The Nantucket Pine Tip Moth: Old Problems, New Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biodiversity Climate Change Impacts Report Card Technical Paper 12. the Impact of Climate Change on Biological Phenology In
Sparks Pheno logy Biodiversity Report Card paper 12 2015 Biodiversity Climate Change impacts report card technical paper 12. The impact of climate change on biological phenology in the UK Tim Sparks1 & Humphrey Crick2 1 Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, CV1 5FB 2 Natural England, Eastbrook, Shaftesbury Road, Cambridge, CB2 8DR Email: [email protected]; [email protected] 1 Sparks Pheno logy Biodiversity Report Card paper 12 2015 Executive summary Phenology can be described as the study of the timing of recurring natural events. The UK has a long history of phenological recording, particularly of first and last dates, but systematic national recording schemes are able to provide information on the distributions of events. The majority of data concern spring phenology, autumn phenology is relatively under-recorded. The UK is not usually water-limited in spring and therefore the major driver of the timing of life cycles (phenology) in the UK is temperature [H]. Phenological responses to temperature vary between species [H] but climate change remains the major driver of changed phenology [M]. For some species, other factors may also be important, such as soil biota, nutrients and daylength [M]. Wherever data is collected the majority of evidence suggests that spring events have advanced [H]. Thus, data show advances in the timing of bird spring migration [H], short distance migrants responding more than long-distance migrants [H], of egg laying in birds [H], in the flowering and leafing of plants[H] (although annual species may be more responsive than perennial species [L]), in the emergence dates of various invertebrates (butterflies [H], moths [M], aphids [H], dragonflies [M], hoverflies [L], carabid beetles [M]), in the migration [M] and breeding [M] of amphibians, in the fruiting of spring fungi [M], in freshwater fish migration [L] and spawning [L], in freshwater plankton [M], in the breeding activity among ruminant mammals [L] and the questing behaviour of ticks [L]. -
Panolis Flammea (Denis & Schiffermüller)
Pine Beauty Screening Aid Panolis flammea (Denis & Schiffermüller) Todd M. Gilligan1 and Steven C. Passoa2 1) Identification Technology Program (ITP) / Colorado State University, USDA-APHIS-PPQ-Science & Technology (S&T), 2301 Research Boulevard, Suite 108, Fort Collins, Colorado 80526 U.S.A. (Email: [email protected]) 2) USDA-APHIS-PPQ, The Ohio State University and USDA Forest Service Northern Research Station, 1315 Kinnear Road, Columbus, Ohio 43212 U.S.A. (Email: [email protected]) This CAPS (Cooperative Agricultural Pest Survey) screening aid produced for and distributed by: Version 2.0 USDA-APHIS-PPQ National Identification Services (NIS) 30 Jun 2014 This and other identification resources are available at: http://caps.ceris.purdue.edu/taxonomic_services The pine beauty, Panolis flammea (Denis & Schiffermüller), is a serious pest of Pinaceae in Europe. Larvae have been recorded on Douglas-fir, fir, juniper, larch, pine (lodgepole pine, Scots pine), and spruce. Early instar larvae feed inside the needles of new growth and later instars feed on older foliage. Outbreaks of P. flammea in pine plantations in the United Kingdom and Continental Europe have caused damage to thousands of acres and resulted in significant tree mortality. In the UK, adults are present from March through May. Twenty to eighty year old pine monocultures are especially at risk, and lodgepole pine, common in the western U.S., has been attacked when planted in Scotland (see Bradshaw et al. 1983; Sukovata et al. 2003). Panolis flammea is a member of the Noctuidae (tribe Hadenini), the family of moths (Lepidoptera) with the largest number of total species and also the most pest species. -
Southern Forest Experiment Station Notes on the Life
w ~ r--.~·-OCCASIONAL PAPER NO. 45 APRIL 2, 1935 ~ (Reissue, Feb. 19, 1941) ~ I SOUTHERN FOREST EXPERIMENT STATION ~ ~ E. L. Demmon, Director l\c,, New Orleans, La. NOTES ON THE LIFE CYCLE OF THE NANTUCKET TIP MO'l'H RHYAOIONIA FRUSTRANA COMST. IN SOUTHEASTERN LOUISlANA By Philip C. Wakeley, Associate Silviculturist Southern Forest Experiment Station ...• I The Occasional Papers of the Southern Forest Experiment Station present information on current southern forestry prob lems under investigation at the station. In some cases, these •contributions were first presented as addresses to a limited i group of people, and as "occasional papers 11 they can reach a " much wider audience, In other cases, they are summaries of investigations prepared especially t o give a report of the progress made in a particular field of research. In any case, the statements herein contained should be considered subject to correction or modification as f urther data are obtained. Note: Assistance in the duplication of this paper was furnished by the personnel of Work Projects Administration official project 165-2-64-102. NOTES ON THE LIFE CYCLE OF THE NANTUCKET TIP MOTH RHYACIONIA FRUSTRANA COMST. IN SOUTHEASTERN LOUISIANAY By Philip C. Wakeley, Associate Silviculturist Southern Forest Experiment Station The Nantucket tip moth (RhYacionia frustrana Comst.) is a small tor tricid moth occurring generally throughout the pine forests of North America. The larvae are responsible for an immense amount of dam~ge to small pines, both in natural reproduction and in planted stands OJ .9 In 1915, W.R. Mattoon, of the United States Forest Service, described the conspicuous damage of the Nantucket tip moth on shortleaf pine (Pinus e'china.ta) in the South (2), but somewhat underrated the potentialities of the insect for mischief. -
Pheromone-Based Disruption of Eucosma Sonomana and Rhyacionia Zozana (Lepidoptera: Tortricidae) Using Aerially Applied Microencapsulated Pheromone1
361 Pheromone-based disruption of Eucosma sonomana and Rhyacionia zozana (Lepidoptera: Tortricidae) using aerially applied microencapsulated pheromone1 Nancy E. Gillette, John D. Stein, Donald R. Owen, Jeffrey N. Webster, and Sylvia R. Mori Abstract: Two aerial applications of microencapsulated pheromone were conducted on five 20.2 ha plots to disrupt western pine shoot borer (Eucosma sonomana Kearfott) and ponderosa pine tip moth (Rhyacionia zozana (Kearfott); Lepidoptera: Tortricidae) orientation to pheromones and oviposition in ponderosa pine plantations in 2002 and 2004. The first application was made at 29.6 g active ingredient (AI)/ha, and the second at 59.3 g AI/ha. Baited sentinel traps were used to assess disruption of orientation by both moth species toward pheromones, and E. sonomana infes- tation levels were tallied from 2001 to 2004. Treatments disrupted orientation by both species for several weeks, with the first lasting 35 days and the second for 75 days. Both applications reduced infestation by E. sonomana,but the lower application rate provided greater absolute reduction, perhaps because prior infestation levels were higher in 2002 than in 2004. Infestations in treated plots were reduced by two-thirds in both years, suggesting that while increas- ing the application rate may prolong disruption, it may not provide greater proportional efficacy in terms of tree pro- tection. The incidence of infestations even in plots with complete disruption suggests that treatments missed some early emerging females or that mated females immigrated into treated plots; thus operational testing should be timed earlier in the season and should comprise much larger plots. In both years, moths emerged earlier than reported pre- viously, indicating that disruption programs should account for warmer climates in timing of applications. -
Alabama Forestry Invitational State Manual & Study Guide
Alabama Forestry Invitational State Manual & Study Guide The Alabama Cooperative Extension System (Alabama A&M University and Auburn University) is an equal opportunity educator and employer. Everyone is welcome! Please let us know if you have accessibility needs. © 2020 by the Alabama Cooperative Extension System. All rights reserved. www.aces.edu 4HYD-2426 Alabama Cooperative Extension System Mission Statement The Alabama Cooperative Extension System, the primary outreach organization for the land grant mission of Alabama A&M University and Auburn University, delivers research-based educational programs that enable people to improve their quality of life and economic well-being. ALABAMA 4-H VISION Alabama 4-H is an innovative, responsive leader in developing youth to be productive citizens and leaders in a complex and dynamic society. Our vision is supported through the collaborative, committed efforts of Extension professionals, youth, and volunteers. ALABAMA 4-H MISSION 4-H is the youth development component of the Alabama Cooperative Extension System. 4-H helps young people from rural and urban areas explore their interests and expand their awareness of our world while providing opportunities to develop a greater sense of who they are and who they can become–as contributing citizens of our communities, our state, our nation, and our world. This mission is achieved through research-based educational programs of Alabama A&M and Auburn Universities and an ongoing tradition of applied, hands-on/minds-on experiences, which develop the heads, hearts, hands, and health of Alabama youth. 4-H is a community of young people across Alabama who are learning leadership, citizenship, and life skills. -
Field Identification Guide Pine Processionary Moth
Field Identification Guide Pine processionary moth Photograph: Mat Holloway, Observatree volunteer Observatree Holloway, Mat Photograph: Funded by the EU’s LIFE programme Pine processionary moth The caterpillars (larvae) of the pine processionary moth (PPM) (Thaumetopoea pityocampa) can threaten the health of pine trees (Pinus species) by feeding on their needles. Large populations cause extensive defoliation of pine trees, leaving them vulnerable to attack by other pests and diseases, and less able to withstand adverse environmental events such as floods and droughts. Timber production and tree growth can be reduced as a result of attack. The caterpillars are also a significant public and animal health risk, as they bear toxic hairs which can cause itching skin rashes, eye and throat irritation and breathing problems. Hence it is important not to approach or touch the caterpillars, or their nests. Species affected The main hosts for PPM are pine trees with our native Scots pine (Pinus sylvestris) and the widely planted Corsican pine (P. nigra ssp. laricio) being at the greatest risk from this pest in the UK. Other species that are susceptible include the Aleppo pine (P. halepensis), Austrian pine (P. nigra), Canary Island pine (P. canariensis), lodgepole pine (P. contorta), maritime pine (P. pinaster), Monterey pine (P. radiata) and stone pine (P. pinea). The Atlas cedar (Cedrus atlantica) and European larch (Larix decidua) are also occasionally attacked. Signs and The main indicator of PPM attack is the presence of nests symptoms that are constructed by the caterpillars amongst the branches and foliage of pine trees. The caterpillars start to build the nests shortly after hatching. -
Nantucket Pine Tip Moth, Rhyacionia Frustrana, Lures and Traps: What Is the Optimum Combination?
NANTUCKET PINE TIP MOTH, RHYACIONIA FRUSTRANA, LURES AND TRAPS: WHAT IS THE OPTIMUM COMBINATION? Gary L. DeBarr, J. Wayne Brewer, R. Scott Cameron and C. Wayne Berisford' Abstract--Pheromone traps are used to monitor flight activity of male Nantucket pine tip moths, Rhyacionia frustrana (Comstock), to initialize spray timing models, determine activity periods, or detect population trends. However, a standard- ized trapping procedure has not been developed. The relative efficacies of six types of lures and eight commercial phero- mone traps were compared in field tests in Alabama, Georgia, South Carolina, and Virginia. Additional factors, including trap color, lure longevity and loading rates and ratios were also tested. These tests demonstrate that lures and1 or traps have a pronounced effect on male moth catches. The Pherocon 1Cwing trap was the most effective. White traps were slightly better than colored traps. Pherocon 1C@wing traps baited with commercial Scent@, EcogenQor Tr6ckQ lures caught the greatest numbers of moths. INTRODUCTION also lower during later tip moth generations even though populations are high (Asaro and Berisford 2001 a). Female NPTM Sex Pheromones and Male Response The Pheromones Larvae of the Nantucket pine tip moth (NPTM), Rhyacionia NPTM females produce a two-component sex pheromone frustrana (Comstock), bore into and kill the shoots of loblolly (Berisford and Brady 1973) and their pheromone glands pine, Pinus taeda L.(Yates 1960). NPTM mate shortly after contain only about 20 nanograms (ng) of attractive they emerge from infested shoots. Female moths produce components. Hill and others (1981) identified a straight- small quantities of sex pheromones that attract conspecific chain 12 carbon monoene acetate, (E)- 9-dodecen-I-yl males for mating (Manley and Farrier 1969). -
The Parasites of the V Nantucket Pine Tip Moth
I I '/' ,. l TECHNICAL BULLETIN 1017 ;\ ~· ., f ,,.-;...__.,I • I V I J r·1,- •..-! . /1 I • • .f '' t : ..... I THE PARASITES OF THE V ;'.,.~ /~ ', ' ( NANTUCKET PINE TIP MOTH J • IN SOUTH CAROLINA ,//1 f~ ) ' R. D. EIKENBARY and RICHARD C. FOX SOUTH CAROLINA AGRICULTURAL EXPERIMENT STATION ' CLEMSON UNIVERSITY CLEMSON, SOUTH CAROLINA W. H. WILEY 0, B. GARRISON Dean of Agriculture and Director of Agric ultural Experiment Station Biologi ca l Sciences and Agricultural Research TECHNICAL BULLETIN 1017 JULY 1965 THE PARASITES OF THE NANTUCKET PINE TIP MOTH IN SOUTH CAROLINA R. D. EIKENBARY and RICHARD C. FOX SOUTH CAROLINA AGRICULTURAL EXPERIMENT STATION CLEMSON UNIVERSITY CLEMSON, SOUTH CAROLINA W. H. WILEY 0. B. GARRISON Dean of Agriculture and Director of Agricultural Experiment Station Biological Sciences and Agricultural Research SUMMARY A statewide survey of the parasites of the Nantucket pine tip moth, Rhyacionia frustrana ( Comstock), was made by collecting infested pine tips from 23 locations in South Carolina over a 2-year period. Parasites were allowed to emerge in specially designed cages, were identified, and recorded. A total of 37 species of para sites was recovered, all hymenopterous except one dipterous species. Of these, the iclmeumonid, Campoplex frustranac Cushman, was the most abundant with the tachinid, Lixophaga mcdiocris Aldrich, following closely in numbers. Parasitism by locations was shown and comparative parasitism by the two main parasites was listed. It was shown that Campoplex frustrmwc was the most abundant parasite in the Piedmont region and that Lixophaga mcdiocris was the most prevalent in the Coastal Plain region. No definite pattern of dominance could be shown in the Sandhills. -
Genetic Diversity in Longleaf Pine (Pinus Palustris): Influence of Historical and Prehistorical Events
1135 Genetic diversity in longleaf pine (Pinus palustris): influence of historical and prehistorical events R.C. Schmidtling and V. Hipkins Abstract: Genetic diversity of allozymes at 24 loci was studied in 23 populations of longleaf pine (Pinus palustris Mill.), including three seed orchard populations and an old-growth stand. Overall, the mean number of alleles per polymorphic locus was 2.9, the percentage of polymorphic loci was 92%, and the mean expected heterozygosity was 0.105. These values are comparable with diversity measures found in a similar loblolly pine (Pinus taeda L.) study. Diversity measures of the seed orchard sources and the old-growth stand were similar to those in the other natural seed sources. F statistics indicate very little inbreeding overall (FIS = –0.002) and low differentiation among populations (FST = 0.041). All measures of genetic diversity were significantly related to longitude; western sources tended to have more allozyme diversity. Since growth or survival are not related to longitude, and no important climatic variables are related to longitude within the natural range of longleaf, it is proposed that the east–west variation in longleaf pine is a result of migration from a single refugium in the west (south Texas or northeastern Mexico) after the Pleistocene. Résumé : Les auteurs ont étudié la diversité génétique d’alloenzymes observée pour 24 loci chez 23 populations de pin à longues feuilles (Pinus palustris Mill.), dont trois populations de verger à graines et une vieille forêt. Pour l’ensemble de l’étude, le nombre moyen d’allèles par locus polymorphe, le pourcentage de loci polymorphes et l’hétérozygotie moyenne espérée affichaient des valeurs respectives de 2,9, 92% et 0,105. -
C:\Myfiles\Dept Newsletter\Nov-2003.Wpd
November 2003 Faculty News Room Version of Musical Chairs Dr. Heather McAuslane reports that we Dr. Virendra Gupta, now retired, is moving have 29 applicants for the Insect Toxicology out of his labs and office (3209), but has position. The search committee hopes to temporary use of 3006 for his office. At the report by late December on who will be same time, Dr. Faith Oi will move from invited for interviews. 3206 to Gupta’s old office in 3209. Dr. Tom Sanford (retired) used to be in 3006, but he Post-Doc News now uses 3207 when he is not starring in a local drama production. The new insect Dr. Anand B. Persad, a postdoctoral physiology position, which is currently being scientist in Dr. Marjorie Hoy's laboratory advertised, is assigned 3206 as office space. since August 2001, left for a permanent position with Davey Tree Company in Kent, Ph.D. student Rebecca Baldwin, who Ohio. Dr. Persad has been ordering long teaches ENY 3005 Principles of Entomology, underwear for his sojourn in the frozen north. is moving from 3215 to 3212 and will share After growing up in Trinidad and spending that office with Ph.D. student Pete Coon, over two years in Florida, he and his wife who teaches ENY 3007C Life Science. must now adjust to a temperate climate. The non-tenured toxicologist position, for Dr. Yoshi Hashimoto joined Dr. Pauline which the committee is now reviewing Lawrence’s lab to work on characterization applications, is currently assigned office and expression of genes from the space in 3213. -
Catalogue of Pheromones
Table of Contents List of pheromones 3–4 Calendar 5 Products 6 Pests 7–41 Nun moth 7 Gypsy moth 8 Larger pine shoot beetle 10 May bug 11 Striped ambrosia beetle 12 Fir engraver beetle 14 Small spruce bark beetle 15 European spruce bark beetle 17 Larch bark beetle 18 Sharp toothed bark beetle 20 Six-toothed bark beetle 21 Northern bark beetle 23 Western larch case-bearer 24 Codling moth 25 Winter moth 27 Six-toothed spruce bark beetle 29 Western corn rootworm 30 Pine beauty 32 Large pine weevil and spruce weevil 33 Larch tortrix 35 Bud moth 36 Oak pinhole borer 37 Rose tortrix 38 Summer fruit tortrix 39 Pine shoot moth 40 Green oak tortrix 41 Acknowledgements 43 Contact 44 2 Product Species Trap type Trap placement Periods of trap placement Pine and spruce stands over 20 years old, Until mid-July LYMODOR Nun moth IBL-1 in the same places every year LYMODOR Gypsy moth IBL-1 Deciduous stands and orchards Until the end of June Pine stands and stands End of February TOMODOR Larger pine shoot beetle IBL-3 with a large share of pine Stands with a large share of Mid-April MELOLODOR May bug IBL-5 deciduous trees, especially oaks Stands, piles of debarked wood End of March TRYPODOR Striped ambrosia beetle IBL-2, IBL-3 trunks, wood material depots Fir stands and stands with Turn of April and May CURODOR Fir engraver beetle IBL-2, IBL-3 a large share of fir Turn of July and August AMITODOR Small spruce bark beetle IBL-2, IBL-3 Spruce stands End of April and the second half of June Spruce stands and stands End of April and the second half of June -
Responses of Plants and Arthropods to Burning and Disking of Riparian Habitats
Research Article Responses of Plants and Arthropods to Burning and Disking of Riparian Habitats THOMAS J. BENSON,1,2 Department of Natural Resource Ecology and Management, Iowa State University, 124 Science Hall II, Ames, IA 50011, USA JAMES J. DINSMORE, Department of Natural Resource Ecology and Management, Iowa State University, 124 Science Hall II, Ames, IA 50011, USA WILLIAM L. HOHMAN,3 United States Department of Agriculture/National Resources Conservation Service, Wildlife Habitat Management Institute, Department of Natural Resource Ecology and Management, Iowa State University, 124 Science Hall II, Ames, IA 50011, USA ABSTRACT Alteration of Iowa, USA, landscapes for agricultural production has resulted in a loss of .99% of the original prairie and .95% of native wetlands. This conversion has included riparian areas, which, as interfaces between terrestrial and aquatic ecosystems, are important to many wildlife species. Farm Bill programs have resulted in the reestablishment of millions of hectares of grasslands and wetlands nationwide, including .100,000 ha in riparian areas of the Midwest. We assessed plant and arthropod responses to burning and disking of riparian grasslands in east-central Iowa in 2001 and 2002. Burning altered the plant community by removing litter and standing dead vegetation and had negative effects on several arthropod taxa, including Hemiptera and Lepidoptera. However, we observed no differences in vegetation or arthropods between burned and unburned fields during the second year postburning (P . 0.05). Disking decreased the cover of grasses, litter, and standing dead vegetation and increased plant species richness and the cover of forbs and bare ground (P , 0.05). Arthropod abundance and dry biomass were greater on disked than undisked portions of fields (P , 0.05).