CONRAD CLOUTIER and LOUISE FILION Abstract Introduction In

Total Page:16

File Type:pdf, Size:1020Kb

CONRAD CLOUTIER and LOUISE FILION Abstract Introduction In RECENT OUTBREAK OF THE LARCH SAWFLY, Pl?ZSTZPHORA ERICHSONII (HARTIG), IN SUBARCTIC QUEBEC CONRADCLOUTIER and LOUISEFILION Centre d'ktudes nordiques, Universitk Laval, Qukbec, Qu6bec, Canada G1K 7P4 Abstract Can. Ent. 123: 611-619 (1991) Larch sawfly oviposition activity as revealed by scarring of long shoots of eastern larch, Larix laricina (DuRoi) K. Koch, was measured at various locations in the high boreal forest and forest tundra in Quebec in 1988 and 1989. The data show that larch sawfly is established up to the tree line, even on isolated larch growing under climatic con- ditions that are extreme for this tree. Frequency distributions of scarred shoots as a function of time suggest that larch sawfly populations reached outbreak levels in the 1980s, with peak numbers in 1981 for the high boreal, and in 1985 for the subarctic regions sampled. Trends in long shoot production by larch trees started to Ructuate simultaneously with the sudden increase in larch sawfly populations along the Grande Rivitre de la Baleine in 1984. In this region in 1985, the proportion of long shoots used by Pristiphora erichsonii averaged 20-35%, which may have limited further pop- ulation increase. Although foliage reduction and branch mortality were observed, mor- tality of whole trees was not a general characteristic of this outbreak. Cloutier, C., et L. Filion. 1991. Cycle 6pidkmique &ent de la tenmedu rnklkze, Pristiphora erichsonii (Hartig), en milieu subarctique qukbecois. Can. Ent. 123: 611-619. L'activitk de la tenthrkde du mClkze, signalee par la presence de cicatrices de ponte sur les pousses longues du mCltze laricin, Larix laricina (DuRoi) K. Koch a Ct6 ivalu6e h plusieurs sites de la haute for& boreale et de la toundra forestikre du Quibec en 1988 et 1989. Les donnCes indiquent que la tentWe du mClkze est Ctablie jusqu'h la limite des arbres, meme sur des mClkzes isolCs poussant sous des conditions climatiques exa&mes pour cette eseed'arbre. La fmuence des pusses scarifites en fonction du temps indique que les populations r6gionales de la tenthde ont atteint des niveaux epidtmiques au cours des annCes 1980, ayant culminC vers 1981 pour la haute fokt boreale et 1985 pour les sites subarctiques 6chantillonnCs. La production de pousses longues par le mtlkze laricin a cesg de croitre r5gulikrement lors de I'ti6vation sou- daine de la population de tenthfie le long de la Grande RivEre de la Baleine en 1984. Dans ce secteur en 1985, la proportion des pousses longues scarifiCes par Pristiphora erichsonii atteignait 20-35%, un niveau d'utilisation qui a possiblement limit6 la pour- suite de l'augmentation de la population de tenthrkde. Malgri que la duction de I'ampleur du feuillage et la mort de branches aient it6 observ6es, la mortalid d'arbres entiers n'est pas apparue comme une caractCristique ginkrale de cette 6pidCmie de la tenthkde du mClkze. Introduction In northern regions of eastern North America, large-scale perturbations play an important role in determining the composition and dynamics of forest communities (West et al. 1981). Wildfires limit the extent of forest community development, and favour spe- cies adapted to fire (Payette and Gagnon 1979; Rowe 1983; Payette et al. 1989). Pertur- bations resulting from insect herbivore outbreaks can affect communities even more selec- tively, because of the generally high level of specificity of herbivore-plant relationships. Long-term effects of herbivore outbreaks on the structure and development of coniferous forest communities have been hypothesized (e.g. Dansereau 1958) but very little data are available. Herbivore epidemics are well documented for the southern boreal forest (e-g. Morris 1%3; Blais 1983), but their occurrence in the high boreal and subarctic regions has only occasionally been investigated (Niemela et al. 1980). Insect outbreaks in these 612 THE CANADIAN ENTOMOLOGIST MayIJune 1991 regions may be relatively common, as observed in northern Europe (Tenow 1972; Bal- tensweiler et al. 1977). The larch sawfly, Pristiphora erichsonii (Hartig), is the foremost defoliator of eastern larch, Larix laricina (DuRoi) K. Koch, in North America. In the absence of conclusive evidence, the origin of P. erichsonii in North America has been the subject of debate (e.g. Coppel and Leius 1955; Nairn et al. 1962). The hypothesis most frequently put forward has been the accidental introduction of the insect from Europe (Provancher 1885; Fyles 1906; Turnock and Muldrew 1972). Hagen (1881) first reported P. erichsonii in North America from European larch at the Harvard Arboretum near Boston, MA. Defoliation by the sawfly first attracted the attention of entomologists in Canada in 1883 in the eastern townships and Quebec City, P.Q. (Fyles 1884; Fletcher 1885; Provancher 1885). During the decades following its presumed introduction, P. erichsonii rapidly spread throughout the North American range of Lark spp., frequently reaching outbreak levels (McGugan and Coppel 1962; Turnock and Muldrew 1971; Ives and Muldrew 1984). Larch sawfly populations have been monitored regularly in the southern part of its Canadian range since 1936, especially through the Forest Insect and Disease Survey, and studied intensively in Manitoba and Saskatchewan (Ives 1976, and references therein). However, for the northern part of the range of larch, and particularly in the forest tundra, population data apparently were collected only once for the Northwest Temtories (Turnock and McLeod 1966). For the regions located on the east side of Hudson Bay, only casual (Wong 1974) or indirect (Hustich 1950; Arquillihe et al. 1990) observations of its presence in the forest tundra are available. The objective of this study was to survey the distribution and measure the activity of the larch sawfly in the high boreal forest and the forest tundra in the Hudson Bay area, Quebec. We collected data on oviposition activity of P. erichsonii reflecting population trends during the 1980s, and its distribution in subarctic Qutbec up to the tree line, where direct evidence of its activity was collected even on remotely isolated larch trees and groves. In an attempt to measure the potential impact of this herbivore on northern larch stands, we also present data on recent fluctuations of larch shoot growth in relation to their use by the larch sawfly for oviposition, as revealed by shoot scarring. Methods Data on recent fluctuations in larch sawfly activity were obtained by dating larch shoots scarred by ovipositing females. Larch trees grow short and long shoots (Clausen and Kozlowski 1967), but egg laying by P. erichsonii is restricted to the long shoots; general information on P. erichsonii is available in Drooz (1960), Martineau (1985), and Ives and Wong (1988). Scars and curvature of shoots used by larch sawfly can persist for years. For normal larch shoots, dating of scarred shoots is possible by counting growth units on live branches and branchlets, starting from the tip (Drooz and Meyer 1955). Sampling sites (Fig. 1) were selected to cover a range of ecological conditions, from the high boreal forest up to the tree line along a south-north axis, and from the coastal area to 100-200 km inland. In four of the subarctic sites eastern larch forms mixed pop- ulations with white spruce, Picea glauca (Moench) Voss, or black spruce, Picea mariana (Mill.) B.S.P. At the Lac Kakiattuq site, larch is present as a small isolated grove of only about 200 trees marking the present tree line in this part of the Ungava peninsula (Cayouette 1987). The Rivikre Boniface site is characterized by extensive old black spruce stands and one larch tree, about 75 years old, was located in the area. All sites were visited during the summer of 1989, but data also were collected in 1988 at some sites. At each site except Boniface, from 10 to 30 trees were inspected for scarred shoots. Trees bearing scarred shoots were sampled by cutting two to six branches (depending on foliage density) 1-2 m above the ground surface. In dry or windy sites, mortality of shoots scarred in recent years was suggested by the presence of dried or broken shoots bearing oviposition scars. On Volume 123 THE CANADIAN ENIOMOLOCIfl 61 3 FIG. 1. Study area and locations of sites where eastern larch was sampled for evidence of oviposition by Pris- tiphora erichsonii in 1988-1989. such trees, some dead scarred shoots may have broken off completely, which would bias our larch sawfly activity estimates. This possibility was minimized by rejecting the few trees examined that had dead or broken scarred shoots. Branches were examined in the laboratory by counting and dating scarred shoots. Counts and dates were used to establish a frequency distribution of sawfly attack as a function of the year of shoot elongation for each site. Data on yearly variations in P. erichsonii abundance in relation to long shoot density were collected in 1988 at Kuujjuarapik, and at another site 100 km to the east, along the Grande Rivike de la Baleine (GRB) (Fig. 1). The percentage of scarred shoots was esti- mated on seven trees (four at Kuujjuarapik, and three at the GRB site) approximately 6 m high. Trees were selected for uniformity of crown development and growing conditions, 614 THE CANADIAN ENTOMOLOGIST MayIJune 1991 and were sampled by cutting six branches 70 cm in length from each tree. Four branches were cut at 2 m above ground and two at 4 m, to include a large portion of the crown. To estimate yearly variations in the percentage of long shoot attack at each site, all long shoots produced since 1980 on sampled trees were counted, dated, and classified as normal or scarred. Data on shoot density and percentage shoots scarred were expressed on a per branch basis for each tree and then averaged over the number of trees sampled at each site.
Recommended publications
  • Natural Communities of Michigan: Classification and Description
    Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council.
    [Show full text]
  • Northern Fen Communitynorthern Abstract Fen, Page 1
    Northern Fen CommunityNorthern Abstract Fen, Page 1 Community Range Prevalent or likely prevalent Infrequent or likely infrequent Absent or likely absent Photo by Joshua G. Cohen Overview: Northern fen is a sedge- and rush-dominated 8,000 years. Expansion of peatlands likely occurred wetland occurring on neutral to moderately alkaline following climatic cooling, approximately 5,000 years saturated peat and/or marl influenced by groundwater ago (Heinselman 1970, Boelter and Verry 1977, Riley rich in calcium and magnesium carbonates. The 1989). community occurs north of the climatic tension zone and is found primarily where calcareous bedrock Several other natural peatland communities also underlies a thin mantle of glacial drift on flat areas or occur in Michigan and can be distinguished from shallow depressions of glacial outwash and glacial minerotrophic (nutrient-rich) northern fens, based on lakeplains and also in kettle depressions on pitted comparisons of nutrient levels, flora, canopy closure, outwash and moraines. distribution, landscape context, and groundwater influence (Kost et al. 2007). Northern fen is dominated Global and State Rank: G3G5/S3 by sedges, rushes, and grasses (Mitsch and Gosselink 2000). Additional open wetlands occurring on organic Range: Northern fen is a peatland type of glaciated soils include coastal fen, poor fen, prairie fen, bog, landscapes of the northern Great Lakes region, ranging intermittent wetland, and northern wet meadow. Bogs, from Michigan west to Minnesota and northward peat-covered wetlands raised above the surrounding into central Canada (Ontario, Manitoba, and Quebec) groundwater by an accumulation of peat, receive inputs (Gignac et al. 2000, Faber-Langendoen 2001, Amon of nutrients and water primarily from precipitation et al.
    [Show full text]
  • Comparison of Insect, Fungal, and Mechanically Induced Defoliation of Larch: Effects on Plant Productivity and Subsequent Host Susceptibility
    Oecologia (1992) 90:411-416 Oecologia Springer-Verlag 1992 Comparison of insect, fungal, and mechanically induced defoliation of larch: effects on plant productivity and subsequent host susceptibility Steven C. Krause and Kenneth F. Raffa Department of Entomology, University of Wisconsin, Madison, WI 53706, USA Received October 16, 1991 / Accepted in revised form January 9, 1992 Summary. Larch sawfly, Pristiphora erichsonii Hartig, pathogens can also induce systemic antibiosis against and larch needlecast fungus, Mycosphaerella laricinia insect folivores (McIntyre et al. 1981), (R. Hartig) Neg., are early season defoliators restricted Fungal induced resistance to species of Coleoptera only to Larix host trees. Larch defoliation (100%) by (Ahmad et al. 1985), Hemiptera (Mathias et al. 1990), either the fungus or insect, but not mechanical removal, and Lepidoptera (Funk et al. 1983) has been demon- induced systemic responses that reduced sawfly con- strated for agronomic crops (Clay 1988). Trees infected sumption and digestion rates one year later. In a feeding with fungi may also be less susceptible to herbivory from behavior assay, larvae quickly abandoned seedlings gall-making species of Diptera (Bergdahl and Massola previously defoliated by M. laricinia. Adult female ovi- 1985), Homoptera (Lasota et al. 1983) and Hymenoptera position choice and egg deposition were unaffected. (Taper et al. 1986). Little is known, however, on the Seedling growth was not affected during the year of effects of fungal induced defoliation on free-feeding in- defoliation by M. laricinia, but was significantly reduced sect folivores and the productivity of host trees. one year later. Defoliation by M. laricinia reduced stem European larch, Larix decidua Miller, is a shade in- volume, radial growth, root biomass and new shoot tolerant, winter deciduous conifer (Olaczek 1986).
    [Show full text]
  • Non-Native and Invasive Animals of Alaska: a Comprehensive List and Select Species Status Reports
    NON-NATIVE AND INVASIVE ANIMALS OF ALASKA: A COMPREHENSIVE LIST AND SELECT SPECIES STATUS REPORTS FINAL REPORT Jodi McClory Tracey Gotthardt NON-NATIVE AND INVASIVE ANIMALS OF ALASKA: A COMPREHENSIVE LIST AND SELECT SPECIES STATUS REPORTS FINAL REPORT Jodi McClory and Tracey Gotthardt Alaska Natural Heritage Program Environment and Natural Resources Institute University of Alaska Anchorage 707 A Street, Anchorage AK 99501 January 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY 4 INTRODUCTION 5 METHODOLOGY 5 RESULTS 6 DISCUSSION AND FUTURE DIRECTION 6 ACKNOWLEDGEMENTS 7 LITERATURE CITED 8 APPENDICES I: LIST OF NON-NATIVE ANIMAL SPECIES DOCUMENTED IN ALASKA 9 II: LIST OF NON-NATIVE ANIMAL SPECIES WITH THE POTENTIAL FOR INVASION IN ALASKA 17 III: STATUS REPORTS FOR SELECT NON-NATIVE ANIMAL SPECIES OF ALASKA 21 PACIFIC CHORUS FROG.......................................................................................................................... 22 RED-LEGGED FROG ................................................................................................................................24 ATLANTIC SALMON................................................................................................................................. 27 NORTHERN PIKE ..................................................................................................................................... 30 AMBER-MARKED BIRCH LEAFMINER .................................................................................................... 33 BIRCH LEAFMINER ................................................................................................................................
    [Show full text]
  • 1 Modern Threats to the Lepidoptera Fauna in The
    MODERN THREATS TO THE LEPIDOPTERA FAUNA IN THE FLORIDA ECOSYSTEM By THOMSON PARIS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2011 1 2011 Thomson Paris 2 To my mother and father who helped foster my love for butterflies 3 ACKNOWLEDGMENTS First, I thank my family who have provided advice, support, and encouragement throughout this project. I especially thank my sister and brother for helping to feed and label larvae throughout the summer. Second, I thank Hillary Burgess and Fairchild Tropical Gardens, Dr. Jonathan Crane and the University of Florida Tropical Research and Education center Homestead, FL, Elizabeth Golden and Bill Baggs Cape Florida State Park, Leroy Rogers and South Florida Water Management, Marshall and Keith at Mack’s Fish Camp, Susan Casey and Casey’s Corner Nursery, and Michael and EWM Realtors Inc. for giving me access to collect larvae on their land and for their advice and assistance. Third, I thank Ryan Fessendon and Lary Reeves for helping to locate sites to collect larvae and for assisting me to collect larvae. I thank Dr. Marc Minno, Dr. Roxanne Connely, Dr. Charles Covell, Dr. Jaret Daniels for sharing their knowledge, advice, and ideas concerning this project. Fourth, I thank my committee, which included Drs. Thomas Emmel and James Nation, who provided guidance and encouragement throughout my project. Finally, I am grateful to the Chair of my committee and my major advisor, Dr. Andrei Sourakov, for his invaluable counsel, and for serving as a model of excellence of what it means to be a scientist.
    [Show full text]
  • Assessment of Invasive Species in Alaska and Its National Forests August 30, 2005
    Assessment of Invasive Species in Alaska and its National Forests August 30, 2005 Compiled by Barbara Schrader and Paul Hennon Contributing Authors: USFS Alaska Regional Office: Michael Goldstein, Wildlife Ecologist; Don Martin, Fisheries Ecologist; Barbara Schrader, Vegetation Ecologist USFS Alaska Region, State and Private Forestry/Forest Health Protection: Paul Hennon, Pathologist; Ed Holsten, Entomologist (retired); Jim Kruse, Entomologist Executive Summary This document assesses the current status of invasive species in Alaska’s ecosystems, with emphasis on the State’s two national forests. Lists of invasive species were developed in several taxonomic groups including plants, terrestrial and aquatic organisms, tree pathogens and insects. Sixty-three plant species have been ranked according to their invasive characteristics. Spotted knapweed, Japanese knotweed, reed canarygrass, white sweetclover, ornamental jewelweed, Canada thistle, bird vetch, orange hawkweed, and garlic mustard were among the highest-ranked species. A number of non-native terrestrial fauna species have been introduced or transplanted in Alaska. At this time only rats are considered to be causing substantial ecological harm. The impacts of non-native slugs in estuaries are unknown, and concern exists about the expansion of introduced elk populations in southeast Alaska. Northern pike represents the most immediate concern among aquatic species, but several other species (Atlantic salmon, Chinese mitten crab, and New Zealand mudsnail) could invade Alaska in the future. No tree pathogen is currently damaging Alaska’s native tree species but several fungal species from Europe and Asia could cause considerable damage if introduced. Four introduced insects are currently established and causing defoliation and tree mortality to spruce, birch, and larch.
    [Show full text]
  • Arthropod Sampling Methods in Ornithology
    Studies in Avian Biology No. 13:29-37, 1990. ARTHROPOD SAMPLING METHODS IN ORNITHOLOGY ROBERTJ.COOPER AND ROBERT C. WHITMORE Abstract. We review common methods used by entomologistsand ornithologists for sampling ter- restrial arthropods. Entomologists are often interested in one speciesor family of insects and use a trapping method that efficiently samplesthe target organism(s).Ornithologists may use those methods to sample a single type of insect or to compare arthropod abundancebetween locations or over time, but they are often interested in comparing abundancesof different types of arthropods available to birds as prey. Many studies also seek to examine use of prey through simultaneousanalyses of diets or foraging behavior. This presents a sampling problem in that different types of prey (e.g., flying, foliage dwelling) must be sampled so that their abundances can be compared directly. Sampling methods involving direct observation and pesticide knockdown overcome at least some of these problems. Trapping methods that give biased estimates of arthropod abundance can sometimes be related to other methods that are lessbiased (but usuallymore expensive)by means of a ratio estimator or estimation of the biased selection function. Key Words: Arthropods; insects;prey abundance;prey availability; sampling. Numerous techniques exist for sampling in- area will be eaten by the bird. The size, life stage, sects (e.g., Southwood 1978); many have been palatability, coloration, activity patterns, and used in ornithology. Most ornithological studies other characteristics of arthropods influence the use insect sampling to determine types, numbers, degree to which they are located, captured, and and distribution of insects available to birds as eaten.
    [Show full text]
  • The Larch Sawfly: Its Biology and Control
    I~ /III' 2.8 /////2 5 2 8 • li.'l 11111== . :~ 11111 . ",,/2.5 I 0 3 2 1.0 ~ m1 . 22 I~ ~11~3. I I:.l . I" I~ I:.ii'"" I~ .zI!.l :f B~ :f m~ 2.0 II .1 !:i... :: ~ I 1.1 ~"' IIIII L8 "'" 1.25 ""'1.4 111111.6 1111,1.25 ""'1.4 111111.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A NATIONAL BUREAU OF STANDARDS-1963-A '?~. -, i dii,f • // / :~J The Larch Sawfly Its Biology and Control Technical Bulletin No. 1212 • By A. T. Drooz Forest Service U. S. Department of Agriculture • • ACKNOWLEDGMENTS The author wishes to ackn;)rdedge gratefully the -advice and assistance received from other workers in forest and insect re­ search during the course of the investigations discussed in this bulletin. Acknowledgment is due particularly to: Two former em­ ployees of the Department, L. C. Beckwith, who assisted on many of the experiments, and J. W. Butcher, who initiated larch sawfly studies during the most recent outbreak; the Insect Pathology Research Institute, Sault Ste. Marie, Ont., for determining the pathogenic organisms affecting Minnesota larch sawflies; the Forest Biology Laboratory at Winnipeg, Manitoba, for important exchange of information on research studies; the Insect Pathology Pioneering Research Laboratory, Entomology Research Division, Agricultural Research Service, for identifying sawfly disease organisms and supplying nematodes for control investigations; and • the Insect Identification and Parasite Introduction Research Branch, also of the Entomology Research Division, Agricultural Research Service, for determining larch sawfly parasites and predators. The author is indebted to S.
    [Show full text]
  • A Field Guide to Diseases and Insect Pests of Northern and Central
    2013 Reprint with Minor Revisions A FIELD GUIDE TO DISEASES & INSECT PESTS OF NORTHERN & CENTRAL ROCKY MOUNTAIN CONIFERS HAGLE GIBSON TUNNOCK United States Forest Service Department of Northern and Agriculture Intermountain Regions United States Department of Agriculture Forest Service State and Private Forestry Northern Region P.O. Box 7669 Missoula, Montana 59807 Intermountain Region 324 25th Street Ogden, UT 84401 http://www.fs.usda.gov/main/r4/forest-grasslandhealth Report No. R1-03-08 Cite as: Hagle, S.K.; Gibson, K.E.; and Tunnock, S. 2003. Field guide to diseases and insect pests of northern and central Rocky Mountain conifers. Report No. R1-03-08. (Reprinted in 2013 with minor revisions; B.A. Ferguson, Montana DNRC, ed.) U.S. Department of Agriculture, Forest Service, State and Private Forestry, Northern and Intermountain Regions; Missoula, Montana, and Ogden, Utah. 197 p. Formated for online use by Brennan Ferguson, Montana DNRC. Cover Photographs Conk of the velvet-top fungus, cause of Schweinitzii root and butt rot. (Photographer, Susan K. Hagle) Larvae of Douglas-fir bark beetles in the cambium of the host. (Photographer, Kenneth E. Gibson) FIELD GUIDE TO DISEASES AND INSECT PESTS OF NORTHERN AND CENTRAL ROCKY MOUNTAIN CONIFERS Susan K. Hagle, Plant Pathologist (retired 2011) Kenneth E. Gibson, Entomologist (retired 2010) Scott Tunnock, Entomologist (retired 1987, deceased) 2003 This book (2003) is a revised and expanded edition of the Field Guide to Diseases and Insect Pests of Idaho and Montana Forests by Hagle, Tunnock, Gibson, and Gilligan; first published in 1987 and reprinted in its original form in 1990 as publication number R1-89-54.
    [Show full text]
  • HTG.) (HYMENOPTERA: TENTHREDINIDAE), in BRITISH Columbial J
    ENTOMOLOGICAL SOCIETY OF BRITISH COLUMBIA, PROC. (1951), VOL. 48, AUG. 15, 1952 81 NOTES ON THE POPULATION AND PARASITISM OF THE LARCH SAWFLY, PRISTIPHORA ERICHSONII (HTG.) (HYMENOPTERA: TENTHREDINIDAE), IN BRITISH COLUMBIAl J. H. McLEO02 Diological Control Investigations Laboratory, Vancouver, B.C. In British Columbia the larch saw­ a thorough search of the infested area, fly, Pristiphora rrichsonii (Htg.), was only 2,500 cocoons were obtained. The first reported in 1930 in an area about numbers of cocoons colIected in the 30 miles north of Fernie. In 1933 a 3 years do not accurately represent survey showed that the infestation the change in population, but there covered a large area in and around was a reduction in 1950. All avail­ Fernie. Cocoon samples were obtain­ able data have been examined to de­ ed at that time and were examined at termine the factor or factors respon­ the Forest Insect Laboratory, Vernon, sible for the reduction in host popula­ B.C., and at the Dominion Parasite tion and its effect on M. aulietls. Laboratory, Belleville, Ont. No evi­ In 1949 many of the larch trees in dence of "parasitism was found, and the infested area were affected with parasites were released in the infested needle cast, the symptoms of which area. The first colony of parasites, are a premature yellowing and early comprising 393 males and 280 females dropping of the needles. This caused of Mesoleills aulicus (Gra v.), was re­ some larval mortality during the feed­ leased in July, 1934, at Lizard Creek, ing period, but no significant reduc­ 2 miles from Fernie.
    [Show full text]
  • 22. Sawflies John T
    Conifer Insects 22. Sawflies John T. Nowak Hosts and Distribution Table 22.1—Common species, hosts, and distribution of sawflies in North America. Species Hosts Distribution Several sawfly species (families: Redheaded pine sawfly Scots, jack, red, shortleaf, Eastern United States and Diprionidae and Tenthredinidae) are com­ Neodiprion lecontei loblolly, longleaf, and slash southeastern Canada mon pests of young conifers, including pine several introduced species. The more White pine sawfly Eastern white pine Throughout the range of its host common species, hosts, and distribution Neodiprion pinetum are listed in table 22.1. Introduced pine sawfly Eastern white pine is Eastern United States introduced Neodiprion similis preferred, also Scots, jack, Damage and red pine European pine sawfly Scots, red, jack, and Northeastern and Midwestern Although sawflies are common pests, Neodiprion sertifer eastern white pine United States; parts of Ontario they rarely cause seedling mortality. Larch sawfly Tamarack and western larch Great Lake States, eastern Defoliation is generally light, although Pristiphora erichsonii Canada, Washington, Oregon, localized epidemics have been reported. Idaho, and Montana Sawflies are often divided into two Hemlock sawfly Hemlock and Pacific silver fir Coastal Oregon, Washington, groups: spring and summer sawflies. Neodiprion tsugae and British Columbia; also interior forests of Montana, Idaho, and Spring sawflies generally feed on older British Columbia foliage, and summer sawflies feed on both Lodgepole sawfly Lodgepole pine Montana and Wyoming old and new foliage. The summer sawflies Neodiprion burkei are the most destructive. Two-lined larch sawfly Western larch Northwestern United States Anoplonyx occidens Diagnosis Yellowheaded spruce Most species of spruce Alaska, southern Canada, and sawfly Northern United States Pine sawflies generally feed gregari­ Pikonema alaskensis ously (fig.
    [Show full text]
  • Alien Forest Pests. Context for The
    Alien Forest Pests Context for the Canadian Forest Service’s Science Program Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts Alien Forest Pests Context for the Canadian Forest Service’s Science Program Science Program Context Paper Published by Science and Programs Branch Canadian Forest Service Natural Resources Canada Ottawa, 2005 (revision) © Her Majesty the Queen in Right of Canada, 1999, 2005 ISBN 0-662-64525-1 Cat. No. Fo42-300/1999 Text: Hans Ottens in collaboration with Eric Allen, Leland Humble, J. Edward Hurley, Ken Harrison, and Anthony Hopkin Editing and Production: Catherine Carmody Design and Layout: Sandra Bernier Canadian Cataloguing in Publication Data Canadian Forest Service. Science Branch Alien forest pests: context for the Canadian Forest Service’s Science Program (Science Program context paper) Text in English and French on inverted pages. Title on added t.p.: Les ravageurs forestiers étrangers. Includes bibliographical references. ISBN 0-662-64525-1 Cat. No. Fo42-300/1999 1. Nonindigenous pests — Government policy — Canada. 2. Pest introduction — Government policy — Canada. 3. Forest insects — Government policy — Canada. 4. Forest policy — Canada. I. Title. II. Title: Les ravageurs forestiers étrangers. III.Series. SB990.5C3C32 1999 363.7'8 C99-980385-9E Photograph Credits Cover and page 1: Asian long-horned beetle (ALB), photo courtesy of Ken Law, USDA. Pages 3 and 4: White pine blister, photo courtesy of CFS Pacific Forestry Centre (PFC), Victoria, BC. Page 7: Dunnage, photo courtesy of Eric Allen, CFS PFC. Page 8 (top to bottom): Brown spruce longhorn beetle and emerald ash borer, photos by Klaus Bolte, CFS, Ottawa; ALBs, photo courtesy of Ken Law, USDA.
    [Show full text]