Integrated Ieee 802.11/Wlan and Ieee 802.16/Wimax Networks

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Ieee 802.11/Wlan and Ieee 802.16/Wimax Networks ANSARI LAYOUT 2/9/10 1:50 PM Page 30 WIRELESS TECHNOLOGIES FOR E-HEALTHCARE WIRELESS TELEMEDICINE SERVICES OVER INTEGRATED IEEE 802.11/WLAN AND IEEE 802.16/WIMAX NETWORKS YAN ZHANG AND NIRWAN ANSARI, NEW JERSEY INSTITUTE OF TECHNOLOGY HIROSHI TSUNODA, TOHOKU INSTITUTE OF TECHNOLOGY ABSTRACT Wireless communications overcomes most geo- graphical, temporal, and organizational barriers Wireless telemedicine, also referred to as to the transfer of medical data and records. nic mobile health, which capitalizes on advances of In order to provide ubiquitous availability of wireless technologies to deliver health care and multimedia services and applications, wireless and exchange medical knowledge anywhere and any mobile technologies are evolving towards integra- BS2 time, overcomes most of geographical, temporal, tion of heterogeneous access networks such as and even organizational barriers to facilitate wireless personal area networks (WPANs), wire- remote diagnosis and monitoring, and transfer of less local area networks (WLANs), wireless WiMAX core networ medical data and records. In this article we metropolitan area networks (WMANs) as well as investigate the application of integrated IEEE third-generation (3G) and beyond 3G cellular 802.16/WiMAX and IEEE 802.11/WLAN broad- networks. A hybrid network based on IEEE band wireless access technologies along with the 802.11/WLANs and IEEE 802.16/WiMAX is a Internet related protocol issues for telemedicine services. strong contender since both technologies are We first review IEEE 802.11/WLAN and IEEE designed to provide ubiquitous low cost, high- 802.16/WiMAX technologies, and make a com- speed data rates, quality of service (QoS) provi- parison between IEEE 802.11/WLAN and IEEE sioning, and broadband wireless Internet access. .11e WLAN1 802.16/WiMAX. Then some open research issues IEEE 802.11/WLAN is the standard to provide Dual in the integrated IEEE 802.16/WiMAX and moderate- to high-speed data communications in gateway IEEE 802.11/WLAN networks are discussed, a short range generally within a building. The especially regarding QoS support, radio resource IEEE 802.16/WiMAX is the standard to provide The authors management, scheduling and connection admis- broadband wireless services requiring high-rate sion control schemes, as well as handover and transmission and strict QoS requirements in both investigate the mobility management. Finally, applications and indoor and outdoor environments. Furthermore, application of deployment scenarios of integrated IEEE IEEE 802.16/WiMAX network is a promising 802.16/WiMAX and IEEE 802.11/WLAN for solution to provide backhaul support for IEEE integrated IEEE telemedicine services are further deliberated. 802.11/WLAN hotspots. WiMAX has recently been implemented for telemedicine functionali- 802.16/WiMAX and INTRODUCTION ties [1]. The integrated network of IEEE 802.11/WLAN and IEEE 802.16/WiMAX can IEEE 802.11/ WLAN By deploying telecommunications technologies bring a synergetic improvement to the to deliver health care and share medical knowl- telemedicine services on coverage, data rates, and broadband wireless edge over a distance, telemedicine aims at pro- QoS provisioning to mobile users. There have access technologies viding expert-based medical care to any place been some ongoing projects related to mobile and at any time health care is needed. When the healthcare services using WLAN/WiMAX net- along with the first telemedicine services were provided, work such as Mobile Taiwan (M-Taiwan) [2] and telemedicine applications were implemented WiMAX Extension to Isolated Research Data related protocol over wired communications technologies such as (WEIRD) networks [3]. The major goal of M- plain old telephone network (POTN) and inte- Taiwan is to build a standard-compliant environ- issues for grated services digital network (ISDN). Howev- ment as the foundation for lifestyle applications er, recent developments in telemedicine resulting such as M-Service, M-Learning, and M-Life. In telemedicine from wireless advances are promoting wireless order to deliver such applications, WiMAX is services. telemedicine, also referred to as m-health or expected to be the preferred technology. WEIRD mobile health. Normally, wireless telemedicine aims to support novel applications, such as fire systems consist of wearable/implantable medical prevention, environmental monitoring, and tele- devices and wireless communications networks. medicine via WiMAX. Fourtest beds deployed in 30 1536-1284/10/$25.00 © 2010 IEEE IEEE Wireless Communications • February 2010 Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 20,2010 at 21:31:11 EST from IEEE Xplore. Restrictions apply. ANSARI LAYOUT 2/9/10 1:50 PM Page 31 Europe have been used to implement, test, and • Integrated services provided by the large net- The most validate the technical solutions developed within work capacity of WiMAX enabling fully func- the WEIRD project. Various advanced medical tional telemedicine services such as various fundamental applications such as remote follow-up, remote types of diagnostics, physical monitoring, diagnosis, intervention on non-transportable pharmaceutical and drug dosage management difference between patients, remote monitoring, remote assistance, services, good quality conversational commu- and medical e-learning are expected to be nications between a physician and a patient, WLAN and WiMAX is improved by using WiMAX. and consultation among medical specialists The remainder of this article is organized as • Medium access control (MAC) layer security that they are follows. First, we briefly review WLAN and features of WiMAX providing access control designed for totally WiMAX technologies. Afterward, a comparison and encryption functions for wireless between IEEE 802.11/WLAN and IEEE 802.16/ telemedicine services different applications. WiMAX is presented. A general telemedicine • QoS framework defined in 802.16e enabling system architecture and telemedicine QoS efficient and reliable transmission of medical WLAN is the requirements are introduced. Then some data research open issues in the integrated IEEE standard to provide 802.16/WiMAX and IEEE 802.11/WLAN net- COMPARISON BETWEEN WLAN AND WIMAX works are discussed, especially on QoS support, The most fundamental difference between moderate to high- radio resource management, scheduling and con- WLAN and WiMAX is that they are designed speed data nection admission control schemes, as well as for totally different applications. WLAN is the handover and mobility management. Finally, standard to provide moderate- to high-speed communications in a application and deployment scenarios of inte- data communications within a short range, gen- grated IEEE 802.16/WiMAX and IEEE erally within a building. On the other hand, short range; WiMAX 802.11/WLAN for telemedicine services are dis- WiMAX is the standard to provide Internet cussed and illustrated. access over a long range outdoor environment. is the standard to Besides the obvious difference in transmis- provide Internet WLAN AND WIMAX OVERVIEW sion range, there are a number of improvements in the radio link technology that distinguish access over a long WLAN OVERVIEW WiMAX from WLAN. WLAN standards describe four radio link interfaces that operate range outdoor WLANs are commonly used in their 802.11a, in the 2.4 GHz or 5 GHz unlicensed radio bands. 802.11b, and 802.11g versions to provide wireless WiMAX standards include a much wider range environment. connectivity in home, office, and some commer- of potential implementations to address the cial establishments; they are also widely deployed requirements of carriers around the world. All in telemedicine systems. Since the early 1990s, WLAN implementations use unlicensed frequen- the industrial, scientific, and medical bands, 2.4 cy bands, but WiMAX can operate in either GHz and 5 GHz, have been made available for licensed or unlicensed spectrum. A detailed WLAN, among which the 802.11b and 802.11g comparison of WiMAX and WLAN technologies protocols are the most popular. IEEE 802.11b is summarized in Table 1. operates in the 2.4 GHz band and accommo- dates data rates of up to 11 Mb/s, whereas 802.11g, based on prthogonal frequency-division WLAN AND WMAN: BASIC INTEGRATION multiplexing (OFDM), operates in the same ISSUES band and provides data rates of up to 54 Mb/s. IEEE 802.11a also specifies an OFDM scheme, An integrated WiMAX and WLAN network can which is not backward compatible with the origi- be used to extend the coverage area of a WLAN nal 802.11b. It operates in the 5 GHz band with and augment the availability of e-healthcare ser- data rates of up to 54 Mb/s within 10 m, drop- vice using mobile wireless systems. However, to ping to about 6 Mb/s at a distance of 100 m. realize integrated WiMAX and WLAN networks IEEE 802.11 WLANs are most suitable for for e-healthcare service, many challenging prob- local telemedicine services, IEEE 802.11e can be lems such as QoS support, radio resource man- used for transmitting sensitive medical data with agement, scheduling, connection admission QoS support, and IEEE 802.11i provides securi- control, and handover management have to be ty support as an amendment to the original addressed. A taxonomy of related works is out- IEEE 802.11 standard by specifying security lined in Table 2, and the major contributions of mechanisms for WLANs. However, WLANs corresponding work on tackling various issues have limitations in terms of mobility and cover- are highlighted in Table 3. age area. QOS SUPPORT WIMAX OVERVIEW QoS support is vital in integrated WiMAX and IEEE 802.16/WiMAX is a good last-mile wire- WLAN for e-healthcare service because various less access solution that provides baseline fea- types of time-sensitive data should be communi- tures for flexibility in spectrum to be used all cated in such a service. For example, real-time over the world. Advantages of using WiMAX for communications and large enough bandwidth is wireless telemedicine applications over WLAN- required for transmitting high-resolution digital based systems can be summarized as follows: videos and images in mobile robotic systems.
Recommended publications
  • Evaluation of Mobile Wimax and Intelligent Video for Enhanced Rail Transit Safety
    SharpRAIL: Evaluation of Mobile WiMAX and Intelligent Video for Enhanced Rail Transit Safety Report Number FTA-MD-26-7132-08.1 June 2008 DISCLAIMER NOTICE This document is disseminated under the sponsorship of the United States Department of Transportation, Federal Transit Administration, in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the contents of the report. Form Approved OMB No. 0704-0188 REPORT DOCUMENTATION PAGE Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED June, 2008 Final Report, April 2007-January 2008 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS SharpRAIL: Evaluation of Mobile WiMAX and Intelligent Video for Enhanced Rail Transit Safety MD-26-7132-00 6. AUTHOR(S) Santosh Kesavan, Eddie Wu and William Toeller 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER VT Aepco Inc 555 Quince Orchard Road, Suite 488 Gaithersburg, MD 20878 9.
    [Show full text]
  • An Analysis of IEEE 802.16 and Wimax Multicast Delivery
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2007-09 An analysis of IEEE 802.16 and WiMAX multicast delivery Staub, Patrick A. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/3203 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS AN ANALYSIS OF IEEE 802.16 AND WIMAX MULTICAST DELIVERY by Patrick A. Staub September, 2007 Thesis Advisor: Bert Lundy Second Reader: George Dinolt Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 2007 Master’s Thesis 4. TITLE AND SUBTITLE An Analysis of IEEE 802.16 and WiMAX 5. FUNDING NUMBERS Multicast Delivery 6. AUTHOR(S) Patrick A. Staub 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
    [Show full text]
  • IEEE 802.20: Mobile Broadband Wireless Access a Technical Overview
    IEEE 802.20: Mobile Broadband Wireless Access A Technical Overview June 2006 for ITU-BDT Regional Seminar on Mobile and Fixed Wireless Access for Broadband Applications for the ARAB Seminar, June 19-22, 2006, Algiers, Algeria • The following is a technical overview of the IEEE 802.20 (FDD & TDD) proposed specification and how it compares to IEEE 802.16e (mobile WiMAX). • The presentation does not cover the IEEE Working Group processes relating to standardization. • I will not be making any comments today on the IEEE 802.20 standardization process or its current status. 1 1 Introduction • The 802.20 standard is being developed by the IEEE for highly efficient Mobile Broadband Wireless Access (MBWA) – Spectral efficiencies, sustained user data rates and numbers of active users that are significantly higher than other emerging mobile systems – Efficient packet based air interface optimized for IP-data transport, including real time services • Technology developed to target worldwide deployment of affordable, ubiquitous, always-on networks – To meet the needs of business and residential end user markets • 802.20 provides a specification for physical and medium access control layers for interoperable mobile wireless access systems – Operations for licensed bands below 3.5 GHz – Supports mobility classes up to 250 Km/h 2 Mobile Broadband Vision 3G and Beyond Best Connected Service: • Application-specific air interfaces CDMA2000, WPAN WCDMA, MPROC 802.20, FLO… MPROC • New OFDM(A) Physical GPRS, WLAN layers GPS DSP 3D Graphics • Common IP-based core DSP Video Audio network Memory Memory Imaging WLAN • Integrated WAN / LAN (802.11n) services • Multimode devices Mobile WAN/MAN Relative (Flash-OFDM, HSXPA, 802.20/3GPP2 Phase 2, LTE) Peak Rates Mobile Broadcast (FLO) Relative Coverage Data rates (vertical) and network coverage (horizontal) are illustrative only.
    [Show full text]
  • Unit 3 Basics of Network Technology
    UNIT 3 BASICS OF NETWORK TECHNOLOGY Structure 3.0 Objectives 3.1 Introduction 3.2 Network Concept and Classification 3.2.1 Advantages of Networks 3.2.2 Network Classification 3.3 Local Area Network (LAN) Overview 3.3.1 LAN Topologies 3.3.2 LAN Access Methods 3.4 Wide Area Network 3.4.1 WAN Topologies 3.4.2 WAN Switching Methods 3.4.3 WAN Devices/Hardware 3.5 Wireless Technology 3.5.1 WiFi 3.5.2 WiMax 3.6 Summary 3.7 Answers to Self Check Exercises 3.8 Keywords 3.9 References and Further Reading 3.0 OBJECTIVES After going through this Unit, you will be able to: explain the concept of computer networks; understand different application of networks; differentiate between different types of computer networks based on size, connection and functioning; compare the different network topologies used in LAN and WAN; understand the working of LAN access methods; explain the working of networking devices used in WAN; know the importance of using networked system; and understand the concept of wireless technologies and standards. 3.1 INTRODUCTION With the ICT revolution the functioning of organisations has changed drastically. In a networked scenario organisations often need several people (may be at different locations) to input and process data simultaneously. In order to achieve this, a computer-networking model in which a number of separate but interconnected computers do the job has replaced the earlier standalone-computing model. By linking individual computers over 4 7 Network Fundamentals a network their productivity has been increased enormously. A most distinguishing characteristic of a general computer network is that data can enter or leave at any point and can be processed at any workstation.
    [Show full text]
  • IX256 Wimax Modem User Manual.P65
    ZTE IX256 WiMAX MODEM User Manual 1 No part of this publication may be excerpted, reproduced, translated in any form or by any means, electronic or mechanical, including photocopying and microfilm, without the prior written authorization of ZTE Corporation. The manual is published by ZTE Corporation. We reserve the right to make modifications on print errors or update specifications without prior notice. Copyright © 2010 by ZTE Corporation All rights reserved. Version: V1.0 Date: Aug. 2010 Manual number: 079584501965 2 TABLE OF CONTENTS 1 General ............................................................................................................................ 6 1.1 Welcome ................................................................................................................ 6 1.2 Safety Precautions ................................................................................................ 6 1.3 Cleaning and Maintaining ....................................................................................... 7 1.4 Limited Warranty.................................................................................................... 7 1.5 Limitation of Liability ............................................................................................... 8 2 Getting Started .............................................................................................................. 9 2.1 Appearance........................................................................................................... 9 2.2 Parts
    [Show full text]
  • Analysis of Wifi and Wimax and Wireless Network Coexistence
    International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014 ANALYSIS OF WIFI AND WIMAX AND WIRELESS NETWORK COEXISTENCE Shuang Song and Biju Issac School of Computing, Teesside University, Middlesbrough, UK ABSTRACT Wireless networks are very popular nowadays. Wireless Local Area Network (WLAN) that uses the IEEE 802.11 standard and WiMAX (Worldwide Interoperability for Microwave Access) that uses the IEEE 802.16 standard are networks that we want to explore. WiMAX has been developed over 10 years, but it is still unknown to most people. However compared to WLAN, it has many advantages in transmission speed and coverage area. This paper will introduce these two technologies and make comparisons between WiMAX and WiFi. In addition, wireless network coexistence of WLAN and WiMAX will be explored through simulation. Lastly we want to discuss the future of WiMAX in relation to WiFi. KEY WORDS WiMAX, WiFi, wireless network, wireless coexistence, network simulation 1. INTRODUCTION With the development of multimedia communication, people need wireless broadband access with higher speed, larger coverage and mobility. The emergence of WiMAX (Worldwide Interoperability for Microwave Access) technology met the people's demand for wireless Internet to some extent. If wireless LAN technology (WLAN) solves the access problem of the "last one hundred meters", then WiMAX technology is the best access solution of the "last mile". Though WiMAX is an emerging and extremely competitive wireless broadband access technology, the development prospects of its market is still unknown. Hybrid networks as a supplement to cell based or IP packet based services, can fully reflect the characteristics of wide network coverage.
    [Show full text]
  • Performance Evaluation of Wi-Fi Comparison with Wimax Networks
    International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012 Performance Evaluation of Wi-Fi comparison with WiMAX Networks 1M.Sreerama Murty, 2 D.Veeraiah, 3A.Srinivas Rao 1Department of Computer Science and Engineering Sai Spurthi Institute of Technology,Khammam,Andhra Pradesh,India [email protected] 2Department of Computer Science and Engineering Sai Spurthi Institute of Technology,Khamamm,Andhra Pradesh,India [email protected] 3Department of Computer Science and Engineering Sai Spurthi Institute of Technology,Khamamm,Andhra Pradesh,India [email protected] Abstract Wireless networking has become an important area of research in academic and industry. The main objectives of this paper is to gain in-depth knowledge about the Wi-Fi- WiMAX technology and how it works and understand the problems about the WiFi- WiMAX technology in maintaining and deployment. The challenges in wireless networks include issues like security, seamless handover, location and emergency services, cooperation, and QoS.The performance of the WiMAX is better than the Wi-Fi and also it provide the good response in the access. It’s evaluated the Quality of Service (Qos) in Wi-Fi compare with WiMAX and provides the various kinds of security Mechanisms. Authentication to verify the identity of the authorized communicating client stations. Confidentiality (Privacy) to secure that the wirelessly conveyed information will remain private and protected. Take necessary actions and configurations that are needed in order to deploy Wi-Fi -WiMAX with increased levels of security and privacy Keywords Wifi ,Wimax,Qos,Security,Privacy,seamless 1. Introduction Recently wireless networking has become an important area of research in academia and industry.
    [Show full text]
  • Motorola's Wimax System
    SURFboard® SBG6580 Series Wi-Fi®Cable Modem Gateway Strengthen your broadband leadership — Count on Motorola’s SURFboard DOCSIS®/ EuroDOCSIS 3.0 solutions to help you deliver innovative, ultra-broadband data services and advanced high-bandwidth home networking to your premium customers. Motorola’s Service Assured DOCSIS 3.0 Solutions enable you to deliver increased bandwidth, enhance security, and cost-effectively deploy data services to your bandwidth-demanding consumers – all while maximizing current infrastructure investment and lowering capital spending. Next Generation High-Bandwidth Services and Home Networking in a Stylish Package The SBG6580 SURFboard Wi-Fi Cable Modem Gateway enables the delivery of innovative ultra-broadband data and multimedia services as well as high-bandwidth home networking. Designed for seamless mobility, Motorola’s SBG6580 is a fully integrated all-in-one home networking solution that combines the functionality of a DOCSIS/EuroDOCSIS 3.0 cable modem, four-port 10/100/1000 Ethernet switch with advanced firewall, and an 802.11n Wi-Fi access point in a sleek, stylish package for the sophisticated consumer. It’s the perfect networking solution for the home, home office, or small business, allowing users to create a custom network to share a single ultra-broadband connection, files, and networked peripherals using wired or Wi-Fi connectivity. Cost-effective, efficient, and secure, the SBG6580 enables users to maximize the potential of their existing resources, while benefiting from next generation high-bandwidth services. Increased Data Rates Utilizing the power of DOCSIS 3.0, the SBG6580 enables channel bonding of up to 8 downstream and 4 upstream channels – which allows an operator to offer their customers advanced multimedia services, capable of data rates of well over 300 Mbps in DOCSIS and 400 Mbps in EuroDOCSIS in the received (downstream) data stream and over 100 Mbps in the send (upstream) data stream.
    [Show full text]
  • MSC8157/MSC8157E Broadband Wireless Access DSP Advanced 45 Nm, Six-Core DSP for 3G-LTE (FDD and TDD), HSPA+, LTE Advanced and Wimax Base Station
    Digital Signal Processors MSC8157/MSC8157E Broadband Wireless Access DSP Advanced 45 nm, six-core DSP for 3G-LTE (FDD and TDD), HSPA+, LTE Advanced and WiMAX base station Overview The MSC8157/MSC8157E DSP delivers a The MSC8157/MSC8157E embeds 6 MB The MSC8157/MSC8157E is a six-core DSP high level of performance and integration, of internal memory and supports a variety based on Freescale’s new SC3850 StarCore combining six fully programmable new of advanced, high-speed interface types, ® technology and designed to advance the and enhanced SC3850 DSP cores, each including two Serial RapidIO interfaces, capabilities of wireless broadband equipment. running at up to 1 GHz with an architecture two Gigabit Ethernet interfaces for network ® It delivers industry-leading performance and highly optimized for wireless infrastructure communications, a PCI Express controller, power savings, leveraging 45 nm process applications. Developed by Freescale and one DDR controller for high-speed, industry technology in a highly integrated DSP to integrated on chip, the second-generation standard memory interface and six common provide performance equivalent to 6 GHz MAPLE-B2 baseband accelerator supports public radio interfaces (CPRI). of a single-core device. The MSC8157/ hardware acceleration for Turbo and Viterbi MSC8157E will help equipment manufacturers channel decoding, Turbo encoding and and carriers create solutions and services that rate matching, MIMO MMSE, IRC and ML enable near-term, mainstream adoption of equalization schemes, matrix inversion, CRC next-generation wireless standards such as insertion and check, DFT/iDFT and FFT/iFFT 3G-LTE (FDD and TDD), HSPA+ LTE Advanced calculations and chip rate acceleration.
    [Show full text]
  • Bluetooth, WI-FI, Cellular and Wimax 1Omendri Kumari and 2Dr
    IJCSC Volume 5 • Number 2 July-Sept 2014 pp. 61-70 ISSN-0973-7391 Study of Wireless Communication Technologies: Bluetooth, WI-FI, Cellular and WiMAX 1Omendri kumari and 2Dr. Sanjay Kumar 1,2School of Engineering & Technology, Jaipur National University, Jaipur [email protected], [email protected] ABSTRACT A rush forward of research activities in wireless communication has been seen in last decade. There are new points of view on how to communicate effectively over wireless channels from this research drive. The purpose or aim of this paper is to study the basics as well as new research developments. We studied four types of wireless communication technology that are Bluetooth, Cellular, Wi-Fi and WiMAX in this paper. we have described architecture and working of these technologies to understand them easily. we have concluded which one is the best through comparative study and analysis. KEYWORDS: WIRELESS COMMUNICATION, BLUETOOTH, WI-FI, WIMAX, CELLULAR. 1. INTRODUCTION With the rapid development of communication technologies, future wireless communication systems should support voice, data, audio/video, multimedia, interactive games, and Internet traffic. A potential solution for this is to make the wireless communication network and the broadcasting network converge to form a unified convergence network. Wireless communications is, by any measure, the fastest growing segment of the communications industry. [1] As such, it has captured the attention of the media and the imagination of the public. Cellular phones have experienced exponential growth over the last decade, and this growth continues unabated worldwide, with more than a billion worldwide cell phone users projected in the near future.
    [Show full text]
  • The Architectural Differences Between LTE and Wimax
    The architectural differences between LTE and WiMAX Tingnan Bao (841229-1737) School of Information and Communication Technology KTH Stockholm, Sweden 16453 [email protected] Abstract—the paper presents the modern communication technology in wireless network, LTE and WiMAX. The system architectures between LTE and WiMAX network will be shown. In addition, a comparison of the system architecture and the air interface of these two networks will be discussed. The paper further concludes with discussion of these two aspects and gives the short look into the future 4G networks. Keywords— LTE; WiMAX; 4G;system architecture; air interface I. INTRODUCTION With the development of high-speed mobile broadband access technology, there are two emerging technologies: Long Term Evolution (LTE), which is developed by 3rd Generation Partnership Project (3GPP) and WiMAX, standardized by the Institute of Electrical and Electronics Engineers (IEEE). Both of them have similar goals, specifically to provide high data rate wireless network connection for cell phones, laptops, and other electronic devices. Nevertheless, the system architecture of these two is different, so that the scope of applications, network services, market positions differ. During November 2004, 3GPP launched the LTE project, which focuses on enhancing Universal Terrestrial Radio Access (UTRA) and optimizing 3GPP’s radio access architecture in order to compete with WiMAX. [1] In this standard, LTE is referred as the Evolved Packet System (EPS), purely IP based, which divided into two parts: the Evolved Packet Core (EPC) and the Enhanced-UMTS Terrestrial Radio Access Network (E-UTRAN). However, LTE is also described as 3.9G as the first release of LTE did not fulfill ITU’s requirements for 4G, such as the peak data rates up to 1 Gb/s.
    [Show full text]
  • Low-Power Wireless for the Internet of Things: Standards and Applications Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli
    Low-Power Wireless for the Internet of Things: Standards and Applications Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli To cite this version: Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli. Low-Power Wireless for the Internet of Things: Standards and Applications: Internet of Things, IEEE 802.15.4, Bluetooth, Physical layer, Medium Access Control, coexistence, mesh networking, cyber-physical systems, WSN, M2M. IEEE Access, IEEE, 2018, 6, pp.67893-67926. 10.1109/ACCESS.2018.2879189. hal-02161803 HAL Id: hal-02161803 https://hal.archives-ouvertes.fr/hal-02161803 Submitted on 21 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Received August 13, 2018, accepted October 11, 2018, date of publication November 9, 2018, date of current version December 3, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2879189 Low-Power Wireless for the Internet of Things: Standards and Applications ALI NIKOUKAR 1, SALEEM RAZA1, ANGELINA POOLE2, MESUT GÜNEŞ1, AND BEHNAM DEZFOULI 2 1Institute for Intelligent Cooperating Systems, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany 2Internet of Things Research Lab, Department of Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA Corresponding author: Ali Nikoukar ([email protected]) This work was supported by DAAD (Deutscher Akademischer Austauschdienst) and DAAD/HEC Scholarships.
    [Show full text]