Invasive Insects, Pathogens and Plants in Western and Pacific Island Forests

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Insects, Pathogens and Plants in Western and Pacific Island Forests July 2002 Invasive Insects, Pathogens and Plants in Western and Pacific Island Forests Prepared for: Western Forestry Leadership Coalition 2580 Youngfield Street Lakewood, CO 80215-7093 Prepared by: William M. Ciesla INTECS International Inc. Under Contract to: 2150 Centre Avenue Building A, Suite 331 Fort Collins, CO 80526-1891 Acknowledgments Many colleagues contributed information and technical review comments during the preparation of this paper. Review comments were provided by the following representatives from States: Michael Buck, Administrator, Hawaii Division of Forestry and Wildlife, Honolulu, HI Kirk David, Idaho Department of Lands, Coeur d’ Alene, ID Ray Aslin, State Forester, Kansas Forest Service Sheri S. Mann, Territorial Forester & Forestry Extension Program Manager for American Samoa Jim Lawrence, Executive Director, Council of Western State Foresters, Lakewood, CO Information and review comments were provided by the following USDA Forest Service employees: Steve Ambrose, Assistant Regional Forester, Western State and Private Forestry, Lakewood, CO Rita Beard, Rangeland Ecologist, Forest and Rangeland Management, Fort Collins, CO Jerry Beatty, Deputy Director, Forest Health Protection, Washington, D.C. David Bridgwater, Entomologist, Forest Health Protection, R-6, Portland, OR Robert Haack, Entomologist, North Central Research Station, East Lansing, MI Ed Holsten, Entomologist, Forest Health Protection, R-10, Anchorage, AK Ellen Michaels Goheen, Plant Pathologist, FHP, R-6, Medford, OR Allison Hill, Vegetation Management and Protection Research, Washington, D.C. Andy Mason, Director, Forest Health Technology Enterprise Team, Fort Collins, CO John Neisess, Forest Health Protection, R-5, Valejo, CA (retired) Duane A. Nelson, Institute of Pacific Islands Forestry, Hilo, HI Douglas Parker, Entomologist, Forest Health Protection, R-3, Albuquerque, NM Iral Ragenovich, Entomologist, Forest Health Protection, R-6, Portland, OR Lia H. Spiegel, Entomologist, Forest Health Protection, R-6, LaGrande, OR Duane Van Hoosier, Forest Inventory and Analysis, Rocky Mountain Research Station, Ogden, UT (retired) i ii Table of Contents Acknowledgments............................................................................................................... i List of Illustrations..........................................................................................................vii List of Tables...................................................................................................................viii List of Acronyms and Abbreviations.............................................................................. ix Executive Summary ......................................................................................................... xi Staggering Impacts of Invasive Species......................................................................... xi Complex National, Federal, and State Responsibilities................................................xii Opportunities for WFLC to Address Invasive Species Issues ......................................xii Introduction ....................................................................................................................... 1 Part I An Overview of Invasive Species.................................................... 5 Impacts of Invasive Species .............................................................................................. 7 Economic Impacts........................................................................................................... 7 Ecological Impacts .......................................................................................................... 7 Loss of Biodiversity .................................................................................................... 7 Altered Species Composition...................................................................................... 8 Changes in Fire Regimes............................................................................................. 8 Societal Impacts .............................................................................................................. 8 Some Case Histories ....................................................................................................... 9 Gypsy Moth................................................................................................................. 9 White Pine Blister Rust............................................................................................. 10 Cheatgrass ................................................................................................................. 11 Miconia...................................................................................................................... 12 Dealing With Invasive Species ....................................................................................... 13 Healthy Ecosystems – The Objective ........................................................................... 13 Integrated Pest Management – The Tools..................................................................... 14 The Decision Process ................................................................................................ 14 The Action Process.................................................................................................... 15 Integration of New Technologies.............................................................................. 17 National, Federal, and State Responsibilities ............................................................... 18 Federal Government...................................................................................................... 18 Authorities, Roles and Responsibilities .................................................................... 18 Coordinating Mechanisms......................................................................................... 21 State, County and Local Governments.......................................................................... 22 Potential Role for WFLC in Mitigating Impacts of Invasive Species......................... 23 Increase Awareness of Invasive Species and Their Impacts......................................... 23 Promote Partnerships .................................................................................................... 24 Facilitate Identification of Gaps in Authorities and Responsibilities ........................... 25 Support Integrated Pest Management as the Guiding Framework for All WFLC Member Organizations.......................................................................................... 25 iii Support Cross-Cut Budgets For Invasive Species ........................................................ 25 Support and Utilize New Research and Technology/Methods as Part of a Sound IPM Program Directed Against Invasive Species. ........................................................ 27 Promote the Use of National Data and Mapping Standards to Facilitate Information Sharing Between WFLC Members and Other Organizations............................... 28 Part II Technical Information on Key Invasive Species in the Western United States and Pacific Islands.................................... 29 Insects Established in the Western U.S. and Pacific Islands....................................... 31 Balsam Woolly Adelgid................................................................................................ 32 Eucalyptus Borers ......................................................................................................... 35 Green Spruce Aphid...................................................................................................... 36 Larch Casebearer........................................................................................................... 37 Larch Sawfly ................................................................................................................. 39 European Elm Scale ...................................................................................................... 40 Elm Leaf Beetle............................................................................................................. 41 Oystershell Scale........................................................................................................... 42 Leucaena Psyllid ........................................................................................................... 43 Pathogens Established in the Western U.S. .................................................................. 45 White Pine Blister Rust................................................................................................. 46 Sudden Oak Death......................................................................................................... 48 Pitch Canker.................................................................................................................. 50 Port-Orford Cedar (POC) Root Disease........................................................................ 52 Dutch Elm Disease (DED)............................................................................................ 54 Invasive Plants Established in the Western U.S........................................................... 56 Cheatgrass ..................................................................................................................... 57 Dalmation Toadflax .....................................................................................................
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Picea Sitchensis (Bong.) Carr. Sitka Spruce Pinaceae Pine Family A
    Picea sitchensis (Bong.) Carr. Sitka Spruce Pinaceae Pine family A. S. Harris Sitka spruce (Picea sitchensis), known also as tideland spruce, coast spruce, and yellow spruce, is the largest of the world’s spruces and is one of the most prominent forest trees in stands along the northwest coast of North America. This coastal species is seldom found far from tidewater, where moist maritime air and summer fogs help to main- tain humid conditions necessary for growth. Throughout most of its range from northern Califor- nia to Alaska, Sitka spruce is associated with western hemlock (Tsuga heterophylla) in dense stands where growth rates are among the highest in North America. It is a valuable commercial timber species for lumber, pulp, and many special uses (15,16). Habitat Native Range Sitka spruce (fig. 1) grows in a narrow strip along the north Pacific coast from latitude 61” N. in south- central Alaska to 39” N. in northern California. The most extensive portion of the range in both width and elevation is in southeast Alaska and northern British Columbia, where the east-west range extends for about 210 km (130 mi) to include a narrow main- land strip and the many islands of the Alexander Archipelago in Alaska and the Queen Charlotte Is- lands in British Columbia (24). North and west of southeast Alaska, along the Gulf of Alaska to Prince William Sound, the range is restricted by steep mountains and Piedmont glaciers edging the sea. Within Prince William Sound, the range again widens to about 105 km (65 mi) to include many offshore islands.
    [Show full text]
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • Diversity and Toxigenicity of Fungi That Cause Pineapple Fruitlet Core Rot
    toxins Article Diversity and Toxigenicity of Fungi that Cause Pineapple Fruitlet Core Rot Bastien Barral 1,2,* , Marc Chillet 1,2, Anna Doizy 3 , Maeva Grassi 1, Laetitia Ragot 1, Mathieu Léchaudel 1,4, Noel Durand 1,5, Lindy Joy Rose 6 , Altus Viljoen 6 and Sabine Schorr-Galindo 1 1 Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Reunion, F-34398 Montpellier, France; [email protected] (M.C.); [email protected] (M.G.); [email protected] (L.R.); [email protected] (M.L.); [email protected] (N.D.); [email protected] (S.S.-G.) 2 CIRAD, UMR Qualisud, F-97410 Saint-Pierre, Reunion, France 3 CIRAD, UMR PVBMT, F-97410 Saint-Pierre, Reunion, France; [email protected] 4 CIRAD, UMR Qualisud, F-97130 Capesterre-Belle-Eau, Guadeloupe, France 5 CIRAD, UMR Qualisud, F-34398 Montpellier, France 6 Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland 7600, South Africa; [email protected] (L.J.R.); [email protected] (A.V.) * Correspondence: [email protected]; Tel.: +262-2-62-49-27-88 Received: 14 April 2020; Accepted: 14 May 2020; Published: 21 May 2020 Abstract: The identity of the fungi responsible for fruitlet core rot (FCR) disease in pineapple has been the subject of investigation for some time. This study describes the diversity and toxigenic potential of fungal species causing FCR in La Reunion, an island in the Indian Ocean. One-hundred-and-fifty fungal isolates were obtained from infected and healthy fruitlets on Reunion Island and exclusively correspond to two genera of fungi: Fusarium and Talaromyces.
    [Show full text]
  • Pristiphora Bohemica Sp. Nov., a New Sawfly Species from the Czech
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.vi.2012 Volume 52(1), pp. 267–272 ISSN 0374-1036 Pristiphora bohemica sp. nov., a new sawfl y species from the Czech Republic (Hymenoptera: Symphyta: Tenthredinidae) Jan MACEK Department of Entomology, National Museum, Kunratice 1, CZ-148 00, Czech Republic; e-mail: [email protected] Abstract. Pristiphora bohemica sp. nov. is described based on specimens reared from larvae collected on Spiraea salicifolia (Rosaceae) in southern Bohemia (Czech Republic). The new species is close to its presumed vicariant species P. angulata Lindqvist 1974 from northeastern Europe. Key words. Hymenoptera, Tenthredinidae, Pristiphora, new species, host plant, larva, Czech Republic, Palaearctic Region Introduction As a result of continuing investigations of the sawfl y fauna of the Czech Republic based on the quantitative collecting methods (Malaise traps, yellow pan traps) as well as rearing of larvae, several interesting new data were obtained concerning the occurrence, distribution and ecology of some little known or rare sawfl y species (MACEK 2006, 2008, 2009a,b, 2010, 2012a,b). In this respect especially the rearing of larvae showed to be very effi cient. During my collecting trip to the Třeboňsko Protected Landscape Area and Biosphere Reserve in southern Bohemia in 2008, I collected on Spiraea salicifolia numerous sawfl y larvae of two species unknown to me. Because there have been no records of sawfl ies associated with Spiraea in the Czech Republic, I presumed that they represented at least the fi rst records for Czech fauna, which, at last, proved to be true after emergence of adults. Besides Dinax ermak Zhelochovtsev, 1968, a species fi rst recorded in Central Europe (see MACEK 2010), the sample yielded also several adult specimens of an unknown species of Pristiphora Latreille, 1810 representing a new species described in this paper.
    [Show full text]
  • DEFOLIATORS Insect Sections
    Alaska. Reference is made to this map in selected DEFOLIATORS insect sections. (Precipitation information from Schwartz, F.K., and Miller, J.F. 1983. Probable maximum precipitation and snowmelt criteria for Fewer defoliator plots (27 plots) were visited during southeast Alaska: National Weather Service the 1999 aerial survey than in previous years (52 plots) Hydrometeorological Report No. 54. 115p. GIS layer throughout southeast Alaska. An effort was made to created by: Tim Brabets, 1997. distribute these plots evenly across the archipelago. URL:http://agdc.usgs.gov/data/usgs/water) The objectives during the 1999 season were to: ¨ Spend more time covering the landscape during Spruce Needle Aphid the aerial survey, Elatobium abietinum Walker ¨ Allow more time to land and identify unknown mortality and defoliation, and Spruce needle aphids feed on older needles of Sitka ¨ Avoid visit sites that were hard to get to and had spruce, often causing significant amounts of needle few western hemlocks. drop (defoliation). Defoliation by aphids cause reduced tree growth and can predispose the host to Hemlock sawfly and black-headed budworm larvae other mortality agents, such as the spruce beetle. counts were generally low in 1999 as they were in Severe cases of defoliation alone may result in tree 1998. The highest sawfly larvae counts were from the mortality. Spruce in urban settings and along marine plots in Thorne Bay and Kendrick Bay, Prince of shorelines are most seriously impacted. Spruce aphids Wales Island. Larval counts are used as a predictive feed primarily in the lower, innermost portions of tree tool for outbreaks of defoliators. For example, if the crowns, but may impact entire crowns during larval sample is substantially greater in 1999, then an outbreaks.
    [Show full text]
  • Natural Communities of Michigan: Classification and Description
    Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council.
    [Show full text]
  • Larix Decidua Miller Taxonomy Author, Year Miller Synonym Larix Europaea DC; Larix Sudetica Domin; Pinus Larix L
    Forest Ecology and Forest Management Group Tree factsheet images at pages 3 and 4 Larix decidua Miller taxonomy author, year Miller synonym Larix europaea DC; Larix sudetica Domin; Pinus larix L. Family Pinaceae Eng. Name European larch, Common larch Dutch name Europese lariks (Boom, 2000) Europese lork (Heukels’ Flora, 2005) subspecies - varieties L. decidua var. polonica (Racib) Ostenf. & Syrach Larsen (syn. L. polonica Racib.) L. decidua var. carpatica Domin (syn. L. carpatica Domin.) hybrids Larix x marschlinsii Coaz (L. decidua x L. kaempferi) (syn. Larix x eurolepis Henry) cultivars, frequently planted - references Earle, C.J. Gymnosperm database www.conifers.org USDA Forest Service www.pfaf.org/database/index.php Westra, J.J. Het geslacht Larix. In Schmidt (ed.). 1987. Ned. Boomsoorten 1 Syllabus vakgroep Bosteelt en Bosecologie, Landbouwuniversiteit Wageningen Plants for a Future Database; www.pfaf.org/index.html morphology crown habit tree, pyramidal max. height (m) Europe: 30-50 The Netherlands: 30 max. dbh (cm) 100-200 oldest tree year 988 AC, tree ring count, Val Malenco, Italy. actual size Europe year …, d(130) 95, h 46, Glenlee Park, Dumfries and Galloway, UK. year …, d(130) 271, h 30, Ulten Valley, Saint Nicholas, Italy. actual size Netherlands year 1844, d…, h …, Schovenhorst, Putten year 1830-1840, d(130) 114, h 17 year 1850-1860, d(130) 115, h 20 year 1860-1870, d(130) 97, h 28 leaf length (cm) 2-4 single leaf petiole (cm) 0 leaf colour upper surface green leaf colour under surface green leaves arrangement alternate flowering March - May flowering plant monoecious flower monosexual flower diameter (cm) ? pollination wind fruit; length cone; 3-4 cm fruit petiole (cm) 0,3 seed; length samara (=winged nut); … cm seed-wing length (cm) weight 1000 seeds (g) 5,0-5,9 seeds ripen October same year seed dispersal wind habitat natural distribution Alps, Central Europe in N.W.
    [Show full text]
  • Biodiversity Climate Change Impacts Report Card Technical Paper 12. the Impact of Climate Change on Biological Phenology In
    Sparks Pheno logy Biodiversity Report Card paper 12 2015 Biodiversity Climate Change impacts report card technical paper 12. The impact of climate change on biological phenology in the UK Tim Sparks1 & Humphrey Crick2 1 Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, CV1 5FB 2 Natural England, Eastbrook, Shaftesbury Road, Cambridge, CB2 8DR Email: [email protected]; [email protected] 1 Sparks Pheno logy Biodiversity Report Card paper 12 2015 Executive summary Phenology can be described as the study of the timing of recurring natural events. The UK has a long history of phenological recording, particularly of first and last dates, but systematic national recording schemes are able to provide information on the distributions of events. The majority of data concern spring phenology, autumn phenology is relatively under-recorded. The UK is not usually water-limited in spring and therefore the major driver of the timing of life cycles (phenology) in the UK is temperature [H]. Phenological responses to temperature vary between species [H] but climate change remains the major driver of changed phenology [M]. For some species, other factors may also be important, such as soil biota, nutrients and daylength [M]. Wherever data is collected the majority of evidence suggests that spring events have advanced [H]. Thus, data show advances in the timing of bird spring migration [H], short distance migrants responding more than long-distance migrants [H], of egg laying in birds [H], in the flowering and leafing of plants[H] (although annual species may be more responsive than perennial species [L]), in the emergence dates of various invertebrates (butterflies [H], moths [M], aphids [H], dragonflies [M], hoverflies [L], carabid beetles [M]), in the migration [M] and breeding [M] of amphibians, in the fruiting of spring fungi [M], in freshwater fish migration [L] and spawning [L], in freshwater plankton [M], in the breeding activity among ruminant mammals [L] and the questing behaviour of ticks [L].
    [Show full text]
  • Northern Fen Communitynorthern Abstract Fen, Page 1
    Northern Fen CommunityNorthern Abstract Fen, Page 1 Community Range Prevalent or likely prevalent Infrequent or likely infrequent Absent or likely absent Photo by Joshua G. Cohen Overview: Northern fen is a sedge- and rush-dominated 8,000 years. Expansion of peatlands likely occurred wetland occurring on neutral to moderately alkaline following climatic cooling, approximately 5,000 years saturated peat and/or marl influenced by groundwater ago (Heinselman 1970, Boelter and Verry 1977, Riley rich in calcium and magnesium carbonates. The 1989). community occurs north of the climatic tension zone and is found primarily where calcareous bedrock Several other natural peatland communities also underlies a thin mantle of glacial drift on flat areas or occur in Michigan and can be distinguished from shallow depressions of glacial outwash and glacial minerotrophic (nutrient-rich) northern fens, based on lakeplains and also in kettle depressions on pitted comparisons of nutrient levels, flora, canopy closure, outwash and moraines. distribution, landscape context, and groundwater influence (Kost et al. 2007). Northern fen is dominated Global and State Rank: G3G5/S3 by sedges, rushes, and grasses (Mitsch and Gosselink 2000). Additional open wetlands occurring on organic Range: Northern fen is a peatland type of glaciated soils include coastal fen, poor fen, prairie fen, bog, landscapes of the northern Great Lakes region, ranging intermittent wetland, and northern wet meadow. Bogs, from Michigan west to Minnesota and northward peat-covered wetlands raised above the surrounding into central Canada (Ontario, Manitoba, and Quebec) groundwater by an accumulation of peat, receive inputs (Gignac et al. 2000, Faber-Langendoen 2001, Amon of nutrients and water primarily from precipitation et al.
    [Show full text]
  • The Green Spruce Aphid in Western Europe
    Forestry Commission The Green Spruce Aphid in Western Europe: Ecology, Status, Impacts and Prospects for Management Edited by Keith R. Day, Gudmundur Halldorsson, Susanne Harding and Nigel A. Straw Forestry Commission ARCHIVE Technical Paper & f FORESTRY COMMISSION TECHNICAL PAPER 24 The Green Spruce Aphid in Western Europe: Ecology, Status, Impacts and Prospects for Management A research initiative undertaken through European Community Concerted Action AIR3-CT94-1883 with the co-operation of European Communities Directorate-General XII Science Research and Development (Agro-Industrial Research) Edited by Keith R. t)ay‘, Gudmundur Halldorssorr, Susanne Harding3 and Nigel A. Straw4 ' University of Ulster, School of Environmental Studies, Coleraine BT52 ISA, Northern Ireland, U.K. 2 2 Iceland Forest Research Station, Mogilsa, 270 Mossfellsbaer, Iceland 3 Royal Veterinary and Agricultural University, Department of Ecology and Molecular Biology, Thorvaldsenvej 40, Copenhagen, 1871 Frederiksberg C., Denmark 4 Forest Research, Alice Holt Lodge, Wrecclesham, Farnham, Surrey GU10 4LH, U.K. KVL & Iceland forestry m research station Forest Research FORESTRY COMMISSION, EDINBURGH © Crown copyright 1998 First published 1998 ISBN 0 85538 354 2 FDC 145.7:453:(4) KEYWORDS: Biological control, Elatobium , Entomology, Forestry, Forest Management, Insect pests, Picea, Population dynamics, Spruce, Tree breeding Enquiries relating to this publication should be addressed to: The Research Communications Officer Forest Research Alice Holt Lodge Wrecclesham, Farnham Surrey GU10 4LH Front Cover: The green spruce aphid Elatobium abietinum. (Photo: G. Halldorsson) Back Cover: Distribution of the green spruce aphid. CONTENTS Page List of contributors IV Preface 1. Origins and background to the green spruce aphid C. I. Carter and G. Hallddrsson in Europe 2.
    [Show full text]
  • Acaricidal Activity of Fusarium Subglutinans 12A on Tetranychus Urticae Koch (Acari: Tetranychidae
    Ziraat Fakültesi Dergisi 14 (1):83-88, 2019 ISSN 1304-9984, e-ISSN 2687-3419 Araştırma Makalesi Acaricidal activity of Fusarium subglutinans 12A on Tetranychus urticae Koch (Acari: Tetranychidae Asiye UZUN1* Ozan DEMİRÖZER1 Ş. Evrim ARICI1 Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Plant Protection, 32260, Isparta/Turkey *Corresponding author: [email protected] The arrival date:01.03.2019, Acceptance date: 28.05.2019 Abstract: In this study, efficacy of different spore concentrations of Fusarium subglutinans 12A isolate on Tetranychus urticae Koch females was investigated. The experimental design was a complete randomized block and all trials were conducted in five replications. In the study, 1x104, 1x106 and 1x108 spores/ml spore concentrations were applied to shell bean leaves that were prepared according to leaf disc method spraying in droplets at 1 atm pressure. Observations on mortality of females and also mycosis developing on dead individuals were conducted on the 3rd, 5th, and 7th days after application. According to the study results, mortality rates were higher than control at three spore concentrations, but they did not differ from each other (F 44,239; df 3; P> 0.05). Mycosis were not significant at three spore concentrations (F 2,387; df 2; P> 0.05). Moreover, it was determined that the time-dependent mortality rate after application of Fusarium subglutinans 12A isolate was the highest on the 7th day at all spore concentrations. Keywords: Biological control, enthomopathogen fungi, two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) üzerinde Fusarium subglutinans 12A'nın akarisidal aktivitesi Özet: Bu çalışmada, Fusarium subglutinans 12A izolatının farklı spor konsantrasyonlarının Tetranychus urticae Koch dişi bireyleri üzerindeki etkililiği araştırılmıştır.
    [Show full text]