Ontogenetic Diet Shifts and Resource Partitioning Among Piscivorous Fishes in the Venezuelanllanos

Total Page:16

File Type:pdf, Size:1020Kb

Ontogenetic Diet Shifts and Resource Partitioning Among Piscivorous Fishes in the Venezuelanllanos Environmental Biology of Fishes 26: 177-199. 1989. @ 1989 Klu~'er Academic Publishers. Printl'd in thl' Netherlands Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelanllanos Kirk O. Winemiller Departmentof Zoology, The Universityof Texas,Austin, TX 78712,U.S.A Received18.8.1988 Accepted12.12.1988 Key words: Caquetia, Charax. Diet breadth, Diffuse competition, Gymnotus, Hoplias. Resource overlap, Piranha,Pygocentrus, Rhamdia. Seasonality, Se"asalmus Synopsis Resource utilization by nine abundant piscivores from a diverse tropical fish assemblagewas examined over the course of a year. All nine speciesexhibited peak reproduction during the early wet seasonand a similar sequenceof size-dependent shifts from a diet composed primarily of microcrustacea, to aquatic insects, and finally fishes. Three piranha species specialized on fish firis, particularly at subadult size classes (SL 30-80mm). Gradual dessication of the floodplain during the transition season was associated with fish growth, increased fish density, and decreasedaquatic primary productivity and availability of invertebrate prey. Based on 118resource categories, averagepairwise diet overlap was low during all three seasons:wet, transition, and dry. Of 72 species pairings, only one pair of fin-nipping piranhas exhibited high overlap simultaneously on three niche dimensions: food type, food size, and habitat. Adults of two species, a gymnotid knifefish and pimelodid catfish, were largely nocturnal. Patterns of habitat utilization indicate that piranhas may restrict diurnal use of the open-water region by other piscivores. Collective diet overlap of individual piscivore specieswith the other eight feeding guild members and collective overlaps with the entire fish community each revealed two basic seasonal trends. Four species that showed an early switch to piscivory also showed a high degree of diet separation with both the guild and community at large on a year-round basis. The five remaining speciesshowed lowest collective diet overlaps during the transition seasonwhen availability of invertebrates was reduced and fish densities were maximal. Whereas predation may playa role in habitat separation, diffuse competition for food resources during the approximately four-month transition seasonprobably is the principal factor yielding patterns of diet specialization. Introduction bers provides the most straightforward means of attaining a preliminary assessmentof the relative Most diverse taxonomic groups of organisms ex- importance of interactive processeswithin natural hibit divergence in trophic biology (e .g., cichlid communities. Whereas descriptive studies that re- fishes, Greenwood 1981; ostariophysan fishes, veal patterns of resource subdivision are limited in Fink & Fink 1981).Whether or not ecomorpholog- their abilities to demonstrate the mechanismscre- ical divergence is random or adaptive in the context ating observed relationships (Toft 1985), thought- of community interactions can be debated (Strong ful comparisons and the weight of evidence derived et al. 1979, Grant 1981). The study of resource from numerous studies already have yielded much exploitation among syntopic feeding guild mem- insight (Schoener 1974, Helfman 1978, Sale 1979, 178 Werner 1979.Toft 1985).In a recentreview of the focuseson the piscivore guild as a potential unit for literature on fishes.Ross (1986) observed greatest competitive biological interactions. Given the cli- partitioning on food dimensions.followed by hab- mate and natural history of the Cano Maraca eco- itat and time. Many studiestreating two or more system, several basic questions can be asked: (1) nichedimensions have shown complementarity. in- Do piscivorous fishes partition food and habitat, dicatinga potential effect of interspecificcompeti- and if so, what is the influence of seasonalchanges tion. An interactive effect betweencompetition. in their environment? (2) What are the relation- predation, and temporal shifts in abiotic environ- ships between ontogeny, resource partitioning, mental parametershas been suggestedfor some and seasonal changes in resource availability? (3) systems(Werner & Hall 1977,Werner et al. 1983, Given seasonal patterns of resource availability Mittlebach 1984. and see Schoener1974. Toft and exploitation by consumers,is there evidence of 1985).Ross (1986)observed a generalpattern of interactive effects on piscivore feeding behavior? studiesrevealing less evidence of interactiveeffects (4) Do seasonal trends of pairwise species diet on communitystructure in harsherenvironments. overlaps follow patterns from collective diet over- Seasonalchanges in resourceavailability and on- laps within the piscivore guild or total fish commu- togeneticdiet shifts can affect both predator-prey nity, and if not, which index offers a better assess- and competitive interactionsamong size-structur- ment of the likelihood of interactive effects? ed fish populations. The present study explores seasonaland size-relatedpatterns of resourceex- ploitation within the piscivore guild of a diverse Methods neotropical fish community. Although varying greatlyin both duration and breadthof taxonomic Studysite comparison, several recent studies have shown markedresource partitioning amongtropical fishes During every month of 1984,fishes were collected (Angermeier& Karr 1983,Power 1983,Moyle & from Calio Maraca, a swamp-creek of the Rio Senanayake1984, Schut et al. 1984,Watson & Apure-Orinoco drainage in the western llanos of Balon 1984,Araujo-Lima et al. 1986,Hyslop 1986, Venezuela (8° 52' 30" Lat. N; 69°27' 40" Long. W). Prejs & Prejs 1987,Nico & Taphorn 1988).Fish The region studied (termed an 'estero') lies within populationsfrequently are size structureddue to low, flat terrain that experiences extensive sheet small hatching or neonate size and continuous flooding during the wettest months (late May-Au- growth. Body size significantly affects the size gust). During this time, a large region bordering rangeof food particlespotentially available to con- the creek channel is converted from exposed, sun- sumers(Brooks & Dodson 1965. Werner 1974, baked soil and thorn-scrub habitat into a produc- Magnan& Fitzgerald1984). Furthermore, size dis- tive marsh with diverse aquatic vegetation dom- tributions of fish populations directly influence inated by Cyperus sp., Eichhornia diversifolia, and predation rates on different ageclasses and often Heteranthera reniformis. During the driest months the spatial distribution of fishes (Fraser& Cern (Dec.-May), the aquatic habitat is reduced to a 1982,Mittlebach 1984,Power 1984,Werner & Gil- network of mud-bottom pools blanketed by Pistia liam 1984). stratiotes, Salvinia spp., and Lemna spp.. Dis- The studysite, Calio Maraca,experiences highly solved oxygen concentrations are reduced at this seasonalrainfall that is characteristicof manyparts time and many fishes rely on special respiratory of central and southern Venezuela.Most fishes adaptations for survival. Annual rainfall in the re- reproduceduring the early and peakwet season,a gion was 1300mm during 1984,with 860mm falling situationthat leadsto temporalchanges in average between June and September (Fig. 1). Based on body sizefor mostspecies (Winemiller, unpublish- changes exhibited by stream physico-chemical ed). Although similar data were collectedfor all parameters associated with rainfall and their ef- fishesthat occurred at the site, this investigation fects on aquatic organisms (Winemiller 1987a, 179 three wet months, collecting effort expended was approximately equal during each sampling period. More total time was spent collecting during the first ! three months of the wet seasondue to the compara- ~ tive inefficiency of adult fish captures in the newly- i.. 0 expanded aquatic environment. All aquatic hab- itats in the estero region were sampled for a mini- . .. ... .10. ,.. -0' A~, _0' .lu. .lul ... 00' Mo. 0.. mum of six hours (habitats combined), and a col- lecting outing was terminated when two hours of sampling yielded no additional species.Collections Fig. 1. Average monthly rainfall (closed symbols) and maximum used for comparisons of relative densities were midpool depth measured each month (open symbols) during the made during either one or two days between the study period at Cano Maraca. 11th and 28th of each month. Additional collec- tions were made on other dates to supplement stan- 1987b), the annual cycle was divided into three dard samples of uncommon species. A complete terms of equal duration: dry season (Jan.-Apr.), listing of collecting dates and sample sizes for pre- wet season (May-Aug.), and transition season served specimens appears in Winemiller (1987a). (Sept.-Dec.). Dry season conditions gave way to Collecting activities should not have affected nat- the wet season very abruptly with the commence- ural fish densities between sampling periods, be- ment of heavy rains, whereas the wet seasonslowly cause(1) only a fraction of the total aquatic habitat graded into the next dry season over a prolonged was sampled on a given date and (2) fishes could period (i.e., transition season). During the transi- move freely between the estero region and the tion season, fish densities increased and biotic in- pennanent channel downstream (except during teractions intensified within gradually diminishing March and April). All collected individuals were aquatic habitats in the floodplain. Estimates of fish preserved in 15% formalin rather than the usual biomassat Cano Maraca
Recommended publications
  • Size-Based Responses of Prey to Piscivore Exclusion in a Species-Rich Neotropical River
    Ecology, 85(5), 2004,pp. 1311-1320 @ 2004 by the Ecological Society of America SIZE-BASED RESPONSES OF PREY TO PISCIVORE EXCLUSION IN A SPECIES-RICH NEOTROPICAL RIVER CRAIG A. LAYMAN! AND KIRK O. WINEMILLER Section of Ecology and Evolutionary Biology, Department of Wildlife and Fisheries Sciences, 210 Nagle Hall, Texas A&M University, College Station, Texas 77843-2258 USA Abstract. Characteristics used to group species, and thus generalize ecological inter': actions, can aid in constructing predictive models in species-rich food webs. We tested whether size could be used to predict a behavioral response of multiple prey species (n > 50) to exclusion of large-bodied fishes, including seven abundant piscivore species, in a lowland Neotropical river. A randomized block design (n = 6) included three experimental treatments constructed on sandbank habitats: large fish exclusion, cage control (barrier with gaps), and natural reference plot (no barrier). Exclosures prevented passage of all large- bodied fishes, but the mesh size allowed passage of prey fishes. After two weeks, exper- imental areas were sampled once during the day and once at night. Total abundance of prey fishes was not significantly different among treatments, and effects on specie~density were variable. Analyses based on fish size class, however, demonstrated significant size- based effects of large-fish exclusion. Abundance of medium fishes (40-110 mm) in exclu. sion treatments increased significantly relative to controls in day (248%) and night (91 %) samples, and this trend was apparent for many species (n > 13). Species density of medium fishes increased significantly in exclusion treatments. There was evidence of an intraspecific, size-dependent response for the three most common species.
    [Show full text]
  • A Review of Planktivorous Fishes: Their Evolution, Feeding Behaviours, Selectivities, and Impacts
    Hydrobiologia 146: 97-167 (1987) 97 0 Dr W. Junk Publishers, Dordrecht - Printed in the Netherlands A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts I Xavier Lazzaro ORSTOM (Institut Français de Recherche Scientifique pour le Développement eri Coopération), 213, rue Lu Fayette, 75480 Paris Cedex IO, France Present address: Laboratorio de Limrzologia, Centro de Recursos Hidricob e Ecologia Aplicada, Departamento de Hidraulica e Sarzeamento, Universidade de São Paulo, AV,DI: Carlos Botelho, 1465, São Carlos, Sï? 13560, Brazil t’ Mail address: CI? 337, São Carlos, SI? 13560, Brazil Keywords: planktivorous fish, feeding behaviours, feeding selectivities, electivity indices, fish-plankton interactions, predator-prey models Mots clés: poissons planctophages, comportements alimentaires, sélectivités alimentaires, indices d’électivité, interactions poissons-pltpcton, modèles prédateurs-proies I Résumé La vision classique des limnologistes fut de considérer les interactions cntre les composants des écosystè- mes lacustres comme un flux d’influence unidirectionnel des sels nutritifs vers le phytoplancton, le zoo- plancton, et finalement les poissons, par l’intermédiaire de processus de contrôle successivement physiqucs, chimiques, puis biologiques (StraSkraba, 1967). L‘effet exercé par les poissons plaiictophages sur les commu- nautés zoo- et phytoplanctoniques ne fut reconnu qu’à partir des travaux de HrbáEek et al. (1961), HrbAEek (1962), Brooks & Dodson (1965), et StraSkraba (1965). Ces auteurs montrèrent (1) que dans les étangs et lacs en présence de poissons planctophages prédateurs visuels. les conimuiiautés‘zooplanctoniques étaient com- posées d’espèces de plus petites tailles que celles présentes dans les milieux dépourvus de planctophages et, (2) que les communautés zooplanctoniques résultantes, composées d’espèces de petites tailles, influençaient les communautés phytoplanctoniques.
    [Show full text]
  • The Role of Piscivores in a Species-Rich Tropical Food
    THE ROLE OF PISCIVORES IN A SPECIES-RICH TROPICAL RIVER A Dissertation by CRAIG ANTHONY LAYMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2004 Major Subject: Wildlife and Fisheries Sciences THE ROLE OF PISCIVORES IN A SPECIES-RICH TROPICAL RIVER A Dissertation by CRAIG ANTHONY LAYMAN Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: _________________________ _________________________ Kirk O. Winemiller Lee Fitzgerald (Chair of Committee) (Member) _________________________ _________________________ Kevin Heinz Daniel L. Roelke (Member) (Member) _________________________ Robert D. Brown (Head of Department) August 2004 Major Subject: Wildlife and Fisheries Sciences iii ABSTRACT The Role of Piscivores in a Species-Rich Tropical River. (August 2004) Craig Anthony Layman, B.S., University of Virginia; M.S., University of Virginia Chair of Advisory Committee: Dr. Kirk O. Winemiller Much of the world’s species diversity is located in tropical and sub-tropical ecosystems, and a better understanding of the ecology of these systems is necessary to stem biodiversity loss and assess community- and ecosystem-level responses to anthropogenic impacts. In this dissertation, I endeavored to broaden our understanding of complex ecosystems through research conducted on the Cinaruco River, a floodplain river in Venezuela, with specific emphasis on how a human-induced perturbation, commercial netting activity, may affect food web structure and function. I employed two approaches in this work: (1) comparative analyses based on descriptive food web characteristics, and (2) experimental manipulations within important food web modules.
    [Show full text]
  • Emeraid Feeding Guidelines
    Mixing Instructions for Various North American *Scoops of Emeraid Mixed Wild Animals *Use either the large end of the scoop with 60 cc of warm water (103-110°F) or the small end of the Adults Juveniles e e e † e e e r r r e r r r o o o r o o o v v v o v v v i i i v i i i n n b i n n b Taxa Natural foods of adults r r c r r m a e is m a e Aves O C H P O C H Blackbirds, Grackles, Cowbirds Seeds, insects 6 0 0 3 1 0 Bluebirds Insects, fruits 0 2 0 0 2 0 Chickadees, Titmouse Insects, seeds 1.5 1.5 0 0 2 0 Doves, Pigeons Seeds 6 0 0 4.5 0.5 0 Ducks–Mallard, Canvasback, Coots, Gadwall Vegetation, seeds, insects, molluscs 6 0 0 6 0 0 Ducks–Goldeneye, Bufflehead, Scoter Insects, crustacea, molluscs 0 2 0 3 0 2 0 Ducks–Scaup, Ruddy Aquatic vegetation, insects, crustacea 4.5 0.5 0 3 3 1 0 Finches, Siskins, Crossbills Seeds 6 0 0 6 0 0 Gamebirds–Grouse, Quail, Pheasant, Turkey Seeds, some insects 6 0 0 4.5 0.5 0 Grebes, Loons Fish, crustacea, molluscs 0 2 0 3 0 2 0 Geese Vegetation 3 0 2 4.5 0 1 TThehe FFirstirst S Elementalemi-Eleme nDiettal DSystemiet Syst eDesignedm Design fored Criticallyfor a Wid eIll VExoticsariety Gulls Fish, crustacea, molluscs 0 2 0 3 0 2 0 Jays, Magpies Seeds, insects 6 0 0 3 1 0 oWillf Cther nextitic severelyally debilitated Ill Exo animaltic beC ana amazon,rnivo a ferretres or, Han eiguana?rbi vExoticor eanimals a nd OmEmeraidnivo Omnivoreres Insects, fruits, seeds 1.5 1.5 0 0 2 0 Will the next severely debilitated animal be an Amazon, a ferret or an iguana? Exotic animal veterinarians are EProteinmera id Omnivore 20% ® Fat 9.5% Nuthatches Insects, seeds 1.5 1.5 0 0 2 0 pisre sdesignedented wit hto d quicklyifficult e mprovideergenci elife-savings every day elemental.
    [Show full text]
  • Isotopic Trophic Guild Structure of a Diverse Subtropical South American fish Community
    Ecology of Freshwater Fish 2013: 22: 66–72 Ó 2012 John Wiley & Sons A/S Printed in Malaysia Á All rights reserved ECOLOGY OF FRESHWATER FISH Isotopic trophic guild structure of a diverse subtropical South American fish community Edward D. Burress1, Alejandro Duarte2, Michael M. Gangloff1, Lynn Siefferman1 1Biology Department, Appalachian State University, Boone, NC USA 2Seccio´n Zoologia Vertebrados, deptartamento de Ecologia y Evolucion, Facultad de Ciencias, Montevideo, Uruguay Accepted for publication July 25, 2012 Abstract – Characterization of food web structure may provide key insights into ecological function, community or population dynamics and evolutionary forces in aquatic ecosystems. We measured stable isotope ratios of 23 fish species from the Rio Cuareim, a fifth-order tributary of the Rio Uruguay basin, a major drainage of subtropical South America. Our goals were to (i) describe the food web structure, (ii) compare trophic segregation at trophic guild and taxonomic scales and (iii) estimate the relative importance of basal resources supporting fish biomass. Although community-level isotopic overlap was high, trophic guilds and taxonomic groups can be clearly differentiated using stable isotope ratios. Omnivore and herbivore guilds display a broader d13C range than insectivore or piscivore guilds. The food chain consists of approximately three trophic levels, and most fishes are supported by algal carbon. Understanding food web structure may be important for future conservation programs in subtropical river systems by identifying top predators, taxa that may occupy unique trophic roles and taxa that directly engage basal resources. Key words: carbon; nitrogen; niche; resource; food web For example, sucker-mouthed catfishes (Loricariidae) Introduction play important functional roles by modifying habitat Aquatic systems are often defined by the fish species (Power 1990) and consuming resources that are often they support.
    [Show full text]
  • Functional Traits Unravel Temporal Changes in Fish Biomass Production
    Functional traits unravel temporal changes in fish biomass production on artificial reefs Pierre Cresson, Laurence Le Direach, Elodie Rouanet, Eric Goberville, Patrick Astruch, Melanie Ourgaud, Mireille Harmelin-Vivien To cite this version: Pierre Cresson, Laurence Le Direach, Elodie Rouanet, Eric Goberville, Patrick Astruch, et al.. Func- tional traits unravel temporal changes in fish biomass production on artificial reefs. Marine Environ- mental Research, Elsevier, 2019, 145, pp.137-146. 10.1016/j.marenvres.2019.02.018. hal-02465341 HAL Id: hal-02465341 https://hal-amu.archives-ouvertes.fr/hal-02465341 Submitted on 9 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Functional traits unravel temporal changes in fish biomass production on artificial reefs 2 Pierre Cresson1*, Laurence Le Direach2, Elodie Rouanet2, Eric Goberville3, Patrick Astruch2, Mélanie 3 Ourgaud4, Mireille Harmelin-Vivien2,4 4 1-Ifremer, Laboratoire Ressources Halieutiques Manche Mer du Nord, F-62200 Boulogne sur Mer. 5 2- GIS Posidonie, OSU Institut Pythéas, Aix-Marseille
    [Show full text]
  • Piscivore Effect on Size Distribution and Planktivorous Behavior of Slimy Sculpin in Arctic Alaskan Lakes
    JONES, CHRISTOPHER MICHAEL, M. S. Piscivore Effect On Size Distribution and Planktivorous Behavior of Slimy Sculpin in Arctic Alaskan Lakes. (2010) Directed by Dr. Anne E. Hershey. pp. 41. Slimy sculpin (Cottus cognatus) are known as a bottom-dwelling fish that feed primarily on benthic invertebrates. However, in arctic lakes, sculpin may also be somewhat planktivorous. Previous studies have shown that the habitat distribution of sculpin is modified by lake trout (Salvelinus namaycush), a piscivore. Here, I hypothesized that lake trout and another piscivore, arctic char (Salvelinus alpinus), alter sculpin behavior to restrict planktivory and reduce growth. Sculpin were sampled from three different lake types: lakes with lake trout, lakes with arctic char and lakes with no piscivore. Results showed that sculpin were significantly larger in lakes lacking piscivores, consistent with my hypothesis. Piscivores did not affect prey mass or prey types based on sculpin stomach content analyses. However, in all lakes, zooplankton were a substantial prey item of sculpin. Stable isotope analyses showed enrichment in 13C and depletion in 15N in sculpin from arctic char lakes in comparison to both of the other lake types. These results are indicative that the effects of piscivores on sculpin populations are generally indirect, altering body size but not habitat distribution or prey selection. However, differences in stable isotope ratios suggest a trophic segregation may be present in sculpin in arctic char lakes compared to sculpin only lakes. PISCIVORE
    [Show full text]
  • Effects of Piscivore-Mediated Habitat Use on Growth, Diet and Zooplankton Consumption of Roach: an Individual-Based Modelling Approach
    Freshwater Biology (2002) 47, 2345–2358 Effects of piscivore-mediated habitat use on growth, diet and zooplankton consumption of roach: an individual-based modelling approach FRANZ HO¨ LKER,* SUSANNE S. HAERTEL,*, † SILKE STEINER* and THOMAS MEHNER* *Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany †University of Konstanz, Limnological Institute, Konstanz, Germany SUMMARY 1. We used an individual based modelling approach for roach to (i) simulate observed diel habitat shifts between the pelagic and littoral zone of a mesotrophic lake; (ii) analyse the relevance of these habitat shifts for the diet, activity costs and growth of roach; and (iii) quantify the effects of a hypothetical piscivore-mediated (presence of pikeperch) confinement of roach to the littoral zone on roach diet, activity costs and growth. 2. The model suggests that in the presence of pikeperch, roach shifts from zooplankton as the primary diet to increased consumption of less nutritious food items such as macrophytes, filamentous algae and detritus. 3. The growth of roach between May and October was predicted to be significantly higher in the absence of pikeperch, although the net activity costs were about 60% higher compared with the scenario where pikeperch were present. 4. These modelling results provide quantitative information for interpreting diel hori- zontal migrations of roach as a result from a trade-off between food availability and predation risk in different habitats of a lake. 5. Altering the habitat selection mode of planktivorous roach by piscivore stocking has the potential to reduce zooplankton consumption by fish substantially, and could therefore be used as a biomanipulation technique complementing the reduction of zooplanktivorous fish.
    [Show full text]
  • Marine Ecology Progress Series 418:1
    Vol. 418: 1–15, 2010 MARINE ECOLOGY PROGRESS SERIES Published November 18 doi: 10.3354/meps08814 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Characterization of forage fish and invertebrates in the Northwestern Hawaiian Islands using fatty acid signatures: species and ecological groups Jacinthe Piché1,*, Sara J. Iverson1, Frank A. Parrish2, Robert Dollar2 1Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada 2Pacific Island Fisheries Science Center, NOAA, 2570 Dole Street, Honolulu, Hawaii 96822, USA ABSTRACT: The fat content and fatty acid (FA) composition of 100 species of fishes and inverte- brates (n = 2190) that are potential key forage spe- cies of the critically endangered monk seal in the Northwestern Hawaiian Islands were determined. For analysis, these species were classified into 47 groups based on a range of shared factors such as taxonomy, diet, ecological subsystem, habitat, and commercial interest. Hierarchical cluster and dis- criminant analyses of the 47 groups using 15 major FAs revealed that groups of species with similar FA composition associated into 5 functional groups: herbivores, planktivores, carnivores (which also in- cluded piscivores and omnivores), crustaceans, and cephalopods. Discriminant analyses performed on the 4 main functional groups separately revealed Reef fish on a bank summit of the Northwestern Hawaiian that herbivores, planktivores, and crustaceans could Islands be readily differentiated on the basis of their FA Image: Raymond Boland signatures, with 97.7, 87.2, and 81.5% of individuals correctly classified, respectively. Classification suc- cess was lower within the carnivores (75.5%), which indicates that some groups of carnivorous species KEY WORDS: Fatty acids · Fishes · Invertebrates · Diet likely exhibit highly similar diets and/or ecology, guild · Trophic relationships · Ecological subsystems · rendering their FA signatures harder to differenti- Hawaiian archipelago · Northwestern Hawaiian Islands ate.
    [Show full text]
  • 2 Estienendiss
    LIVING WITH GULLS Trading off food and predation in the Sandwich Tern Sterna sandvicensis Lay-out and figures: Dick Visser Cover: Martin Jansen Photographs: Jan van de Kam Printed by: Van Denderen b.v., Groningen ISBN: 90-367-2481-3 RIJKSUNIVERSITEIT GRONINGEN LIVING WITH GULLS Trading off food and predation in the Sandwich Tern Sterna sandvicensis PROEFSCHRIFT ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 20 januari 2006 om 14.45 uur door Eric Willem Maria Stienen geboren op 21 januari 1967 te Melick en Herkenbosch Promotor: Prof. Dr. R. H. Drent Contents Voorwoord 6 Chapter 1 General Introduction 9 Chapter 2 Reflections of a specialist: patterns in food provisioning and 15 foraging conditions in Sandwich Terns Sterna sandvicensis Chapter 3 Living with Gulls: The consequences for Sandwich Terns of 39 breeding in association with Black-headed Gulls Chapter 4 Foraging decisions of Sandwich Terns in the presence of 61 kleptoparasitising gulls Chapter 5 Keep the chicks moving: how Sandwich Terns can minimize kleptoparasitism 81 by Black-headed Gulls Chapter 6 Variation in growth in Sandwich Tern chicks Sterna sandvicensis 99 and the consequences for pre- and postfledging mortality Chapter 7 Consequences of brood size and hatching sequence for prefledging mortality 117 in Sandwich Terns: why lay two eggs? Chapter 8 Feeding ecology of wintering terns in Guinea-Bissau 135 Chapter 9 Echoes from
    [Show full text]
  • 12 Feeding Ecology of Piscivorous Fishes
    12 Feeding Ecology of Piscivorous Fishes FRANCIS JUANES, JEFFREY A . BUCKEL AND FREDERICK S . SCHARF 12 .1 INTRODUCTION group, however, are difficult to categorize and describe, which perhaps explains why no reviews Fish exhibit tremendous diversity in feeding of their ecology exist . habits and the morphologies associated with feeding. A recent book (Gerking 1994) and various other overviews of fish feeding exist (Wootton 12 .2 ADAPTATIONS FOR 1990; Hobson 1991 ; Hart 1993) . However, most of PISCIVORY these tend to be general reviews of theory or focus 12.2.1 What is a piscivore? on smaller non-piscivorous fishes . Our intent here is to review the feeding ecology of piscivorous fish, We define piscivorous fish as carnivorous fish that a subject which to our knowledge has never previ- consume primarily fish prey. Most fish species are ously been reviewed . We focus on teleost fish, and opportunistic and flexible in their feeding habits on species and sizes that consume juvenile and (Dill 1983) and no species consumes only fish prey; adult prey and do not consider those that feed pri- however many do ingest fish as the main prey marily on larvae or fish eggs . item. Fish that eat other fish are second in propor- tion to those feeding on benthic invertebrates and are present in a variety of freshwater, estuarine 12.1.1 Whypiscivorous fish? and marine systems . They are equally common in Piscivorous fish are broadly distributed phyloge- tropical and temperate ecosystems . Keast (1985) netically and geographically, occur in most habi- examined the piscivore feeding guild of small lakes tats and generally occupy the top of most aquatic and streams and categorized piscivorous fish into trophic webs.
    [Show full text]
  • The Scope of Traditional and Geometric Morphometrics for Inferences of Diet in Carnivorous Fossil Mammals Sergio Tarquini, M
    The Scope of Traditional and Geometric Morphometrics for Inferences of Diet in Carnivorous Fossil Mammals Sergio Tarquini, M. Amelia Chemisquy, S. Ladevèze, Francisco Prevosti To cite this version: Sergio Tarquini, M. Amelia Chemisquy, S. Ladevèze, Francisco Prevosti. The Scope of Traditional and Geometric Morphometrics for Inferences of Diet in Carnivorous Fossil Mammals. AMEGHINIANA, Asociacion Paleontologica Argentina, 2019, 56 (4), pp.307-318. 10.5710/AMGH.24.07.2019.3255. hal-03099652 HAL Id: hal-03099652 https://hal.archives-ouvertes.fr/hal-03099652 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Submitted: March 25th, 2019 – Accepted: July 24th, 2019 – Published online: July 27th, 2019 To link and cite this article: doi: 10.5710/AMGH.24.07.2019.3255 1 THE SCOPE OF TRADITIONAL AND GEOMETRIC MORPHOMETRICS 2 FOR INFERENCES OF DIET IN CARNIVOROUS FOSSIL MAMMALS 3 SERGIO D. TARQUINI 1*, M. AMELIA CHEMISQUY 1,2, SANDRINE LADEVÈZE 4 3, AND FRANCISCO J. PREVOSTI 1,2 5 1- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La 6 Rioja (CRILAR - Provincia de La Rioja, UNLaR, SEGEMAR, UNCa, CONICET). 7 Entre Ríos y Mendoza s/n (5301), Anillaco, Argentina.
    [Show full text]