Drosera Capensis (Cape Sundew) Propagation by Leaf Cutting Video Summary Chlöe Fackler PLNT 310, April 7Th, 2017

Total Page:16

File Type:pdf, Size:1020Kb

Drosera Capensis (Cape Sundew) Propagation by Leaf Cutting Video Summary Chlöe Fackler PLNT 310, April 7Th, 2017 Drosera capensis (Cape Sundew) Propagation by Leaf Cutting Video Summary Chlöe Fackler PLNT 310, April 7th, 2017 Sundew Natural History Sundews (Drosera spp.) are carnivorous plants in the family Droseraceae, which also contains the genus Dionaea (Venus Flytrap) and Aldrovanda (Waterwheel) (Lloyd, 1942). They employ a sweet and sticky nectar, secreted from the tentacles (trichomes) on their leaves, to trap insects (Finnie and van Staden, 1993). They then curl the leaf to completely encapsulate their prey, and digest it using a variety of enzymes. The reason for their carnivorous nature is to supplement their growth in mineral-poor media with nitrogen and other nutrients extracted from their prey. In particular, D. capensis, the Cape Sundew, is a species of subtropical sundew native to the cape of South Africa (Brittnacher, n.d.). It can be propagated by seed, and Cape Sundew (Drosera capensis) Plants in the Raymond Greenhouse by leaf, root, and inflorescence cuttings, as well as in vitro using micropropagation. Growing it is also fairly simple, requiring a moist, salt-free medium of peat/sand and sphagnum, and significant light. Objective To determine the effectiveness of different media and the use of Stimroot No. 1 rooting powder (IBA 0.1 mgL-1) on the growth of Drosera capensis (Cape Sundew) from leaf cuttings Procedure View the corresponding video for step-by-step instructions on how to conduct this experiment, or propagate sundews by leaf cuttings in general. Required Materials • Healthy Drosera capensis specimens • Scissors • Isopropanol (for sterilizing) • Sphagnum • Distilled water • Containers with holes (for growing the cuttings in sphagnum moss) • Containers without holes (for growing the cuttings in distilled water) • Seedling flats • Flat covers -1 • Stimroot No. 1 (IBA 0.1 mgL ) • Labels (for recording significant data about each of the treatments) Results and Discussion Trial A (# of Trial B (# of Average (# of Plantlets) Plantlets) Plantlets) Sphagnum/No IBA 13 6 9.5 (n=10) DH2O/No IBA (n=10) 10 22 16 Sphagnum/IBA (n=10) 5 1 3 DH2O/IBA (n=10) 8 3 5.5 Number of Plantlets per 10 Leaf Cuttings by Treatment and Trial Of the four treatment combinations tested, the pure distilled water proved to be the best in promoting and maintaining plant growth, with an average of 16 plantlets per 10 leaf cuttings without the IBA. This could be due to the fact that the pure distilled water did not harbor pathogens, compared with some of the other treatments. The pure sphagnum moss came in second, with an average of 9.5 plantlets per 10 leaf cuttings without the IBA. While sphagnum has bacteriostatic and fungistatic properties that would aid in hampering pathogenic growth, it would seem that it provided a less suitable environment than the pure distilled water (Brittnacher, n.d.). Both media treated with IBA powder did considerably worse than their pure counterparts, at only 3 plantlets per 10 leaf cuttings in the sphagnum with IBA, and 5.5 plantlets per 10 leaf cuttings in the distilled water with IBA. It is possible, since IBA is an auxin and promotes root, not shoot, growth, that the addition of the hormone did little, if anything at all to help the growth of new plantlets (Finnie and van Staden, 1993). It might even have negatively affected the cutting growth, if it contained any pathogens. In the future, it might be interesting to see if the addition of a different type of plant hormone, such as a cytokinin like benzylaminopurine (BAP) that stimulates shoot growth, might change the outcome of the experiment. Left: Cape Sundew (Drosera capensis) Leaf Cuttings Right: Cape Sundew (Drosera capensis) Leaf Cutting Sprouting Plantlets Acknowledgements Thanks to Danielle Donnelly for supervision and suggestions towards this project, as well as Guy Rimmer and Hawaiian Botanicals for help in acquiring the materials to work with. Additional thanks to Ian Richie for tracking down the containers with which to grow the cuttings in, and Sophie Thibodeau and Christie-Anna Lovat for moral support. Finally, thanks to Raina Fan, who gave solid advice on video editing and production. About the Author Chlöe Fackler is a U2 environmental biology student, specializing in plant biology and minoring in anthropology. She is most interested in topics concerning plant and fungi systematics, as well as ethnobiology, especially of native and naturalized Texas species. References Cited Finnie, J.F. and J. van Staden. 1993. XII Drosera spp. (Sundew): Micropropagation and the In Vitro Production of Plumbagin. In: Medicinal and Aromatic Plants V. Y.P.S Bajaj (ed.). Springer Berlin Heidelberg, Berlin, Germany. 164-177 pp. Lloyd, F.E. 1942. The Carnivorous Plants. Chronica Botanica Co. Waltham, Massachusetts. Brittnacher, J. n.d. ttp://www.carnivorousplants.org/howto/Propagation/DroseraLeafCuttings.php Accessed Jan. 18 2017. .
Recommended publications
  • Carnivorous Plant Responses to Resource Availability
    Carnivorous plant responses to resource availability: environmental interactions, morphology and biochemistry Christopher R. Hatcher A doctoral thesis submitted in partial fulfilment of requirements for the award of Doctor of Philosophy of Loughborough University November 2019 © by Christopher R. Hatcher (2019) Abstract Understanding how organisms respond to resources available in the environment is a fundamental goal of ecology. Resource availability controls ecological processes at all levels of organisation, from molecular characteristics of individuals to community and biosphere. Climate change and other anthropogenically driven factors are altering environmental resource availability, and likely affects ecology at all levels of organisation. It is critical, therefore, to understand the ecological impact of environmental variation at a range of spatial and temporal scales. Consequently, I bring physiological, ecological, biochemical and evolutionary research together to determine how plants respond to resource availability. In this thesis I have measured the effects of resource availability on phenotypic plasticity, intraspecific trait variation and metabolic responses of carnivorous sundew plants. Carnivorous plants are interesting model systems for a range of evolutionary and ecological questions because of their specific adaptations to attaining nutrients. They can, therefore, provide interesting perspectives on existing questions, in this case trait-environment interactions, plant strategies and plant responses to predicted future environmental scenarios. In a manipulative experiment, I measured the phenotypic plasticity of naturally shaded Drosera rotundifolia in response to disturbance mediated changes in light availability over successive growing seasons. Following selective disturbance, D. rotundifolia became more carnivorous by increasing the number of trichomes and trichome density. These plants derived more N from prey and flowered earlier.
    [Show full text]
  • Drosera Intermedia in a Northern Michigan Bog
    Assessment of microhabitat differences between Drosera rotundifolia and Drosera intermedia in a northern Michigan bog Andrew David University of Michigan Biological Station EEB 381, General Ecology August 19, 2010 Professor Cathy Bach Abstract The purpose of this study was to investigate microhabitat differences between two species of sundews, Drosera rotundifolia and Drosera intermedia. I tested several hypotheses: D. rotundifolia density increases with increasing height above a fixed low point, while D. intermedia density decreases with height; D. rotundifolia grows primarily on red Sphagnum moss, while D. intermedia grows primarily on green Sphagnum; the densities of both Drosera species increase with decreasing pH; the density of neither Drosera species is affected by water conductivity or dissolved oxygen content. At Mud Lake Bog in Cheboygan County, Michigan, I recorded the species of Drosera plants, as well as the height of the plants above a fixed low point and the color of Sphagnum moss on which they were growing. I also measured the pH, conductivity, and dissolved oxygen content of the water in which the plants were growing. Densities of both Drosera species decreased with increasing height, though the trend was stronger for D. intermedia. D. rotundifolia grew significantly more on red Sphagnum than did D. intermedia, while D. intermedia grew significantly more on green Sphagnum than did D. rotundifolia. D. rotundifolia density varied significantly with neither pH, conductivity, nor dissolved oxygen. D. intermedia density increased significantly with decreasing pH and increasing conductivity, but not with dissolved oxygen. My results were consistent with past research, and conclusively illustrated the differences in microhabitat preferences between the two Drosera species.
    [Show full text]
  • Ferns Robert H
    Southern Illinois University Carbondale OpenSIUC Illustrated Flora of Illinois Southern Illinois University Press 10-1999 Ferns Robert H. Mohlenbrock Southern Illinois University Carbondale Follow this and additional works at: http://opensiuc.lib.siu.edu/siupress_flora_of_illinois Part of the Botany Commons Recommended Citation Mohlenbrock, Robert H., "Ferns" (1999). Illustrated Flora of Illinois. 3. http://opensiuc.lib.siu.edu/siupress_flora_of_illinois/3 This Book is brought to you for free and open access by the Southern Illinois University Press at OpenSIUC. It has been accepted for inclusion in Illustrated Flora of Illinois by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. THE ILLUSTRATED FLORA OF ILLINOIS ROBERT H. MOHLENBROCK, General Editor THE ILLUSTRATED FLORA OF ILLINOIS s Second Edition Robert H. Mohlenbrock SOUTHERN ILLINOIS UNIVERSITY PRESS Carbondale and Edwardsville COPYRIGHT© 1967 by Southern Illinois University Press SECOND EDITION COPYRIGHT © 1999 by the Board of Trustees, Southern Illinois University All rights reserved Printed in the United States of America 02 01 00 99 4 3 2 1 Library of Congress Cataloging-in-Publication Data Mohlenbrock, Robert H., 1931- Ferns I Robert H. Mohlenbrock. - 2nd ed. p. em.- (The illustrated flora of Illinois) Includes bibliographical references and index. 1. Ferns-Illinois-Identification. 2. Ferns-Illinois-Pictorial works. 3. Ferns-Illinois-Geographical distribution-Maps. 4. Botanical illustration. I. Title. II. Series. QK525.5.I4M6 1999 587'.3'09773-dc21 99-17308 ISBN 0-8093-2255-2 (cloth: alk. paper) CIP The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences-Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984.§ This book is dedicated to Miss E.
    [Show full text]
  • Carnivorous Plant Newsletter V44 N4 December 2015
    Technical Refereed Contribution Photoperiod regulates Cape Sundew (Drosera capensis) gland secretion and leaf development Wang Dong-Hui • College of Life Science • Peking University • Haidian • Beijing 100871 • PRC Wang Dong-Qi • Cui Yi-Wei • Yang Lu • Gu Xiao-Di • Song Wen-Fei • Li Feng • The High School Affiliated to Renmin University of China • Haidian • Beijing 100080 • PRC • lifeng2004@pku. edu.cn Keywords: carnivorous plant, photoperiod, plant development, Drosera capensis. Abstract: Cape Sundew (Drosera capensis), a carnivorous plant that catches flies with sticky mu- cus, has attracted great interest among botanists and horticulture hobbyists since the Darwin era. But little is known about how this carnivorous plant regulates morphogenesis and organ formation to accommodate environmental changes. In this article we present the relationship between gland secretion of Cape Sundew and photoperiod utilizing various physiological and morphological meth- ods. We show that Cape Sundew grows faster and secretes more mucus under long days than under short days. Under long days leaf length and the blade\petiole ratio increases, leading to increased fly catching capacities. More importantly, in the short term, the rhythm of photoperiod causes Cape Sundew to secrete mucus independent of photo intensity. Introduction As one of the most special plant groups, carnivorous plants perform photosynthesis and feed on insects and some large carnivorous plants even prey on birds and small mammals. Darwin believed that a carnivorous plant was one of the most astonishing phenomena in the world (Dar- win 1875; Ellison & Gotelli 2009). Carnivorous plants are represented by more than 600 species belonging to 20 genera (Ellison & Gotelli 2001; McPherson 2010).
    [Show full text]
  • Controlling the Invasive Moss Sphagnum Palustre at Ka'ala
    Pacific Cooperative Studies Unit UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 192 Controlling the invasive moss Sphagnum palustre at Ka‘ala, Island of O‘ahu March 2015 Stephanie Marie Joe 1 1 The Oahu Army Natural Resource Program (OANRP) USAG-HI, Directorate of Public Works Environmental Division IMPC-HI-PWE 947 Wright Ave., Wheeler Army Airfield, Schofield Barracks, HI 96857-5013 [email protected] PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: Pacific Cooperative Studies Unit, Department of Botany, 3190 Maile Way, St. John #408, University of Hawaii, Honolulu, HI 96822. Office: (808) 753-0702. Recommended Citation: Joe, SM. 2015. Controlling the invasive moss Sphagnum palustre at Ka‘ala, Island of O‘ahu. Pacific Cooperative Studies Unit Technical Report 191. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. 18 pages. Key words: Bryocides, Sphagnum palustre, invasive species control Place key words: Pacific islands, O‘ahu, Ka‘ala Natural Area Reserve Editor: David C. Duffy, PCSU Unit Leader (Email: [email protected]) Series Editor: Clifford W. Morden, PCSU Deputy Director (Email: [email protected]) About this technical report series: This technical report series began in 1973 with the formation of the Cooperative National Park Resources Studies Unit at the University of Hawai'i at Mānoa. In 2000, it continued under the Pacific Cooperative Studies Unit (PCSU). The series currently is supported by the PCSU.
    [Show full text]
  • Phylogeny and Biogeography of the Carnivorous Plant Family Droseraceae with Representative Drosera Species From
    F1000Research 2017, 6:1454 Last updated: 10 AUG 2021 RESEARCH ARTICLE Phylogeny and biogeography of the carnivorous plant family Droseraceae with representative Drosera species from Northeast India [version 1; peer review: 1 approved, 1 not approved] Devendra Kumar Biswal 1, Sureni Yanthan2, Ruchishree Konhar 1, Manish Debnath 1, Suman Kumaria 2, Pramod Tandon2,3 1Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, 793022, India 2Department of Botany, North-Eastern Hill University, Shillong, Meghalaya, 793022, India 3Biotech Park, Jankipuram, Uttar Pradesh, 226001, India v1 First published: 14 Aug 2017, 6:1454 Open Peer Review https://doi.org/10.12688/f1000research.12049.1 Latest published: 14 Aug 2017, 6:1454 https://doi.org/10.12688/f1000research.12049.1 Reviewer Status Invited Reviewers Abstract Background: Botanical carnivory is spread across four major 1 2 angiosperm lineages and five orders: Poales, Caryophyllales, Oxalidales, Ericales and Lamiales. The carnivorous plant family version 1 Droseraceae is well known for its wide range of representatives in the 14 Aug 2017 report report temperate zone. Taxonomically, it is regarded as one of the most problematic and unresolved carnivorous plant families. In the present 1. Andreas Fleischmann, Ludwig-Maximilians- study, the phylogenetic position and biogeographic analysis of the genus Drosera is revisited by taking two species from the genus Universität München, Munich, Germany Drosera (D. burmanii and D. Peltata) found in Meghalaya (Northeast 2. Lingaraj Sahoo, Indian Institute of India). Methods: The purposes of this study were to investigate the Technology Guwahati (IIT Guwahati) , monophyly, reconstruct phylogenetic relationships and ancestral area Guwahati, India of the genus Drosera, and to infer its origin and dispersal using molecular markers from the whole ITS (18S, 28S, ITS1, ITS2) region Any reports and responses or comments on the and ribulose bisphosphate carboxylase (rbcL) sequences.
    [Show full text]
  • <I>Sphagnum</I> Peat Mosses
    ORIGINAL ARTICLE doi:10.1111/evo.12547 Evolution of niche preference in Sphagnum peat mosses Matthew G. Johnson,1,2,3 Gustaf Granath,4,5,6 Teemu Tahvanainen, 7 Remy Pouliot,8 Hans K. Stenøien,9 Line Rochefort,8 Hakan˚ Rydin,4 and A. Jonathan Shaw1 1Department of Biology, Duke University, Durham, North Carolina 27708 2Current Address: Chicago Botanic Garden, 1000 Lake Cook Road Glencoe, Illinois 60022 3E-mail: [email protected] 4Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvagen¨ 18D, SE-752 36, Uppsala, Sweden 5School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada 6Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden 7Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland 8Department of Plant Sciences and Northern Research Center (CEN), Laval University Quebec, Canada 9Department of Natural History, Norwegian University of Science and Technology University Museum, Trondheim, Norway Received March 26, 2014 Accepted September 23, 2014 Peat mosses (Sphagnum)areecosystemengineers—speciesinborealpeatlandssimultaneouslycreateandinhabitnarrowhabitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock–hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum.Usingadatasetof39speciesof Sphagnum,withan18-locusDNAalignmentandanecologicaldatasetencompassingthreelargepublishedstudies,wetested
    [Show full text]
  • Ecological and Genetic Status of the Purple Pitcher Plant, <I>Sarracenia
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Spring 2010 Ecological and Genetic Status of the Purple Pitcher Plant, Sarracenia purpurea L., in Maryland and Virginia Philip M. Sheridan Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Botany Commons, Natural Resources and Conservation Commons, and the Plant Biology Commons Recommended Citation Sheridan, Philip M.. "Ecological and Genetic Status of the Purple Pitcher Plant, Sarracenia purpurea L., in Maryland and Virginia" (2010). Doctor of Philosophy (PhD), dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/wmzf-ca05 https://digitalcommons.odu.edu/biology_etds/78 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. ECOLOGICAL AND GENETIC STATUS OF THE PURPLE PITCHER PLANT, SARRACENIA PURPUREA L., IN MARYLAND AND VIRGINIA by Philip M. Sheridan B.S. Biology, May 1994, Virginia Commonwealth University M.S. Biology, August 1996, Virginia Commonwealth University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY ECOLOGICAL SCIENCES OLD DOMINION UNIVERSITY May 2010 Dr. Frame Day (Director Dr. Kneeland Nesius (Member) Dr. LyTEon Musselman (Member) ABSTRACT ECOLOGICAL AND GENETIC STATUS OF THE PURPLE PITCHER PLANT, SARRACENIA PURPUREA L., IN MARYLAND AND VIRGINIA Philip M. Sheridan Old Dominion University, 2010 Director: Dr. Frank Day Sarraceniapurpurea is a rare wetland plant in Virginia and a threatened species in Maryland, with two potential subspecies in the region.
    [Show full text]
  • TC MF Working Document
    Tokai Cecilia Management Framework: 1 INTRODUCTION . .2 1.1 Management ...................................................................... .2 1.2 Alien plant control . .2 1.3 Preparation after harvesting . .3 1.4 Fire management . .3 1.5 Restoration in terrestrial areas .................................................................................................... 5 1.6 Restoration in wetland and riparian areas ........................................................................... .6 1.7 Long-term planning for a restored vegetation network in Tokai . .7 1.8 Replanting . .8 TABLE 1. LIST OF INAPPROPRIATE ALIEN SPECIES AND SUGGESTED METHODS O F CONTROL. .9 TABLE 2. LIST OF LOCAL INDIGENOUS HIGHER PLANT SPECIES FOR TERRESTRIAL (SANDPLAIN & FOOTHILL) AND WETLAND/ RIPARIAN HABITATS IN T HE TOKAI AREA. .1 1 1 Tokai Cecilia Management Framework: 1 Introduction The following guidelines are applicable to restoration and rehabilitation initiatives of the sand-plain Fynbos in the lower Tokai area. The guidelines are based on: 1) Dr. Patricia M. Holmes, 2003. Management and Restoration Plan for an Area of Tokai Plantation East of Orpen Road and between the Two Car Park Areas. 2) Dr. Patricia M. Holmes, 2004. Management Plan for the Extension of the Core Cape Flats Flora Conservation Site in the Lower Tokai Forest. 3) De Villiers et al, 2005. Ecosystem Guidelines for Environmental Assessment in the Western Cape, 4) Forestry Industry Environmental Committee, 2002. Environmental Guidelines for Commercial Forestry Plantations in South Africa. 5) Conservation of Agricultural Resources Act (Act No. 43 of 1983). 6) National Water Act (Act No. 36 of 1998). 1.1 Management It should be appreciated that restoration is a process that does not happen in one step, but rather in several steps of recovery along a course of natural repair, with occasional interventions being required to redirect this trajectory along the desired path.
    [Show full text]
  • Fragrant Annuals Fragrant Annuals
    TheThe AmericanAmerican GARDENERGARDENER® TheThe MagazineMagazine ofof thethe AAmericanmerican HorticulturalHorticultural SocietySociety JanuaryJanuary // FebruaryFebruary 20112011 New Plants for 2011 Unusual Trees with Garden Potential The AHS’s River Farm: A Center of Horticulture Fragrant Annuals Legacies assume many forms hether making estate plans, considering W year-end giving, honoring a loved one or planting a tree, the legacies of tomorrow are created today. Please remember the American Horticultural Society when making your estate and charitable giving plans. Together we can leave a legacy of a greener, healthier, more beautiful America. For more information on including the AHS in your estate planning and charitable giving, or to make a gift to honor or remember a loved one, please contact Courtney Capstack at (703) 768-5700 ext. 127. Making America a Nation of Gardeners, a Land of Gardens contents Volume 90, Number 1 . January / February 2011 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 8 NEWS FROM THE AHS 2011 Seed Exchange catalog online for AHS members, new AHS Travel Study Program destinations, AHS forms partnership with Northeast garden symposium, registration open for 10th annual America in Bloom Contest, 2011 EPCOT International Flower & Garden Festival, Colonial Williamsburg Garden Symposium, TGOA-MGCA garden photography competition opens. 40 GARDEN SOLUTIONS Plant expert Scott Aker offers a holistic approach to solving common problems. 42 HOMEGROWN HARVEST page 28 Easy-to-grow parsley. 44 GARDENER’S NOTEBOOK Enlightened ways to NEW PLANTS FOR 2011 BY JANE BERGER 12 control powdery mildew, Edible, compact, upright, and colorful are the themes of this beating bugs with plant year’s new plant introductions.
    [Show full text]
  • Drosera Capensis
    Drosera capensis COMMON NAME Cape sundew FAMILY Droseraceae AUTHORITY Drosera capensis L. FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Herbs - Dicotyledons other than Composites BRIEF DESCRIPTION Low growing herb with distinctive strap-like leaves with sticky red hairs, each growing from a central axis (like a dandelion), with tall flower stems (up to 30 cm tall) with a number of bright pink flowers arranged at the tip of the flower stalk, the oldest flowers near the base. Drosera capensis. Photographer: Paul Champion DISTRIBUTION Only known from two sites in Waitakere District, Auckland. HABITAT Dune slack wetlands. FEATURES Rosette-forming perennial herb. Leaves bright green, petiolate with a linear ligulate lamina, 8-16 cm x 4-6 mm. Lamina clad in red stalked glandular hairs secreting a sticky mucilage to trap insects and other small invertebrates. Peduncles several per plant, up to 30 cm long, glandular Drosera capensis. Photographer: Kerry Bodmin hairy, inflorescence a cyme of many (6-30) rose-pink regular 5-petalled flowers 12-14 mm across. Fruit a capsule, with each scape capable of producing 1000-2000 seeds. SIMILAR TAXA Superficially similar to the native sundews, with Drosera arcturi (a montane to subalpine bog species) also having strap-like leaves although these are usually reddish rather than green, with wider petioles with sheathing bases. FLOWERING Late spring to summer FLOWER COLOURS Red/Pink, White FRUITING Summer to autumn LIFE CYCLE Deliberate planting, with subsequent seed dispersal by animals or water. YEAR NATURALISED 2001 ORIGIN South Africa REASON FOR INTRODUCTION Ornamental plant CONTROL TECHNIQUES Notify regional council if found. ETYMOLOGY drosera: Dewy ATTRIBUTION Factsheet prepared by Paul Champion and Deborah Hofstra (NIWA).
    [Show full text]
  • Sphagnum Moss As Growing Medium in Phalaenopsis Orchid
    Int.J.Curr.Microbiol.App.Sci (2019) 8(2): 2118-2123 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 02 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.802.245 Sphagnum Moss as Growing Medium in Phalaenopsis Orchid M.M. Kaveriamma1*, P.K. Rajeevan2, D. Girija2 and K. Nandini2 1DST Young Scientist University of Agricultural and Horticultural Sciences College of Forestry, Kodagu, India 2Kerala Agricultural University College of Horticulture, Kerala, India *Corresponding author ABSTRACT Phalaenopsis orchids occupy a top position in the international market as pot plant. Commonly used media for growing Phalaenopsis orchid are coconut husk chips, tree bark, fir bark, cocopeat and sphagnum moss. Growing medium is important as it provides K e yw or ds anchorage, retains moisture, nutrients and aerates the roots. In addition to these functions, a study was carried out to assess the possible growth promoting effects of sphagnum moss Phalaenopsis on orchids when used as growing medium. Eight month old hardened plants of Orchid, Klebsiella Phalaenopsis ‘Magic Kiss’ were used for the trial. They were planted in translucent plastic pneumoniae, Wilt, pots with three different growing media viz., coarse coconut husk chips, cocopeat (fine Moss coconut husk bits) and sphagnum moss in combination with charcoal and tile bits. Plants Article Info grown in sphagnum moss were significantly superior to those grown in coconut husk chips and coconut husk bits as media, both in terms of vegetative and floral attributes. Root cross Accepted: section of sphagnum moss grown plants revealed healthy velamen and their root 15 January 2019 Available Online: parenchyma tissues were rich in chlorophyll.
    [Show full text]