Newsletter Mycological Society of America

Total Page:16

File Type:pdf, Size:1020Kb

Newsletter Mycological Society of America MYCOLOGICAL 'NEWSLETTER MYCOLOGICAL SOCIETY OF AMERICA June 1978 Vol.29 No.1 MYCOLOGICAL SOCIETY OF AMERICA NEWSLETTER Vol . 29. number 1 June 1978 Published twice yearly by the Mycological Society of America Edited by Henry C . Aldrich Department of Microbiology and Cell Science. McCarty Hall University of Florida Gainesville. Florida 32611 CONTENTS Sustaining members of the Mycological Society ....I Symposia. meetings. and forays of interest ..... 4 New mycological research projects ..........5 Courses in mycology .................6 Fungi available for distribution ............7 Fungi wanted .....................7 Identifications ...................8 Publications wanted .................9 Publications for sale. exchange. or giveaway .....10 [ INSERT: AIBS MEETING SCHEDULE AND ABSTRACTS 1 Fellowships and assistantships available ......12 Positions wanted ..................13 Personals ......................13 Miscellaneous ....................17 Comments on a Mycologia book review .........18 Humor (?) ...................... 19 h!embership application blank ............20 Cover by Kathy Erdman SUSTAINING MEMBERS ANALYTAB PRODUCTS Division of Ayerst Laboratories Plainview, New York 11803 AYERST LABORATORIES Division of Ayerst, McKenna & Harriscn Limited 1025 Laurentian Blvd., P. 0. Box 6082 Montreal, Canada H3C 3A7 BBL, DIVISION OF BIOQUEST Division of Becton, Dickinson and Co. Cockeysville, Maryland 21030 BELLCO GLASS, INC. 349 Edrudo Road Vineland, New Jersey 08360 BUTLER COUNTY MUSHROOM FARM West Winfield, Pennsylvania 16062 CALBIOCHEM P.O. Box 12087 San Diego, California 92112 CAMPBELL SOUP COMPANY Camden, New Jersey 08101 DIAMOND SHAMROCK CORPORATION T. R. Evans Research Center P. 0. Box 348 Painesville, Ohio 44077 DIFCO LABORATORY PRODUCTS The complete line of microbiological reagents and media P.O. BOX 10.58-A Detroit, Michigan 48232 DUPONT COMPANY, INSTRUMENT PRODUCTS Biomed ical Division Peck's Lane Newtown, Connecticut 06470 FUNK SEEDS INTERNATIONAL A Company of CIBA-GEIGY Corporation Funk's G-Hybrid Corn, Sorghum and Farm Seeds Bloomington, Illinois 61701 GB FERMENTATION INDUSTRIES (Former1y WALLERSTEIN COMPANY) One North Broadway Des Plaines, Illinois 60016 HOFFMAN-LA ROCHE, INC. Pharmaceuticals, vitamins and aromatic chemicals Nutley, New Jersey 07110 LAB-LINE INSTRUMENTS, INC. Designers and manufacturers of instruments for science, industry, research and education since 1898 Melrose Park, Illinois 60160 LANE SCIENCE EQUIPMENT CO. Complete line of museum storage cabinets especially herbarium cabinets--airtight for permanent protection 105 Chambers St. New York, New York 10007 ELI LILLY AND COMPANY Pharmaceuticals, agricultural and industrial products and cosmetics 307 East McCarty, Indianapolis, Indiana 46206 MERCK SHARP AND DOHME RESEARCH LABORATORIES Division of Merck & Co., Inc. Rahway, New Jersey 07065 MILES LABORATORIES, INC. Pharmaceutical and chemical research and manufacture Elkhart, Indiana 46514 NEW BRUNSWICK SCIENTIFIC CO., INC. 44 Talmadge Road, P.O. Box 986 Edison, New Jersey 08817 OLYMPUS CORPORATION OF AMERICA Precision Instrument Division Compound and stereo microscopes for research, laboratory and schools with accessories for fluorescence, phase contrast, interference contrast and photomicrography New Hyde Park, New York, 11041 PARKE, DAVIS & COMPANY Research Laboratories Detroit, Michigan 48232 PFIZER, INC. Fine chemicals and pharmaceuticals by means of microorganisms 235 East 42nd Street, New York, New York 10017 PIONEER HI-BRED INTERNATIONAL, INCORPORATED 1206 Mulberry Street Des Moines, Iowa 50308 SCHERING CORPORATION Pharmaceutical manufacturers Bloomfield, New Jersey 07003 G. D. SEARLE & COMPANY Health Care Products and Service P. 0. Box 1045, Skokie, Illinois 60076 SMITH DINE & FRENCH LABORATORIES Prescription medicines and other health care products Division of SmithKline Corporation Philadelphia, Pennsylvania 19101 TRIARCH INCORPORATED Quality prepared microscope slides, catalog listed or custom prepared to your specifications Ripon, Wisconsin 54971 THE UPJOHN COMPANY Fine pharmaceuticals since 1886 Kalamazoo, Michigan 49001 VELSICOL CHEMICAL CORPORATION Agricultural and Industrial Chemical Products 341 East Ohio Street, Chicago, Illinois 60611 WARNER-LAMBERT RESEARCH INSTITUTE Central Research Affiliate of the Warner-Lambert Company Morris Plains, New Jersey 07950 SYMPOSIA. MEETINGS. AND FORAYS OF INTEREST * Harry Thiers tells us that the 1978 D.E. Stuntz Mycological Foray will be held on the weekend of Dec. 1-3 at the Mendocino Woodlands Camp, the same place where the foray was held in 1971, There will also be a N.A.M.A. foray near there on Thanksgiving weekend. Contact Harry Knighton for information on the N.A.M.A. event, and Harry Thiers for further materials on the Stuntz Foray. * An invitational symposium on several angles and problems of "Maintenance of Fungus Cultures" has been organized by Emory Simmons for the XI1 International Congress of Microbiology, Munich, 3-8 Sept., 1978. Speakers will include R.P. Elander, B. Kirsop, C.P. Kurtzman, P. Mazur, and M.A.A. Schipper. * George Grtmes gave a 3 day course on wild mushroom identifi- cation in Lander, Wyoming, May 12-14. The group attending was so enthusiastic that they formed a new mushroom club. George also included an annoucement about the 5th Annual Aspen Mushroom Conference, August 13-18, 1978, in Colorado. Alexander H. Smith and Harry D. Thiers will be in charge. It is designed for physicians, scientists, amateur and profes- sional mycologists. For details: Beth Israel Hospital, 1601 Lowell Blvd., Denver, CO 80204, or phone 303-825-2190, Ext. 350. * We received a preliminary note to the effect that the 13th International Botanical Congress will be held in Sydney, Australia, in 1981. Anyone interested in receiving future mailings should send their name and address to: Dr. W.J. Cram, Executive Secretary, 13th International Botanical Congress, University of Sydney, NSW 2006, Australia. * The Society for Industrial Mycology will meet in Houston, Texas at Rice University, August 13-18, 1978. Alma Dietz has organized an Actinomycete workshop for Aug. 12-13. Further information: Ms. Ann Kulback, Society for Indus- trial Mycology, 1401 Wilson Blvd., Arlington, VA 22209. * --Roger Goos reports that New England mycologists held a very successful meeting at the University of Rhode Island on April 15, 1978. It drew amateur, professional, applied, and basic mycologists. Another such meeting will be held at the University of Massachusetts, Amherst, in April, 1979. Contact Howard Bigelow for details. * Sandra Anagnostakis reports that a symposium on American Chestnut Research was held on Jan. 4-5, 1978 in Morgantown, W.V. More than 170 people from 20 states and two foreign countries attended. Proceedings of the meeting are available from Dr. Wm. MacDonald, 528 Brooks Hall, West Virginia University, Ylorgantown, WV 26506. * Orson Miller will lead a N.A.M.A. Foray to Sweden and Fin- land during August, 197'8. Contact Harry Knighton for details. * We have just learned that the Boston Mycological Club conducts forays throughout New England each week from July to October. For more information or membership forms contact: Boston hfycological Club, Patrick Peterson, Treas., 21* Tnman St., Cambridge, MA 02139. * The Second Annual Houston hfushroom Foray will take place in Texas, Nov. 2-5, 1978. Contact Dr. Cynthia Rogers, Houston Baptist University, Dept. of Biology, 7502 Fondren Rd., Houston, TX 77074. * The Judd Memorial Conference on Color Metrics, Sponsored by the Inter-Society Color Council, will be held in Williams- burg, VA, Feb. 11-14, 1979. Contact: S.L. Davidson, N.L. Industries, P.O. Box 700, Hightstown, N. J. 08520. * In conjunction with the Phytopathology meetings, a symposium on the Biology of Sclerotinia will be held Oct 29- Nov. 2, in Tucson, Arizona. Contact George -S. Abawi for additional informat ion, * On Aug. 15-20, 1978, there will be the Third National Ex- hibition of Fungi in Mexico City's Chapultepec Park. Further information: Dr. Lucia Varek, Dept. of Botany, Esc, Nac. Ciencias Biologicas, I.P.N., Apartadu Postal 26-378, Mexico 16, D.F., Mexico. NEW MYCOLOGICAL RESEARCH PROJECTS * Orson Miller and Arthur Linkins are initiating a study of the role of fungi as mycorrhiza formers and in decomposition in tundra in Alaska. * David Griffin is investigating the chemical ecology of Hypoxylon canker. * A monograph of the genus Trichocladium is being prepared by Mary Palm and Elwin Stewart. * The effect of oil shale retort effluent on communities of soil microfungi in Wyoming sagebrush grasslands is being studied by Martha Christensen. * David Largent is working on mycorrhizae of ericaceous shrubs and on mycorrhizal succession in white pines. * In R.L. Gilbertson's lab, Donna Goldstein is doing a cultural study of Inonotus arizonicus. * E.L. Schmidt is working on basidiospore production in vitro and using spore germination to investigate the efficacy of wood preservatives. * A revisionary monograph of the Arachnopezizeae is being prepared by --Dick Korf. * George Grimes says that the Colorado Mycological Society is sponsoring a Front Range & City Mushroom Project in the Fort Collins, Denver, Colo- rado Springs area. They will publish a booklet on fungi of this region. * As part of a project on utilization of crude oil by fungi from tundra soils, Paul Widden is working out the ecology of Trichoderma in forest soils. * A study of mycorrhizae in cultivated crops is underway by -H. -E. Bloss. * The North American Mycological Association
Recommended publications
  • Identification and Management of Heart-Rot Fungi
    https://doi.org/10.3126/banko.v30i2.33482 Banko Janakari, Vol 30 No. 2, 2020 Pp 71‒77 Short Note Identification and management of heart-rot fungi S. K. Jha1 eart-rot fungi are key players in trees moist, soft, spongy, or stringy and appear white health, diversity and nutrient dynamic or yellow. Mycelia of fungi colonize much of Hin forest as pathogens and decomposers the woody tissues. White rots usually form in along with a number of invertebrates are flowering trees (angiosperms) and less often in associated with Wood-decay fungi serve as conifers (gymnosperms). Fungi that cause white vectors for fungal pathogens, or are fungivorous rots also cause the production of zone lines in and influence rates of Wood-decay and nutrient wood, sometimes called "spalted wood". This mineralization. partially rotted wood is sometimes desirable for woodworking. The examples of white rot fungi A number of fungi, viz. Polyporus spp., Serpulala are Armillariell amellea, Pleurotus ostreatus, crymans, Fusarium negundi, Coniophora Coriolus versicolor, Cyathus stercoreus, cerebella, Lentinus lapidens and Penicillium Ceriporiopsissu bvermispora, Trametes divaricatum cause destruction of valuable versicolor, Hetero basidionannosum, and so on. timbers by reducing the mechanical strength of wood. Molds cause rotting of the heartwood in Brown rots the middle of tree-branches and trunks. Wood- decay fungi can be classified according to the Brown rots primarily decay the cellulose and type of decay that they cause. The best-known hemicellulose (carbohydrates) in wood, leaving types are brown rot, soft rot, and white rot. Each behind the brownish lignin. Wood affected by type produces different enzymes, can degrade brown rot usually is dry, fragile, and readily different plant materials, and can colonize crumbles into cubes because of longitudinal different environmental niches (Bednarz et al.
    [Show full text]
  • Gasteroid Mycobiota (Agaricales, Geastrales, And
    Gasteroid mycobiota ( Agaricales , Geastrales , and Phallales ) from Espinal forests in Argentina 1,* 2 MARÍA L. HERNÁNDEZ CAFFOT , XIMENA A. BROIERO , MARÍA E. 2 2 3 FERNÁNDEZ , LEDA SILVERA RUIZ , ESTEBAN M. CRESPO , EDUARDO R. 1 NOUHRA 1 Instituto Multidisciplinario de Biología Vegetal, CONICET–Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina. 2 Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, CP 5000, Córdoba, Argentina. 3 Cátedra de Diversidad Vegetal I, Facultad de Química, Bioquímica y Farmacia., Universidad Nacional de San Luis, CP 5700 San Luis, Argentina. CORRESPONDENCE TO : [email protected] *CURRENT ADDRESS : Centro de Investigaciones y Transferencia de Jujuy (CIT-JUJUY), CONICET- Universidad Nacional de Jujuy, CP 4600, San Salvador de Jujuy, Jujuy, Argentina. ABSTRACT — Sampling and analysis of gasteroid agaricomycete species ( Phallomycetidae and Agaricomycetidae ) associated with relicts of native Espinal forests in the southeast region of Córdoba, Argentina, have identified twenty-nine species in fourteen genera: Bovista (4), Calvatia (2), Cyathus (1), Disciseda (4), Geastrum (7), Itajahya (1), Lycoperdon (2), Lysurus (2), Morganella (1), Mycenastrum (1), Myriostoma (1), Sphaerobolus (1), Tulostoma (1), and Vascellum (1). The gasteroid species from the sampled Espinal forests showed an overall similarity with those recorded from neighboring phytogeographic regions; however, a new species of Lysurus was found and is briefly described, and Bovista coprophila is a new record for Argentina. KEY WORDS — Agaricomycetidae , fungal distribution, native woodlands, Phallomycetidae . Introduction The Espinal Phytogeographic Province is a transitional ecosystem between the Pampeana, the Chaqueña, and the Monte Phytogeographic Provinces in Argentina (Cabrera 1971). The Espinal forests, mainly dominated by Prosopis L.
    [Show full text]
  • Cyathus Stercoreus
    Cyathus stercoreus a. Photo: Tiana Scott c. b. d. e. Figure 1. Cyathus stercoreus collected by Tiana Scott and described by Kirsten f. Slemint. a. Photograph of specimen attached to substrate. b. Close-up photograph of specimen attached to substrate. c. Upper surface with 1mm peridoles d. Peridoles schematic. e. Outer cup surface f. globose to subglobose spores Cyathus stercoreus (Schwein.) De Toni Classification - Basidiomycota, Agaricales, and larger spore size (25μm) seperate from Nidulariaceae, Cyathus C.striatus Fruiting Body - inverted cone; 4-6mm diameter; Cyathus stercoreus collected by Tiana Scott and 7-10mm high; external surface shaggy mat of hair described by Kirsten Slemint. like structures; internal surface smooth. Stem - absent; basal part of cup attached directly to References woody substrate. Spores - contained in several grey-brown to black 1-2mm peridoles; globose to Queensland Mycological Society. (2017). Cyathus subglobulose 18-25μm. Substrate - woody barks. stercoreus. Retrieved from http://qldfungi.org.au/ Habitat - heavily manicured park gardens near wp-content/uploads/FoQs/C-Cyathus/Cyathus- water. Collected - by Tiana Scott, Roma Street stercoreus.pdf Parklands 20/01/2019 Fuhrer, B. (2011). A field guide to Australian fungi. Notes - Striations absent on inside cup surface Melbourne, Vic.: Bloomings Books. Stereum sp. b. a. c. 3mm d. e. f. Figure 1. Stereum sp. collected and described by Kirsten Slemint. a. Specimen attached to substrate. b. Specimen upper surface. c. Specimen lower surface d. Cross- section. e. Upper surface schematic f. Ellipsoid spores Stereum sp. Classification - Agaricomycetes, Russulales, Stereaceae, Stereum Notes - originally assumed Trametes or Microporous but absence of distinct hymenophore Cap - semi-circular; laterally attached to substrate; type led to Russulales.
    [Show full text]
  • Plantaplanta Medica an Internationalmedica Journal of Natural Products and Medicinal Plant Research
    PlantaPlanta Medica An InternationalMedica Journal of Natural Products and Medicinal Plant Research Editor-in-Chief Advisory Board Luc Pieters, Antwerp, Belgium Giovanni Appendino, Novara, Italy John T. Arnason, Ottawa, Canada Senior Editor Yoshinori Asakawa, Tokushima, Japan Lars Bohlin, Uppsala, Sweden Adolf Nahrstedt, Mnster, Germany Gerhard Bringmann, Wrzburg, Germany Reto Brun, Basel, Switzerland Review Editor Mark S. Butler, Singapore, R. of Singapore Matthias Hamburger, Basel, Switzerland Ihsan Calis, Ankara, Turkey Salvador Caigueral, Barcelona, Spain Editors Hartmut Derendorf, Gainesville, USA Wolfgang Barz, Mnster, Germany Verena Dirsch, Vienna, Austria Rudolf Bauer, Graz, Austria Jrgen Drewe, Basel, Switzerland Roberto Maffei Facino, Milan, Italy Veronika Butterweck, Gainesville FL, USA Alfonso Garcia-Pieres, Frederick MD, USA Jo¼o Batista Calixto, Florianopolis, Brazil Rolf Gebhardt, Leipzig, Germany Thomas Efferth, Heidelberg, Germany Clarissa Gerhuser, Heidelberg, Germany Jerzy W. Jaroszewski, Copenhagen, Denmark Jrg Gertsch, Zrich, Switzerland Ikhlas Khan, Oxford MS, USA Simon Gibbons, London, UK De-An Guo, Beijing, China Wolfgang Kreis, Erlangen, Germany Leslie Gunatilaka, Tuscon, USA Irmgard Merfort, Freiburg, Germany Solomon Habtemariam, London, UK Kurt Schmidt, Graz, Austria Andreas Hensel, Mnster, Germany Thomas Simmet, Ulm, Germany Werner Herz, Tallahassee, USA Kurt Hostettmann, Geneva, Switzerland Hermann Stuppner, Innsbruck, Austria Peter J. Houghton, London, UK Yang-Chang Wu, Kaohsiung, Taiwan Jinwoong Kim, Seoul,
    [Show full text]
  • The Fascinating Bird's Nest Mushroom, Secondary Metabolites And
    International Journal of Pharma Research and Health Sciences, 2021; 9 (1): 3265-3269 DOI:10.21276/ijprhs.2021.01.01 Waill and Ghoson CODEN (USA)-IJPRUR, e-ISSN: 2348-6465 Mini Review The Fascinating Bird’s Nest Mushroom, Secondary Metabolites and Biological Activities Waill A Elkhateeb*, Ghoson M Daba Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt. ARTICLE INFO: ABSTRACT: Received: 05 Feb 2021 Background: Mushrooms are generous source of nutritional and medicinal compounds. Accepted: 16 Feb 2021 Bird’s nest fungi are a gasteromyceteous group of mushrooms named for their similarity in Published: 28 Feb 2021 shape to small bird’s nests. They are considered from the tiniest and most interesting mushrooms all over the world. It is usually found in shady moist environments, and typically survive on plant debris, soil, decaying wood, or animal’s excrement. Bird’s nest mushrooms Corresponding author * are inedible, though they were not previously reported to be poisonous, due to their tiny size. Waill A Elkhateeb, Object: this review aims to put bird’s nest mushrooms under light spot through describing Chemistry of Natural and their morphology and ecology especially of the most common fungus, Cyathus haller. Microbial Products Department, Moreover, discussing important secondary metabolites and biological activities exerted by Pharmaceutical Industries bird’s nest mushrooms. Division, National Research Conclusion: bird’s nest mushrooms are able to produce many novel and potent secondary Centre, Dokki, Giza, 12622, metabolites that exerted different bioactivities especially as antimicrobial, antitumor, and Egypt. anti-neuro inflammation activities. Further studies and investigations are encouraged in E Mail: [email protected] order to find more about this interesting tiny mushroom.
    [Show full text]
  • Kingdom Fungi
    Fungi, Galls, Lichens, Prokaryotes and Protists of Elm Fork Preserve These lists contain the oddballs that do not fit within the plant or animal categories. They include the other three kingdoms aside from Plantae and Animalia, as well as lichens and galls best examined as individual categories. The comments column lists remarks in the following manner: 1Interesting facts and natural history concerning the organism. Place of origin is also listed if it is an alien. 2 Edible, medicinal or other useful qualities of the organism for humans. The potential for poisoning or otherwise injuring humans is also listed here. 3Ecological importance. The organisms interaction with the local ecology. 4Identifying features are noted, especially differences between similar species. 5Date sighted, location and observations such as quantity or stage of development are noted here. Some locations lend themselves to description -- close proximity to a readily identifiable marker, such as a trail juncture or near a numbered tree sign. Other locations that are more difficult to define have been noted using numbers from the location map. Global Positioning System (GPS) coordinates are only included for those organisms that are unusual or rare and are likely to be observed again in the same place. 6 Synonyms; outdated or recently changed scientific names are inserted here. 7 Control measures. The date, method and reason for any selective elimination. 8 Intentional Introductions. The date, source and reason for any introductions. 9 Identification references. Species identifications were made by the author unless otherwise noted. Identifications were verified using the reference material cited. 10Accession made. A notation is made if the organism was photographed, collected for pressing or a spore print was obtained.
    [Show full text]
  • Cyathus Lignilantanae Sp. Nov., a New Species of Bird’S Nest Fungi (Basidiomycota) from Cape Verde Archipelago
    Phytotaxa 236 (2): 161–172 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.2.5 Cyathus lignilantanae sp. nov., a new species of bird’s nest fungi (Basidiomycota) from Cape Verde Archipelago MARÍA P. MARTÍN1, RHUDSON H. S. F. CRUZ2, MARGARITA DUEÑAS1, IURI G. BASEIA2 & M. TERESA TELLERIA1 1Real Jardín Botánico, RJB-CSIC. Dpto. de Micología. Plaza de Murillo, 2. 28014 Madrid, Spain. E-mail: [email protected] 2Programa de Pós-graduação em Sistemática e Evolução, Dpto. de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil Abstract Cyathus lignilantanae sp. nov. is described and illustrated on the basis of morphological and molecular data. Specimens were collected on Santiago Island (Cape Verde), growing on woody debris of Lantana camara. Affinities with other species of the genus are discussed. Resumen Sobre la base de datos morfológicos y moleculares se describe e ilustra Cyathus lignilantanae sp. nov. Los especímenes se recolectaron en la isla de Santiago (Cabo Verde), creciendo sobre restos leñosos de Lantana camara. Se discuten las afini- dades de esta especie con las del resto del género. Key words: biodiversity hotspot, Sierra Malagueta Natural Park, gasteromycetes, Agaricales, Nidulariaceae, ITS nrDNA, taxonomy Introduction The Cape Verde archipelago is situated in the Atlantic ocean (14°50’–17°20’N, 22°40’–25°30’W), about 750 km off the Senegalese coast (Africa), and is formed by 10 islands (approximately 4033 km²), discovered and colonized by Portuguese explorers in the 15th century.
    [Show full text]
  • Cyathus Lignilantanae Sp. Nov., a New Species of Bird's Nest Fungi
    Phytotaxa 236 (2): 161–172 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.2.5 Cyathus lignilantanae sp. nov., a new species of bird’s nest fungi (Basidiomycota) from Cape Verde Archipelago MARÍA P. MARTÍN1, RHUDSON H. S. F. CRUZ2, MARGARITA DUEÑAS1, IURI G. BASEIA2 & M. TERESA TELLERIA1 1Real Jardín Botánico, RJB-CSIC. Dpto. de Micología. Plaza de Murillo, 2. 28014 Madrid, Spain. E-mail: [email protected] 2Programa de Pós-graduação em Sistemática e Evolução, Dpto. de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil Abstract Cyathus lignilantanae sp. nov. is described and illustrated on the basis of morphological and molecular data. Specimens were collected on Santiago Island (Cape Verde), growing on woody debris of Lantana camara. Affinities with other species of the genus are discussed. Resumen Sobre la base de datos morfológicos y moleculares se describe e ilustra Cyathus lignilantanae sp. nov. Los especímenes se recolectaron en la isla de Santiago (Cabo Verde), creciendo sobre restos leñosos de Lantana camara. Se discuten las afini- dades de esta especie con las del resto del género. Key words: biodiversity hotspot, Sierra Malagueta Natural Park, gasteromycetes, Agaricales, Nidulariaceae, ITS nrDNA, taxonomy Introduction The Cape Verde archipelago is situated in the Atlantic ocean (14°50’–17°20’N, 22°40’–25°30’W), about 750 km off the Senegalese coast (Africa), and is formed by 10 islands (approximately 4033 km²), discovered and colonized by Portuguese explorers in the 15th century.
    [Show full text]
  • Jennifer Keighley.Pdf
    A Thesis Submitted for the Degree of Doctor of Philosophy at Harper Adams University Copyright and moral rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s. When referring to this thesis and any accompanying data, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. HARPER ADAMS UNIVERSITY THE EPIDEMIOLOGY AND INTEGRATED CONTROL OF FAIRY RINGS ON GOLF COURSES JENNIFER MAY KEIGHLEY MSc BSc (Hons) A THESIS SUBMITTED IN SUPPORT OF THE DEGREE OF DOCTOR OF PHILOSOPHY JUNE 2017 ABSTRACT Fairy ring is a common turf disease found on golf courses, but is poorly understood in terms of its epidemiology and control. An online questionnaire was emailed to every golf course in the UK and Ireland (equating to 3,849 recipients) in order to gather information on incidence, distribution and severity of fairy ring. Greenkeepers reported that type-2 fairy ring, where growth of the turf is stimulated, occurred the most frequently and that the impact was predominantly aesthetic. Disease symptoms were at their worst in July and August and were considered more of a problem when occurring on putting greens than any other part of the golf course.
    [Show full text]
  • Susceptibility of Bamboo to Fungi
    Susceptibility of Bamboo to Fungi Dong Sheng Wei, Olaf Schmidt, Walter Liese Department of Wood Biology University of Hamburg, Germany Content Fungal Isolation and Identification Blue-stain Test Degradation Test Micromorphological Studies of Degradation Moulded bamboo after ship transport from Asia Methods of identification fungi: Classical identification methods colony morphology vegetative spore formation fruiting body formation Modern identification method DNA sequencing analysis Disadvantage of classical identification methods: Morphological characters between two species are too similar to distinguish these from each other. Morphological characters within a species are very variable so that two individuals are not necessarily recognized to belong to the same species. Pleurotus ostreatus Schizophyllum commune Trametes versicolor Molecular Methods of fungal identification Samples collection DNA extraction DNeasy Plant Kit PCR Purification Sequencing Eurofins MVG Operon Sequence analysis Blast Samples collection Number of isolates Number of identified Country isolates Ethiopia 5 1 China 25 18 Costa Rica 9 1 Germany 6 5 Indonesia 5 1 Philippines 15 2 Thailand 43 19 Vietnam 42 29 150 76 Botryosphaeria subglobosa Epicoccum nigrum Penicillium commune (Vietnam) (Thailand) (China) Identified isolates from bamboo by DNA sequencing (1) Deuteromycetes/Ascomycetes Basidiomycetes Country (number of strains) (number of strains) Ethiopia Schizophyllum commune (1) Alternaria alternata (1) Alternaria tenuissima (1) Arthrinium phaeospermum (1)
    [Show full text]
  • Short-Range Splash Discharge of Peridioles in Nidularia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector fungal biology 119 (2015) 471e475 journal homepage: www.elsevier.com/locate/funbio Short-range splash discharge of peridioles in Nidularia Maribeth O. HASSETTa, Mark W. F. FISCHERb, Nicholas P. MONEYa,* aDepartment of Biology, Miami University, Oxford, OH 45056, USA bDepartment of Chemistry and Physical Science, Mount St. Joseph University, Cincinnati, OH 45233, USA article info abstract Article history: The distinctive shapes of basidiomata in the bird’s nest fungi reflect differences in the Received 15 December 2014 mechanism of splash discharge. In the present study, peridiole discharge was examined Accepted 9 January 2015 in Nidularia pulvinata using high-speed video. Nidularia pulvinata produces globose basidio- Available online 29 January 2015 mata that split open at maturity to expose 100 or more peridioles within a gelatinous ma- Corresponding Editor: trix. Each peridiole contains an estimated 7 million spores. The impact of water drops Nabla Kennedy splashed the peridioles horizontally from the fruit body, along with globs of mucilage, at À a mean velocity of 1.2 m s 1. Discharged peridioles travelled for a maximum horizontal dis- Keywords: tance of 1.5 cm. This launch process contrasts with the faster vertical splashes of peridioles Basidiomycota over distances of up to one metre from the flute-shaped fruit bodies of bird’s nest fungi in Dispersal the genera Crucibulum and Cyathus. Peridioles in these genera are equipped with a funicular High-speed video cord that attaches them to vegetation, placing them in an ideal location for ingestion by Spore discharge browsing herbivores.
    [Show full text]
  • Complete References List
    Aanen, D. K. & T. W. Kuyper (1999). Intercompatibility tests in the Hebeloma crustuliniforme complex in northwestern Europe. Mycologia 91: 783-795. Aanen, D. K., T. W. Kuyper, T. Boekhout & R. F. Hoekstra (2000). Phylogenetic relationships in the genus Hebeloma based on ITS1 and 2 sequences, with special emphasis on the Hebeloma crustuliniforme complex. Mycologia 92: 269-281. Aanen, D. K. & T. W. Kuyper (2004). A comparison of the application of a biological and phenetic species concept in the Hebeloma crustuliniforme complex within a phylogenetic framework. Persoonia 18: 285-316. Abbott, S. O. & Currah, R. S. (1997). The Helvellaceae: Systematic revision and occurrence in northern and northwestern North America. Mycotaxon 62: 1-125. Abesha, E., G. Caetano-Anollés & K. Høiland (2003). Population genetics and spatial structure of the fairy ring fungus Marasmius oreades in a Norwegian sand dune ecosystem. Mycologia 95: 1021-1031. Abraham, S. P. & A. R. Loeblich III (1995). Gymnopilus palmicola a lignicolous Basidiomycete, growing on the adventitious roots of the palm sabal palmetto in Texas. Principes 39: 84-88. Abrar, S., S. Swapna & M. Krishnappa (2012). Development and morphology of Lysurus cruciatus--an addition to the Indian mycobiota. Mycotaxon 122: 217-282. Accioly, T., R. H. S. F. Cruz, N. M. Assis, N. K. Ishikawa, K. Hosaka, M. P. Martín & I. G. Baseia (2018). Amazonian bird's nest fungi (Basidiomycota): Current knowledge and novelties on Cyathus species. Mycoscience 59: 331-342. Acharya, K., P. Pradhan, N. Chakraborty, A. K. Dutta, S. Saha, S. Sarkar & S. Giri (2010). Two species of Lysurus Fr.: addition to the macrofungi of West Bengal.
    [Show full text]