traditional medicine8,11-19. It mainly used mycetomatis to the plants secondary in treating skin diseases and infections, metabolites37. wounds infections, sore feet, boils, cysts, The present paper reported the syphilitic and diabetic ulcers13,20-23. The results of comparative study and activity plant was found to exhibited potent assessment of alcoholic leaves, barks and antibacterial and antifungal activity against roots extracts of the plant and their several pathogenic microorganisms24-30,19, chloroform fractions and ethyl acetate 31, 22, 32. fractions against M. mycetomatis. Emphasis Mycetoma is a chronic has been laid on the fungal susceptibility to granulomatous subcutaneous and deep the different metabolites occurring in tissues skin disease or a number of skin different morphological parts of the same infections caused by numerous fungi plant used in traditional therapy for the (eumycetoma) primarily Madurella infections treatment. mycetomatis fungus, or by bacteria (actinomycetoma). Progressive destruction EXPERIMENTAL of tissues leads to loss of function and impaired the affected site. Serious cases Plant Material The leaves, roots and stem barks of A. leiocarpus were collected from El AJPCT[4][05][2016] 135-164 Mohamed Eltayeb et al_______________________________________ ISSN 2321 – 2748 Damazeine region in Sudan; their botanical hyphae which were harvested in identities were authenticated in the mycological peptone (BDH) water broth siliviculture department, Faculty of Forestry, medium with chloroamphenicol. The University of Khartoum, Sudan. The harvested mycelia or hyphae was washed voucher specimen was deposited at two to three times with RPMI 1640 with L- Department of Biochemistry, Commission glutamine medium, and then incubated for of Biotechnology and Genetic Engineering, 24 hours. The harvested mycelia, was National Centre for Research, Sudan. Barks sonicated for two minutes till homogenous and roots were chipped using saw mill, and suspension of mycelia was obtained. the plant materials were air dried under shade at room temperature, ground to a Anti Fungal Procedure coarse powder using electric grinder. While the leaves were ground into powder utilizing NCCLS Antifungal Modified Assay mortar and pestle. One ml of RPMI medium containing serially diluted extracts (10-0.31mg/ml) Preparations of the Extracts were placed in sterile test tubes, then 1ml of Plant powdered materials were prepared suspension was added. Tow set of extracted by maceration over night in 80% control tubes were used in the experiment, alcohol. Alcoholic extracts were fractionated one is growth control tubes(-ve) contained using solvents with gradually increasing 1ml of RPMI medium without any treatment polarities; petroleum, chloroform and ethyl and 1ml of prepared suspension, and the acetate). The obtained fractions were other one was standard drug (+ve) control concentrated by evaporation of the solvents tubes contained 1ml of RPMI medium with under reduced pressure using a rotary serially diluted ketoconazole (5-0.31mg/ml). vacuum evaporator. The optical density of the prepared growth control suspension was measured prior Madurella mycetomatis Collection incubation using a spectrophotometer at 680 M. mycetomatis Isolated fungus was nm red filter and reported as initial reading. collected from mycetoma research center at Then all test tubes were incubated at 37°C Soba hospital, Sudan. The black grains were for a week then, the optical density was exuded from open sinuses and surgical measured at 680 nm38, 39 biopsy from the lesion, freed from tissues MIC value is the least concentration and carried by forceps in sterile container before the spectrophotometer transmission with saline. reading is the same as or more than the initial reading37. It the least concentration, Culture and Preparation of Fungal when, there is no any growth of inoculated Suspension tested organisms had been seen40. The isolated grains were washed several time with saline solution and were MTT Assay firstly cultured in blood agar media,and then The assay is a quick sensitive sub--cultured in sabouraud dextrose agar colorimetric method; utilize tetrazolium salt and incubated at 37°C for 8 days. as indicator of microbial metabolism for The isolated strains were sub - evaluation of cell death41. This method is cultured again to maintain pure isolate of actually the reduction of yellow MTT salt hyphae. The subculture of hyphae was [tetrazolium salt (3-{4, 5-dimethylthiazole- repeated for two weeks to maintain pure 2-yl}-2, 5-diphenyl tetrazolium bromide)] AJPCT[4][05][2016] 135-164 Mohamed Eltayeb et al_______________________________________ ISSN 2321 – 2748 into the green blue or violet blue formazan addition to the stem bark chloroform by the mitochondrial dehydrogenase, show fraction was found to be the most active just in the living cells and henceforth fraction. The results were compatible with discharged into the supernatant. The color the results of other related Anogeissus spp intensity is directly proportional to the living (Anogeissus latifolia) against skin disease cell numbers in the culture. One drop of the organisms44. indicator was added to all tested tubes after The leaves extract and fractions measuring the final optical
Recommended publications
  • Revision of Agents of Black-Grain Eumycetoma in the Order Pleosporales
    Persoonia 33, 2014: 141–154 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X684744 Revision of agents of black-grain eumycetoma in the order Pleosporales S.A. Ahmed1,2,3, W.W.J. van de Sande 4, D.A. Stevens 5, A. Fahal 6, A.D. van Diepeningen 2, S.B.J. Menken 3, G.S. de Hoog 2,3,7 Key words Abstract Eumycetoma is a chronic fungal infection characterised by large subcutaneous masses and the pres- ence of sinuses discharging coloured grains. The causative agents of black-grain eumycetoma mostly belong to the Madurella orders Sordariales and Pleosporales. The aim of the present study was to clarify the phylogeny and taxonomy of mycetoma pleosporalean agents, viz. Madurella grisea, Medicopsis romeroi (syn.: Pyrenochaeta romeroi), Nigrograna mackin­ Pleosporales nonii (syn. Pyrenochaeta mackinnonii), Leptosphaeria senegalensis, L. tompkinsii, and Pseudochaetosphaeronema taxonomy larense. A phylogenetic analysis based on five loci was performed: the Internal Transcribed Spacer (ITS), large Trematosphaeriaceae (LSU) and small (SSU) subunit ribosomal RNA, the second largest RNA polymerase subunit (RPB2), and transla- tion elongation factor 1-alpha (TEF1) gene. In addition, the morphological and physiological characteristics were determined. Three species were well-resolved at the family and genus level. Madurella grisea, L. senegalensis, and L. tompkinsii were found to belong to the family Trematospheriaceae and are reclassified as Trematosphaeria grisea comb. nov., Falciformispora senegalensis comb. nov., and F. tompkinsii comb. nov. Medicopsis romeroi and Pseu­ dochaetosphaeronema larense were phylogenetically distant and both names are accepted. The genus Nigrograna is reduced to synonymy of Biatriospora and therefore N.
    [Show full text]
  • Utilization of the Internal Transcribed Spacer Regions As Molecular Targets
    Medical Mycology 2002, 40, 87±109 Accepted 9July 2001 Review article Utilizationof the internaltranscribed spacer regions as molecular targets to detect andidentify human fungal pathogens P.C.IWEN*, S.H.HINRICHS* & M.E.RUPP Downloaded from https://academic.oup.com/mmy/article/40/1/87/961355 by guest on 29 September 2021 y *Department ofPathology and Microbiology,University ofNebraska MedicalCenter, Omaha, Nebraska, USA; Internal Medicine, y University ofNebraska MedicalCenter, Omaha, Nebraska, USA Advancesin molecular technology show greatpotential for the rapiddetection and identication of fungifor medical,scienti c andcommercial purposes. Numerous targetswithin the fungalgenome have been evaluated, with much of the current work usingsequence areas within the ribosomalDNA (rDNA) gene complex. This sectionof the genomeincludes the 18S,5 8Sand28S genes which codefor ribosomal ¢ RNA(rRNA) andwhich havea relativelyconserved nucleotide sequence among fungi.It alsoincludes the variableDNA sequence areas of the interveninginternal transcribedspacer (ITS) regionscalled ITS1 and ITS2. Although not translatedinto proteins,the ITScoding regions have a criticalrole in the developmentof functional rRNA,with sequencevariations among species showing promiseas signature regionsfor molecularassays. This review of the current literaturewas conducted to evaluateclinical approaches for usingthe fungalITS regions as molecular targets. Multipleapplications using the fungalITS sequences are summarized here including those for cultureidenti cation, phylogenetic
    [Show full text]
  • New Species of Madurella, Causative Agents of Black-Grain Mycetoma
    New Species of Madurella, Causative Agents of Black-Grain Mycetoma G. Sybren de Hoog,a,b,c,d Anne D. van Diepeningen,a El-Sheikh Mahgoub,e and Wendy W. J. van de Sandef Centraalbureau voor Schimmelcultures KNAW Fungal Biodiversity Centre, Utrecht, The Netherlandsa; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlandsb; Peking University Health Science Center, Research Center for Medical Mycology, Beijing, Chinac; Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Chinad; Mycetoma Research Centre, University of Khartoum, Khartoum, Sudane; and Erasmus Medical Center, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlandsf Downloaded from A new species of nonsporulating fungus, isolated in a case of black-grain mycetoma in Sudan, is described as Madurella fahalii. The species is characterized by phenotypic and molecular criteria. Multigene phylogenies based on the ribosomal DNA (rDNA) internal transcribed spacer (ITS), the partial ␤-tubulin gene (BT2), and the RNA polymerase II subunit 2 gene (RPB2) indicate that M. fahalii is closely related to Madurella mycetomatis and M. pseudomycetomatis; the latter name is validated according to the rules of botanical nomenclature. Madurella ikedae was found to be synonymous with M. mycetomatis. An isolate from Indo- nesia was found to be different from all known species based on multilocus analysis and is described as Madurella tropicana. Madurella is nested within the order Sordariales, with Chaetomium as its nearest neighbor. Madurella fahalii has a relatively low optimum growth temperature (30°C) and is less susceptible to the azoles than other Madurella species, with voriconazole http://jcm.asm.org/ and posaconazole MICs of 1 ␮g/ml, a ketoconazole MIC of 2 ␮g/ml, and an itraconazole MIC of >16 ␮g/ml.
    [Show full text]
  • The Discovery of Fenarimols As Novel Drug
    bioRxiv preprint doi: https://doi.org/10.1101/258905; this version posted February 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Full title: Addressing the Most Neglected Diseases through an Open Research Model: the Discovery of Fenarimols as Novel Drug Candidates for Eumycetoma. Short title: Eumycetoma Open Research Model Drug discovery 1 bioRxiv preprint doi: https://doi.org/10.1101/258905; this version posted February 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Addressing the Most Neglected Diseases through an Open Research Model: the Discovery of 2 Fenarimols as Novel Drug Candidates for Eumycetoma. 3 4 Wilson Lim1, Youri Melse1, Mickey Konings1, Hung Phat Duong2, Kimberly Eadie1, Benoît Laleu3, Ben 4 2 4 1 5 Perry , Matthew H. Todd , Jean-Robert Ioset , Wendy W.J. van de Sande * 6 7 8 1Erasmus MC, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The 9 Netherlands 10 2School of Chemistry, The University of Sydney, Sydney, Australia 11 3Medicines for Malaria Venture (MMV), Geneva, Switzerland 12 4DNDi, Geneva, Switzerland 13 14 15 16 Corresponding author: Wendy W.J. van de Sande 17 * [email protected] (WvdS) 2 bioRxiv preprint doi: https://doi.org/10.1101/258905; this version posted February 2, 2018.
    [Show full text]
  • Niclosamide Is Active in Vitro Against Mycetoma Pathogens
    molecules Article Niclosamide Is Active In Vitro against Mycetoma Pathogens Abdelhalim B. Mahmoud 1,2,3,† , Shereen Abd Algaffar 4,† , Wendy van de Sande 5, Sami Khalid 4 , Marcel Kaiser 1,2 and Pascal Mäser 1,2,* 1 Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.B.M.); [email protected] (M.K.) 2 Faculty of Science, University of Basel, 4001 Basel, Switzerland 3 Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan 4 Faculty of Pharmacy, University of Science and Technology, Omdurman 14411, Sudan; [email protected] (S.A.A.); [email protected] (S.K.) 5 Erasmus Medical Center, Department of Medical Microbiology and Infectious Diseases, 3000 Rotterdam, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +41-61-284-8338 † These authors contributed equally to this work. Abstract: Redox-active drugs are the mainstay of parasite chemotherapy. To assess their repurposing potential for eumycetoma, we have tested a set of nitroheterocycles and peroxides in vitro against two isolates of Madurella mycetomatis, the main causative agent of eumycetoma in Sudan. All the tested compounds were inactive except for niclosamide, which had minimal inhibitory concentrations of around 1 µg/mL. Further tests with niclosamide and niclosamide ethanolamine demonstrated in vitro activity not only against M. mycetomatis but also against Actinomadura spp., causative agents of actinomycetoma, with minimal inhibitory concentrations below 1 µg/mL. The experimental compound MMV665807, a related salicylanilide without a nitro group, was as active as niclosamide, indicating that the antimycetomal action of niclosamide is independent of its redox chemistry (which Citation: Mahmoud, A.B.; Abd Algaffar, S.; van de Sande, W.; Khalid, is in agreement with the complete lack of activity in all other nitroheterocyclic drugs tested).
    [Show full text]
  • Sunday 1 April Parallel Session 5: Mitochondria
    PS4.8 How do mobile pathogenicity chromosomes collaborate with the core genome? Charlotte van der Does, Martijn Rep University of Amsterdam In the tomato pathogen F. oxysporum f. sp. lycopersici, most known effector genes reside on a pathogenicity chromosome that can be exchanged between strains through horizontal transfer. As a result, this fungus has sub‐ genomes with different evolutionary histories: the conserved core genome and the mobile ‘extra’ genome. Interestingly, expression of the effectors on the mobile genome requires Sge1, a conserved transcription factor encoded in the core genome. Also, a transcription factor on the mobile chromosome, Ftf1, is associated with pathogenicity (de Vega‐Bartol et al. 2011). Random insertion of an effector‐promoter GFP reporter construct revealed that the position in the genome has a strong influence on the level of expression. Furthermore, in all transformants tested, expression could no longer be induced, but was constitutive. To discover how Sge1 and Ftf1 control gene expression from the core genome and the mobile chromosome(s), their targets will be identified using ChIPseq: sequencing of DNA fragments to which Sge1 binds and RNAseq: in depth‐sequencing of transcripts, comparing standard culture conditions to in planta‐mimicing conditions. Additional components necessary to express effector genes on mobile chromosomes will be identified via insertional mutagenesis. Sunday 1 April Parallel session 5: Mitochondria PS5.1 Functional analysis of ERMES and TOB (SAM) complex components in Neurospora crassa. Frank E. Nargang, Sebastian W.K. Lackey, Jeremy G. Wideman Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9 The Neurospora crassa TOB complex (topogenesis of beta‐barrel proteins), also known as the SAM complex (sorting and assembly machinery), inserts a subset of mitochondrial outer membrane proteins into the membrane—including all beta‐barrel proteins.
    [Show full text]
  • The Development of a Novel Diagnostic PCR for Madurella Mycetomatis Using a Comparative Genome Approach
    PLOS NEGLECTED TROPICAL DISEASES RESEARCH ARTICLE The development of a novel diagnostic PCR for Madurella mycetomatis using a comparative genome approach 1 1,2 1 1 Wilson LimID , Emmanuel SiddigID , Kimberly Eadie , Bertrand NyuykongeID , 3¤a¤b 2 1 4 Sarah Ahmed , Ahmed Fahal , Annelies Verbon , Sandra SmitID , Wendy WJ van de 1 SandeID * 1 Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, a1111111111 Rotterdam, The Netherlands, 2 Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan, a1111111111 3 Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands, 4 Wageningen University & Research, a1111111111 Department of Plant Science, Wageningen, The Netherlands a1111111111 ¤a Current address: Center of Expertise in Mycology of Radboud University Medical Center / Canisius a1111111111 Wilhelmina Hospital, Nijmegen, The Netherlands ¤b Current address: Faculty of medical laboratory sciences, University of Khartoum, Sudan * [email protected] OPEN ACCESS Abstract Citation: Lim W, Siddig E, Eadie K, Nyuykonge B, Ahmed S, Fahal A, et al. (2020) The development of a novel diagnostic PCR for Madurella mycetomatis using a comparative genome approach. PLoS Negl Background Trop Dis 14(12): e0008897. https://doi.org/ Eumycetoma is a neglected tropical disease most commonly caused by the fungus Madur- 10.1371/journal.pntd.0008897 ella mycetomatis. Identification of eumycetoma causative agents can only be reliably per- Editor: Husain Poonawala, Lowell General Hospital, formed by molecular identification, most commonly by species-specific PCR. The current M. UNITED STATES mycetomatis specific PCR primers were recently discovered to cross-react with Madurella Received: June 18, 2020 pseudomycetomatis. Here, we used a comparative genome approach to develop a new M.
    [Show full text]
  • Drivers of Genetic Diversity in Secondary Metabolic Gene Clusters in a Fungal Population 5 6 7 8 Abigail L
    bioRxiv preprint doi: https://doi.org/10.1101/149856; this version posted July 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 4 Drivers of genetic diversity in secondary metabolic gene clusters in a fungal population 5 6 7 8 Abigail L. Lind1, Jennifer H. Wisecaver2, Catarina Lameiras3, Philipp Wiemann4, Jonathan M. 9 Palmer5, Nancy P. Keller4, Fernando Rodrigues6,7, Gustavo H. Goldman8, Antonis Rokas1,2 10 11 12 1. Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, 13 Tennessee, USA. 14 2. Department of Biology, Vanderbilt University, Nashville, Tennessee, USA. 15 3. Department of Microbiology, Portuguese Oncology Institute of Porto, Porto, Portugal 16 4. Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, 17 Madison, Wisconsin, USA 18 5. Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, 19 Wisconsin, USA 20 6. Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 21 Braga, Portugal 22 7. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. 23 8. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São 24 Paulo, Brazil 25 †Corresponding author and lead contact: [email protected] 26 bioRxiv preprint doi: https://doi.org/10.1101/149856; this version posted July 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Madurella Grisea: a Case Report on an Uncommon Cause for Mycetoma
    127 Case Report Madurella grisea: a case report on an uncommon cause for mycetoma MN Jayawardena1, NNTM Wickremasinghe2, PI Jayasekera1 Sri Lankan Journal of Infectious Diseases 2017 Vol. 7(2):127-130 DOI: http://dx.doi.org/10.4038/sljid.v7i2.8140 Abstract Madura foot is a disfiguring, disabling condition, found in the tropics and subtropics. We present a case of a farmer who presented with swelling and multiple discharging sinuses in his left foot. The offending organism, Madurella grisea was identified by fungal culture. The patient was managed with local excision combined with systemic antifungal therapy. So far, the patient has made an uneventful recovery, with no recurrences. The laboratory diagnosis proved difficult, given the limited resources. We wish to highlight the difficulties faced in diagnosis and management of this condition, as response to antifungals are dependent on the pathogen, and adherence to long term antifungals are crucial. Keywords: mycetoma, Madurella grisea, madura foot Introduction Mycetoma is a destructive, chronic inflammatory disease, mainly affecting the feet, with the population at risk being those who are socioeconomically disadvantaged, such as labourers and agriculturalists. Sri Lankan data regarding the aetiological agents of this disease is sparse. The control of this neglected tropical disease requires better knowledge and understanding by the clinicians, continuous supply of good quality antifungal agents and high quality fungal diagnostic facilities. Case report A 55 year old previously well farmer presented to Base Hospital, Mahiyanganaya, complaining of painless swelling of his left ankle of 6 months duration, which was insidious in onset. There were no signs of systemic disease.
    [Show full text]
  • Enhanced Fungal Isolation by Use of a Novel Technique
    Journal of Bacteriology & Mycology: Open Access Research Article Open Access Black grain eumycetoma revisited: enhanced fungal isolation by use of a novel technique Abstract Volume 4 Issue 5 - 2017 Background: Dematiaceous fungi or brown-black fungi distributed worldwide are being Hazra N,1 Gupta RM,2 Verma R,3 Gera V3 increasingly recognized as pathogens of importance. Found in soil, they have unique 1Depatment of Laboratory Medicine, Command Hospital pathogenic mechanisms owing to the presence of melanin in their cell walls, which Central Command, India imparts the characteristic dark color to their spores and hyphae. Eumycetoma is a common, 2Department of Lab Sciences and Molecular Medicine, Army chronic, granulomatous infection that is present worldwide and endemic in tropical and Hospital (R&R), India subtropical regions. Black grain eumycetoma accounts for about 95% of eumycetomas in 3Department of Dermatology, Base Hospital, India India. Isolation of the causative fungus from the coloured grains in the laboratory is an arduous task resulting in empirical treatment. At present, clear evidence based treatment Correspondence: Dr. Col Nandita Hazra, MD(Microbiol), recommendations are unavailable and it becomes pertinent to identify, isolate and speciate Trained in Neurovirology (NIMHANS), PSG FAIMER Fellow the causative fungus so that appropriate treatment can be instituted for complete resolution. 2010.Sr Adv(Path & Micro) & HOD, Department of Laboratory Medicine, Command Hospital (Central Command), Lucknow Objective: This article revisits black grain mycetoma in the larger spectrum of 226002, India, Email [email protected] phaeohyphomycosis, describes four patients with black grain mycetoma and elaborates on a novel technique developed in our laboratory for assured isolation of fungi from eumycotic Received: January 27, 2017 | Published: May 10, 2017 “grains”.
    [Show full text]
  • Madurella Mycetomatis Grain Model in Galleria Mellonella Larvae
    RESEARCH ARTICLE A Madurella mycetomatis Grain Model in Galleria mellonella Larvae Wendy Kloezen1, Marilyn van Helvert-van Poppel2, Ahmed H. Fahal3, Wendy W. J. van de Sande1* 1 Erasmus University Medical Center, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands, 2 St. Elisabeth Ziekenhuis, Department of Clinical Pathology, Tilburg, The Netherlands, 3 Mycetoma Research Centre, Soba University, Khartoum, Sudan * [email protected] Abstract Eumycetoma is a chronic granulomatous subcutaneous infectious disease, endemic in tropical and subtropical regions and most commonly caused by the fungus Madurella myce- tomatis. Interestingly, although grain formation is key in mycetoma, its formation process and its susceptibility towards antifungal agents are not well understood. This is because OPEN ACCESS grain formation cannot be induced in vitro; a mammalian host is necessary to induce its for- mation. Until now, invertebrate hosts were never used to study grain formation in M. myce- Citation: Kloezen W, van Helvert-van Poppel M, Fahal AH, van de Sande WWJ (2015) A Madurella tomatis. In this study we determined if larvae of the greater wax moth Galleria mellonella mycetomatis Grain Model in Galleria mellonella could be used to induce grain formation when infected with M. mycetomatis. Three different Larvae. PLoS Negl Trop Dis 9(7): e0003926. M. mycetomatis strains were selected and three different inocula for each strain were used doi:10.1371/journal.pntd.0003926 to infect G. mellonella larvae, ranging from 0.04 mg/larvae to 4 mg/larvae. Larvae were mon- Editor: Bodo Wanke, Fundação Oswaldo Cruz, itored for 10 days. It appeared that most larvae survived the lowest inoculum, but at the BRAZIL highest inoculum all larvae died within the 10 day observation period.
    [Show full text]
  • The Activity of 2,3-Dimethylquinoxaline Against Madurella Mycetomatis
    American Journal of www.biomedgrid.com Biomedical Science & Research ISSN: 2642-1747 --------------------------------------------------------------------------------------------------------------------------------- Research Article Copy Right@ Abdelbagi Alfadil The Activity of 2,3-Dimethylquinoxaline against Madurella mycetomatis Abdelbagi Alfadil1*, Ahmed Shaker Ali2, Hamoud Alsamhan2,3, Huda Alkreathy2, Asif Jiman-Fa- tani1 and Hind Abdulmajed1 1Department of Microbiology and Medical Parasitology, King Abdulaziz University, Saudi Arabia 2Department of Pharmacology, King Abdulaziz University, Saudi Arabia 3College of Pharmacy, King Saud bin Abdulaziz University for Health Science, Saudi Arabia *Corresponding author: Abdelbagi Alfadil Mousa, Department of Microbiology and Medical Parasitology, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia. To Cite This Article: Abdelbagi A, A Shaker Ali, H Alsamhan, H Alkreathy, A Jiman-Fatani. H Abdulmajed. The Activity of 2,3-Dimethylquinox- aline against Madurella mycetomatis. Am J Biomed Sci & Res. 2021 - 11(4). AJBSR.MS.ID.001654. DOI: 10.34297/AJBSR.2021.11.001654. Received: January 06, 2021; Published: January 18, 2021 Abstract Objective: Madurella mycetomatis is the most prevalent causative species of the eumycetoma, a chronic progressive neglected tropical disabling treatment is challenging, requires prolonged therapy, resulting in low cure rates and a high incidence of recurrence. Screening new compounds for antifungalinfectious diseaseactivity ofagainst the subcutaneous Madurella mycetomatis tissue. It carries is needed. a significant social and economic burden to the endemic areas. Unfortunately, the available Design: In vitro: the susceptibility of a Madurella mycetomatis of 2,3-dimethylquinoxaline 1% topical gel against the same strain was evaluated in the BALB/c mouse eumycetoma model (n=6; 6-8 weeks old). isolate toward the 2,3-dimethylquinoxaline was determined. In vivo: the efficacy Results: 2,3-Dimethylquinoxaline inhibited the growth of Madurella mycetomatis at MIC 312 µg/ml (1.9 mM).
    [Show full text]