Xanthones of Lichen Source: a 2016 Update
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dissertation Philip Böhler
Three Tales of Death: New Pathways in the Induction, Inhibition and Execution of Apoptosis Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Philip Böhler aus Bonn Düsseldorf, Juni 2019 aus dem Institut für Molekulare Medizin I der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Berichterstatter: 1. Prof. Dr. Sebastian Wesselborg 2. Prof. Dr. Henrike Heise Tag der mündlichen Prüfung: 29. Oktober 2019 “Where the first primal cell was, there was I also. Where man is, there am I. When the last life crawls under freezing stars, there will I be.” — DEATH, in: Mort, by Terry Pratchett “Right away I found out something about biology: it was very easy to find a question that was very interesting, and that nobody knew the answer to.” — Richard Feynman, in: Surely You're Joking, Mr. Feynman! Acknowledgements (Danksagung) Acknowledgements (Danksagung) Viele Menschen haben zum Gelingen meiner Forschungsarbeit und dieser Dissertation beigetragen, und nicht alle können hier namentlich erwähnt werden. Dennoch möchte ich einige besonders hervorheben. An erster Stelle möchte ich Professor Sebastian Wesselborg danken, der diese Dissertation als Erstgutachter betreut hat und der mir die Möglichkeit gab, die dazugehörigen experimentellen Arbeiten am Institut für Molekulare Medizin durchzuführen. Er und Professor Björn Stork, dem ich für die herzliche Aufnahme in seine Arbeitsgruppe danke, legten durch die richtige Mischung aus aktiver Förderung und dem Freiraum zur Umsetzung eigener wissenschaftlicher Ideen die ideale Grundlage für die Forschungsprojekte, aus denen diese Dissertation entstand. Professorin Henrike Heise, die sich freundlicherweise zur Betreuung dieser Dissertation als Zweitgutachterin bereiterklärt hat, gilt ebenfalls mein herzlicher Dank. -
Aportes Al Conocimiento De La Biota Liquénica Del Oasis De Neblina De Alto Patache, Desierto De Atacama1
Revista de Geografía Norte Grande, 68: 49-64 (2017) Artículos Aportes al conocimiento de la biota liquénica del oasis de neblina de Alto Patache, Desierto de Atacama1 Reinaldo Vargas Castillo2, Daniel Stanton3 y Peter R. Nelson4 RESUMEN Los denominados oasis de neblina son áreas en las zonas costeras del Desierto de Ataca- ma donde el ingreso habitual de niebla permite el establecimiento y desarrollo de diver- sas poblaciones de plantas vasculares, generando verdaderos hotspots de diversidad. En estas áreas, la biota liquenológica ha sido poco explorada y representa uno de los ele- mentos perennes más importantes que conforman la comunidad. En un estudio previo de la biota del oasis de neblina de Alto Patache se reportaron siete especies. Con el fin de mejorar este conocimiento, se analizó la riqueza de especies presentes en el oasis si- guiendo dos transectos altitudinales en diferentes orientaciones del farellón. Aquí repor- tamos preliminarmente 77 especies de líquenes para el oasis de neblina de Alto Patache. De estas, 61 especies corresponden a nuevos registros para la región de Tarapacá, en tanto que las especies Amandinea eff lorescens, Diploicia canescens, Myriospora smarag- dula y Rhizocarpon simillimum corresponden a nuevos registros para el país. Asimismo, se destaca a Alto Patache como la única localidad conocida para Santessonia cervicornis, una especie endémica y en Peligro Crítico. Palabras clave: Oasis de neblina, Desierto de Atacama, líquenes. ABSTRACT Fog oases are zones along the Atacama Desert where the regular input of fog favors the development of rich communities of vascular plants, becoming biodiversity hotspots. In these areas, the lichen biota has been poorly explored and represents one of the most conspicuous elements among the perennials organisms that form the community. -
BLS Bulletin 111 Winter 2012.Pdf
1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2012 PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] VICE-PRESIDENT J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: S. -
One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K. -
Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: a Review
REVIEW published: 26 April 2018 doi: 10.3389/fphar.2018.00309 Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review Fazilath Uzma 1†, Chakrabhavi D. Mohan 2†, Abeer Hashem 3, Narasimha M. Konappa 4, Shobith Rangappa 5, Praveen V. Kamath 1, Bhim P. Singh 6, Venkataramana Mudili 7, Vijai K. Gupta 8, Chandra N. Siddaiah 4*, Srinivas Chowdappa 1*, Abdulaziz A. Alqarawi 9 and Elsayed F. Abd_Allah 9 1 Microbial Metabolite Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India, 2 Department of Studies in Molecular Biology, University of Mysore, Mysore, India, 3 Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia, 4 Department of Studies in Biotechnology, University of Mysore, Mysore, India, 5 Adichunchanagiri Institute for Molecular Medicine, BG Nagara, Mandya, India, Edited by: 6 Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University, Aizawl, India, Salvatore Salomone, 7 Microbiology Division, DRDO-BU-Centre for Life sciences, Bharathiar University, Coimbatore, India, 8 Department of Università degli Studi di Catania, Italy Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Reviewed by: Estonia, 9 Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Gustavo Molina, Arabia Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Brazil Cancer is a major cause of death worldwide, with an increasing number of cases being Marian Brestic, reported annually. The elevated rate of mortality necessitates a global challenge to Slovak University of Agriculture, Slovakia explore newer sources of anticancer drugs. Recent advancements in cancer treatment *Correspondence: involve the discovery and development of new and improved chemotherapeutics derived Chandra N. -
New Records of Lichens and Lichenicolous Fungi from Fuerteventura (Canary Islands), with Descriptions of Some New Species
Cryptogamie, Mycologie, 2006, 27 (4): 341-374 © 2006 Adac. Tous droits réservés New records of lichens and lichenicolous fungi from Fuerteventura (Canary Islands), with descriptions of some new species P.P.G.van den BOOM1 & J.ETAYO2 1 Arafura 16, NL-5691JA Son, the Netherlands, email: [email protected] 2 Navarro Villoslada 16, 3° dcha, E-31003, Pamplona, Spain, email: [email protected] Abstract – The flora of lichens and lichenicolous fungi of Fuerteventura (Canary Islands) has been studied. The recent catalogue of the Island was composed of 91 species. In the presented annotated list, 98 are additional records of the island, of which 29 species are new to the Canary Islands and among them Caloplaca fuerteventurae , Lecanactiscanariensis , Lichenostigmacanariense and L. episulphurella are described as new. Macaronesia / new taxa / taxonomy / first records / ecology / chemistry / biodiversity Resumen – Se estudia la flora liquénica y de hongos liquenícolas de la isla de Fuerteventura (Islas Canarias). El catálogo de líquenes y hongos liquenícolas de Fuerteventura se componía hasta el momento de 91 de la isla, mientras que en este trabajo se señalan 98 taxones nuevos para la isla, de los que 29 eran desconocidos en las Canarias. Caloplaca fuerteventurae, Lecanactis canariensis, Lichenostigma canariense y L. episulphurella se describen en este trabajo. INTRODUCTION During a one week trip to the Canary Island Fuerteventura in 2001 by the first author and a one week trip by the second author in 2003, lichens and lichenicolous fungi where collected on all available kind of substrata which was encountered. Most of the collected material has been identified and the results are presented below. -
Molecular Phylogeny and Status of Diploicia and Diplotomma, with Observations on Diploicia Subcanescens and Diplotomma Rivas-Martinezii
Lichenologist 34(6): 509-519 (2002) doi:10.1006/lich.2002.0420, available online at http://www.idealibrary.com on Molecular phylogeny and status of Diploicia and Diplotomma, with observations on Diploicia subcanescens and Diplotomma rivas-martinezii Maria del Carmen MOLINA, Ana CRESPO, Oscar BLANCO, Nestor HLADUN and David L. HAWKSWORTH Abstract: ITS rDNA sequence data shows that Diploicia and Diplotomma species form a mono- phyletic clade distinct from other Buellia species. This indicates that Diplotomma merits acceptance as a genus, and suggests that Diploicia should be treated as a synonym of Diplotomma, the earlier name. The data also shows Diploicia subcanescens, considered the fertile counterpart in a species pair with D. canescens, is nested within D. canescens and should be treated as a synonym despite reported chemical differences. In addition, the molecular data support the distinctness of Diplotomma rivas-martinezii, a species restricted to gypsum rocks in Spain, from the widespread D. venustum, which grows on calcareous rocks. Aposymbiotic cultures suggest that D. rivas-martinezii also differs from D. venustum in its germination and isolation success rates. One new combination is made: Diplotomma pulverulenta (Anzi) D. Hawksw. (syn. Abrothallus pulverulentus Anzi) for the lichenicolous species previously known as Buellia pulverulenta. V 2002 The British Lichen Society. Published by Elsevier Science Ltd. All rights reserved. Key words: Buellia, Lecanorales, lichens, Physciaceae, species pairs, Spain. Introduction Coppins 2002). However, the name has not been universally accepted (e.g. Santesson Since the generic name Diplotomma Flotow 1993; Wirth 1995; Nordin 1996; Vitikainen (Lecanorales, Physciaceae) was resurrected et al. 1997; Diederich & Serusiaux 2000; as distinct from Buellia De Not. -
Xanthone Dimers: a Compound Family Which Is Both Common and Privileged
Electronic Supplementary Material (ESI) for Natural Product Reports. This journal is © The Royal Society of Chemistry 2014 Electronic supplementary information (ESI) for Natural Product Reports SUPPORTING INFORMATION Xanthone Dimers: A Compound Family which is both Common and Privileged. Tim Wezeman,a Stefan Bräsea,b* and Kye-Simeon Mastersc* a Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, Fax: (+49) 721 6084 8581, Email: [email protected] b Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany c School of Chemistry, Physics and Mechanical Engineering (CPME), Faculty of Science and Engineering (SEF), Queensland University of Technology (QUT), GPO Box 2434, Brisbane, Queensland, 4001, Australia E-mail: [email protected] The ‘Supporting Information’ is a supplementary data illustrating the structural features of biaryl linked xanthones, the natural sources from which the di- and trimeric xanthones have been extracted and a summary of all the available biological activities for the discussed xanthones. The ‘Supporting Information’ was composed of three parts: Table S1 Structural Features of Biaryl Linked Xanthones Table S2 Dimeric and Trimeric Xanthones and their natural sources Table S3 Summary of all the available biological activities for the xanthone dimers References Table S1: Structural Features of Biaryl Linked Xanthones Compound Number Linka Methylation -
Studies in Lichen and Lichenicolous Fungi: More Notes on Taxa from North America
MYCOTAXON Volume 108, pp. 491–497 April–June 2009 Studies in lichen and lichenicolous fungi: more notes on taxa from North America James C. Lendemer1*, Jana Kocourková2 & Kerry Knudsen3 *[email protected] 1Cryptogamic Herbarium, Institute of Systematic Botany The New York Botanical Garden, Bronx, NY, 10458–5126, USA 2National Museum, Dept. of Mycology Václavské nám. 68, 115 79 Praha, Czech Republic 3The Herbarium, Dept. of Botany and Plant Sciences University of California, Riverside, CA, 92521–0124, USA Abstract — The following taxa are reported for the first time from North America: Arthonia diploiciae, Opegrapha dolomitica, Reconditella physconiarum, Sarcogyne sphaerospora, and Thalloloma anguiniforme. 1. Arthonia diploiciae Calat. & Diederich, Mycotaxon 55: 366. 1995. Type: Spain, Almeria, Campo de Dalias, Punta del Sabinal, 10 m, on Diploicia canescens on Juniperus phoenicea, 16.iii.1993, E. Barreno et al. s.n. (VAB–lich. 7547, holotype; IMI–362752, isotype). Arthonia diploiciae is a lichenicolous fungus on the thallus of Diploicia canescens (Dicks.) A. Massal., arising in groups of up to 125 ascomata, 70–130 µm each in diameter, and inducing conspicuous brown spots on the thallus of the host. The asci are 4-spored and the ascospores 1-septate, with the lower cell slightly attenuated, apices rounded, 15–22 × 7–12 µm (see illustration and full description in Calatayud et al. 1995). The species was described from Spain and Portugal and has been reported from the Canary Islands and Mexico (Hafellner 1995), Great Britain (Hawksworth 2003) and Ireland (Santesson 1998). Arthonia diploiciae is frequent on D. canescens on the stems of Coreopsis gigantea (Kellogg) H.M. -
View PDF Version
RSC Advances View Article Online PAPER View Journal | View Issue Daldinone derivatives from the mangrove-derived endophytic fungus Annulohypoxylon sp.† Cite this: RSC Adv.,2017,7,5381 ab c d d Yang Liu, Fabian Stuhldreier, Tibor Kurtan,´ Attila Mandi,´ e f c c Sathishkumar Arumugam, Wenhan Lin, Bjorn¨ Stork, Sebastian Wesselborg, Horst Weber,g Birgit Henrich,h Georgios Daletos*a and Peter Proksch*a Two new benzo[j]fluoranthene metabolites, daldinones H, J (1 and 3), and the likewise undescribed artefact, daldinone I (2), along with six known compounds (4–9) were isolated from the endophytic fungus Annulohypoxylon sp. that was obtained from the Mangrove plant Rhizophora racemosa collected in Cameroon. The structures of the new compounds were elucidated by 1D and 2D NMR as well as by HRESIMS and ECD spectra analysis. Co-cultivation of this fungus with the actinomycetes Streptomyces lividans or with Streptomyces coelicolor resulted in an up to 38-fold increase of 1-hydroxy-8- methoxynaphthalene (9), while no significant induction was detected when the fungus was co-cultivated either with Bacillus subtilis or with Bacillus cereus. Compound 2 exhibited strong to moderate Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cytotoxicity against Ramos and Jurkat J16 cells with IC50 values of 6.6 and 14.1 mM, respectively. Received 24th November 2016 Mechanistic studies indicated that compound 2 induces apoptotic cell death caused by induction of Accepted 30th December 2016 intrinsic apoptosis. Moreover, 2 potently blocks autophagy, a potential pro-survival pathway for cancer DOI: 10.1039/c6ra27306h cells. Feeding experiments with 1,8-dihydroxynaphthalene (DHN) led to an enhanced accumulation of www.rsc.org/advances daldinone B (6), which supported the proposed biogenetic pathway. -
Lichens Jennifer Fiorentino Lichen Basics When You
Il-Majjistral Park - Lichens Jennifer Fiorentino Lichen basics When you look at a lichen you are not seeing one organism but at least two. You are seeing a structure (thallus) formed by the interaction of either a fungus with an alga or of a fungus with a cyanobacterium. The fungal partner is called the mycobiont. It is incapable of making food by photosynthesis so it gets its sugar derivatives from the algal (or cyanobacterial) partner called the photobiont. The traditional approach considers lichens as mutualistic associations where both fungal and photobiont partners benefit. Together they are able to deal with ecological conditions that neither part would be able to handle on its own. Let’s face it, would you ever expect to find algae, on their own, growing on the exposed, dry surfaces of rock? Yet protected within the fungal hyphae of their lichen partner they do manage to survive. The fungus absorbs and stores water in its hyphae and provides radiation protection to the algal cell. Similarly the fungal hyphae would not thrive unless they have a source of food and within lichens this is conveniently provided by the photobiont cells. This intimate association does not seem to be harming any of its partners. A closer look at a lichen reveals that the photobiont cells become very leaky when they associate with fungi. The amount of sugars and sugar derivatives that leak out of the walls of photosynthetic algal cells into the fungal hyphae is so large that little food and energy is left for the algae. These are induced to refrain from sexual reproduction and to slow down their rate of growth and vegetative reproduction. -
AUSTRALASIAN LICHENOLOGY 83, July 2018 AUSTRALASIAN
The striking red pigments in the apothecia of species of Haematomma are concentrated mostly in the epihymenium above the tips of the asci. In this Haematomma persoonii the pigment is a tetracyclic anthraquinone called russulone. The compound has been found in the epihymenia of eight of Australia’s 13 known species of the genus. Haematomma persoonii colonizes bark in the woodlands and forests of eastern Queensland and New South Wales in Australia. Elsewhere in the world it occurs in all of the Americas, plus several sites in Africa and the Pacific. 1 mm CONTENTS ARTICLES Elix, JA; Mayrhofer, H; Rodriguez, JM—Two new species, a new combination and four new records of saxicolous buellioid lichens (Ascomycota, Caliciaceae) from southern South America ............................................................................................... 3 McCarthy, PM; Elix, JA—Sclerophyton puncticulatum sp. nov. (lichenized Ascomy- cota, Opegraphaceae) from New South Wales, Australia...................................... 14 McCarthy, PM; Elix, JA—Agonimia abscondita sp. nov. (lichenized Ascomycota, Verrucariaceae) from New South Wales, Australia ................................................ 18 Mayrhofer, H; Elix, JA—A new species of Rinodina (Physciaceae, Ascomycota) from eastern Australia ................................................................................................ 22 Elix, JA—A key to the buellioid lichens (Ascomycota, Caliciaceae) in New Zea- land ...............................................................................................................................