CORDIC-Based LMMSE Equalizer for Software Defined Radio

Total Page:16

File Type:pdf, Size:1020Kb

CORDIC-Based LMMSE Equalizer for Software Defined Radio CORDIC-Based LMMSE Equalizer for Software Defined Radio Murugappan SENTHILVELAN † §, Javier HORMIGO ‡, Joon Hwa CHUN €, Mihai SIMA *, Daniel IANCU †¶, Michael SCHULTE §, John GLOSSNER ¥ †Optimum Semiconductor Technologies, Inc., Tarrytown, NY, U.S.A. ‡ University of Malaga, Department of Computer Architecture, Malaga, Spain. € Intelligent Automation Inc., Rockville, MD, U.S.A. * University of Victoria, Department of Electrical and Computer Engineering, Victoria, BC, Canada. § University of Wisconsin-Madison, Department of Electrical and Computer Engineering, Madison, WI, U.S.A. ¶ Tampere University of Technology, Korkeakoulunkatu 1, FIN-33720 Tampere, Finland. ¥ Sandbridge Technologies, Inc., Tarrytown, NY, U.S.A. e-mail: [email protected], [email protected], [email protected] [email protected], [email protected], [email protected], [email protected] Abstract — In Code Division Multiple Access (CDMA) interference, and with synchronized transmission of blocks systems, the orthogonality of the spreading codes used to over the channel, multiple users can be multiplexed over the achieve multiple access over a channel is severely degraded same channel by using a different spreading code for each due to multi-path interference. Expensive equalization user. Even though signals from multiple users interfere with techniques are needed to recover the transmitted signal. each other in the channel, due to the orthogonal spreading The Linear Minimum Mean Square Error (LMMSE) codes, each user can extract the transmission intended for equalizer is a sub-optimal equalizer that is a good them from the received signal by despreading it using their compromise between computational complexity and spreading code. communication system performance. It uses While the spreading codes are perfectly orthogonal to computationally-intensive matrix inversion operations to each other, they are not orthogonal to time-shifted versions of perform equalization. In this paper, we address the each other, resulting in Multiple Access Interference (MAI), or computational challenges of implementing the LMMSE time shifted-versions of themselves, resulting in Multi-Path equalizer on Software Defined Radio (SDR) platforms. Interference (MPI). Any means to suppress or avoid MAI and SDR platforms are favored by the wireless industry due to MPI increases the capacity of the CDMA system. Hence, their significant benefits of reduced development costs and extensive research has been performed on enhanced receiver accelerated time-to-market. We present COordinate techniques that combat MPI and MAI. Rotation DIgital Computer (CORDIC) Instruction Set Expensive equalization techniques (both linear and Architecture (ISA) extensions that speed up the LMMSE nonlinear) are used at the receiver to nullify the effects of MPI equalization algorithm. The costs and benefits of the ISA and MAI, and to recover the transmitted signal. Linear extensions are evaluated on the Sandbridge Sandblaster interference suppression equalizers such as Linear Minimum 3000 (SB3000) low-power, multithreaded SDR processor. Mean Square Error (LMMSE) equalizers have proven to be a The proposed ISA extensions provide significant promising approach to enhance the performance of downlink performance improvements with little hardware overhead, channels in CDMA-based systems. They provide a good while improving the accuracy of the LMMSE Equalizer. balance between performance and complexity, result in simple Keywords – LMMSE equalization, CORDIC, SDR, ISA extensions, adaptive implementations, and exhibit reasonable robustness. QR decomposition, Givens rotation Compute-intensive wireless techniques, such as LMMSE equalizers, traditionally have been implemented using I. INTRODUCTION Application Specific Integrated Circuits (ASICs). ASICs achieve high performance at the expense of flexibility. Code Division Multiple Access (CDMA) systems [1] Software Defined Radio (SDR) [5] is an alternative exploit orthogonality between vectors to support multiple programmable platform that is being increasingly adopted by users over a single channel. Each user is assigned one the wireless industry due to dramatically reduced development orthogonal vector, called the spreading code, which is a chip and hardware costs, accelerated time-to-market, increased sequence c from the Walsh matrix, for spreading the data to be flexibility, and upgradeability. transmitted over the channel. The transmitter sends either the chip sequence c or –c depending on whether the user wants to In this paper, we address the computational challenges of communicate a 1 or 0 symbol over the channel Under ideal implementing the LMMSE equalizer on Software Defined channel conditions, in the absence of multi-path and channel Radio (SDR) platforms. We present and analyze a QR 978-1-4244-7938-2/10/$26.00 ©2010 IEEE 301 Decomposition (QRD) [3-4] based back-substitution algorithm II. BACKGROUND to perform the matrix inversion of a 15x15 complex-valued matrix for LMMSE equalization. When profiling the LMMSE A. CDMA Rake Receiver algorithm on the SB3000 platform [6-7], a state-of-the-art The Rake receiver [2] is the most commonly used receiver SDR processor, we observed that over 97% of the computation in CDMA systems due to its simplicity and reasonable time is spent on vector rotation operations. Convenient ways performance. It is utilized to achieve path diversity in a to perform complicated matrix operations, transcendental multipath fading channel by effectively collecting the signal functions and division using the iterative COordinate Rotation energy from each received multipath using a delay line at the DIgital Computer (CORDIC) algorithms have been proposed receiver. A correlation with the spreading code c is performed previously [8-11]. However, the sequential CORDIC on each delay path. Due to the orthogonal nature of the algorithm is inefficient to implement completely in software spreading codes, they yield highly peaked autocorrelation using conventional SDR processors. Consequently, Instruction properties, effectively separating the received signal into its Set Architecture (ISA) extensions and hardware designs based component paths. The different signal paths are combined on the CORDIC algorithms can enable SDR architectures to using a Maximal Ratio Combining (MRC) scheme, whereby meet the performance requirements of LMMSE equalization. the signal on each path is weighted according to its received We propose, discuss and evaluate different design choices power prior to combining the signals. The Rake receiver for CORDIC ISA extensions when implementing the performs reasonably well with a limited number of users and CORDIC algorithm on a SDR architecture. We evaluate the long spreading codes, but its performance is severely degraded proposed CORDIC ISA extensions on the SB3000 platform by by MPI and MAI in the presence of a large number of users augmenting the Sandblaster tool chain with the proposed and/or short spreading codes. The length of the spreading code CORDIC ISA extensions. Our investigations demonstrate a is defined by the communication standard. The longer the speedup of more than 4.5x on 15x15 QRD and LMMSE spreading code, the more resilient it is to MPI and MAI, but equalization algorithms when using the CORDIC ISA longer spreading codes result in reduced bit rates. Shortening extensions compared to a non-CORDIC baseline software the spreading code, increases the bit rate, at the cost of a loss implementation on the SB3000, which uses powerful Single of orthogonality in the spreading code. For example, Instruction Multiple Data (SIMD) DSP instructionsThe Wideband CDMA supports spreading code lengths from 4 to CORDIC-based implementations also have better numerical 512 with data rates up to 2 Mbps, while its evolution, HSPA, accuracy than the non-CORDIC baseline software allows a fixed spreading code length of 16, but supports higher implementation. This paper makes the following data rates of up to 14.4 Mbps in downlink and 7.2 Mbps in contributions: uplink. The higher data rates in HSPA are achieved through high modulation schemes (16 QAM) and short spreading • It addresses the high computational complexity of QR codes. decomposition, complex-valued matrices, and LMMSE equalization on SDR platforms. It presents dramatic Equalizers are used in the receiver to suppress the effects speedups when using the CORDIC ISA extensions. of MPI and MAI. The optimum equalization scheme is Maximum Likelihood (ML) based estimation. However, since It investigates the class of architectures extended with • the complexity of the ML estimator grows exponentially with CORDIC functional units [15][16], and performs an the number of users, sub-optimal equalizers, such as the Zero analysis to determine the set of CORDIC ISA extensions Forcing (ZF) equalizer and Linear Minimum Mean Square that provide appropriate performance in terms of Error (LMMSE) equalizer, have been considered for practical computing speed and numerical accuracy when operating implementation. The ZF equalizer completely restores the on large complex-valued matrices. orthogonality of the user signals, which could have been The remainder of the paper is structured as follows. partially destroyed by MPI. However, in the presence of noise, Section II provides background information on CDMA Rake the ZF equalizer will also boost the noise level and hence it receivers, LMMSE equalization, the QRD algorithm, has been regarded as an unreliable solution. The LMMSE
Recommended publications
  • 2 Homework Solutions 18.335 " Fall 2004
    2 Homework Solutions 18.335 - Fall 2004 2.1 Count the number of ‡oating point operations required to compute the QR decomposition of an m-by-n matrix using (a) Householder re‡ectors (b) Givens rotations. 2 (a) See Trefethen p. 74-75. Answer: 2mn2 n3 ‡ops. 3 (b) Following the same procedure as in part (a) we get the same ‘volume’, 1 1 namely mn2 n3: The only di¤erence we have here comes from the 2 6 number of ‡opsrequired for calculating the Givens matrix. This operation requires 6 ‡ops (instead of 4 for the Householder re‡ectors) and hence in total we need 3mn2 n3 ‡ops. 2.2 Trefethen 5.4 Let the SVD of A = UV : Denote with vi the columns of V , ui the columns of U and i the singular values of A: We want to …nd x = (x1; x2) and such that: 0 A x x 1 = 1 A 0 x2 x2 This gives Ax2 = x1 and Ax1 = x2: Multiplying the 1st equation with A 2 and substitution of the 2nd equation gives AAx2 = x2: From this we may conclude that x2 is a left singular vector of A: The same can be done to see that x1 is a right singular vector of A: From this the 2m eigenvectors are found to be: 1 v x = i ; i = 1:::m p2 ui corresponding to the eigenvalues = i. Therefore we get the eigenvalue decomposition: 1 0 A 1 VV 0 1 VV = A 0 p2 U U 0 p2 U U 3 2.3 If A = R + uv, where R is upper triangular matrix and u and v are (column) vectors, describe an algorithm to compute the QR decomposition of A in (n2) time.
    [Show full text]
  • A Fast Algorithm for the Recursive Calculation of Dominant Singular Subspaces N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 218 (2008) 238–246 www.elsevier.com/locate/cam A fast algorithm for the recursive calculation of dominant singular subspaces N. Mastronardia,1, M. Van Barelb,∗,2, R. Vandebrilb,2 aIstituto per le Applicazioni del Calcolo, CNR, via Amendola122/D, 70126, Bari, Italy bDepartment of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium Received 26 September 2006 Abstract In many engineering applications it is required to compute the dominant subspace of a matrix A of dimension m × n, with m?n. Often the matrix A is produced incrementally, so all the columns are not available simultaneously. This problem arises, e.g., in image processing, where each column of the matrix A represents an image of a given sequence leading to a singular value decomposition-based compression [S. Chandrasekaran, B.S. Manjunath, Y.F. Wang, J. Winkeler, H. Zhang, An eigenspace update algorithm for image analysis, Graphical Models and Image Process. 59 (5) (1997) 321–332]. Furthermore, the so-called proper orthogonal decomposition approximation uses the left dominant subspace of a matrix A where a column consists of a time instance of the solution of an evolution equation, e.g., the flow field from a fluid dynamics simulation. Since these flow fields tend to be very large, only a small number can be stored efficiently during the simulation, and therefore an incremental approach is useful [P. Van Dooren, Gramian based model reduction of large-scale dynamical systems, in: Numerical Analysis 1999, Chapman & Hall, CRC Press, London, Boca Raton, FL, 2000, pp.
    [Show full text]
  • 3.2 the CORDIC Algorithm
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Improved VLSI architecture for attitude determination computations Permalink https://escholarship.org/uc/item/5jf926fv Author Arrigo, Jeanette Fay Freauf Publication Date 2006 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California 1 UNIVERSITY OF CALIFORNIA, SAN DIEGO Improved VLSI Architecture for Attitude Determination Computations A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical and Computer Engineering (Electronic Circuits and Systems) by Jeanette Fay Freauf Arrigo Committee in charge: Professor Paul M. Chau, Chair Professor C.K. Cheng Professor Sujit Dey Professor Lawrence Larson Professor Alan Schneider 2006 2 Copyright Jeanette Fay Freauf Arrigo, 2006 All rights reserved. iv DEDICATION This thesis is dedicated to my husband Dale Arrigo for his encouragement, support and model of perseverance, and to my father Eugene Freauf for his patience during my pursuit. In memory of my mother Fay Freauf and grandmother Fay Linton Thoreson, incredible mentors and great advocates of the quest for knowledge. iv v TABLE OF CONTENTS Signature Page...............................................................................................................iii Dedication … ................................................................................................................iv Table of Contents ...........................................................................................................v
    [Show full text]
  • CORDIC-Like Method for Solving Kepler's Equation
    A&A 619, A128 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833162 & c ESO 2018 Astrophysics CORDIC-like method for solving Kepler’s equation M. Zechmeister Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany e-mail: [email protected] Received 4 April 2018 / Accepted 14 August 2018 ABSTRACT Context. Many algorithms to solve Kepler’s equations require the evaluation of trigonometric or root functions. Aims. We present an algorithm to compute the eccentric anomaly and even its cosine and sine terms without usage of other transcen- dental functions at run-time. With slight modifications it is also applicable for the hyperbolic case. Methods. Based on the idea of CORDIC, our method requires only additions and multiplications and a short table. The table is inde- pendent of eccentricity and can be hardcoded. Its length depends on the desired precision. Results. The code is short. The convergence is linear for all mean anomalies and eccentricities e (including e = 1). As a stand-alone algorithm, single and double precision is obtained with 29 and 55 iterations, respectively. Half or two-thirds of the iterations can be saved in combination with Newton’s or Halley’s method at the cost of one division. Key words. celestial mechanics – methods: numerical 1. Introduction expansion of the sine term and yielded with root finding methods a maximum error of 10−10 after inversion of a fifteen-degree Kepler’s equation relates the mean anomaly M and the eccentric polynomial. Another possibility to reduce the iteration is to use anomaly E in orbits with eccentricity e.
    [Show full text]
  • CORDIC V6.0 Logicore IP Product Guide
    CORDIC v6.0 LogiCORE IP Product Guide Vivado Design Suite PG105 August 6, 2021 Table of Contents IP Facts Chapter 1: Overview Navigating Content by Design Process . 5 Core Overview . 5 Feature Summary. 6 Applications . 6 Licensing and Ordering . 7 Chapter 2: Product Specification Performance. 8 Resource Utilization. 9 Port Descriptions . 9 Chapter 3: Designing with the Core Clocking. 12 Resets . 12 Protocol Description – AXI4-Stream . 12 Functional Description. 17 Input/Output Data Representation . 30 Chapter 4: Design Flow Steps Customizing and Generating the Core . 38 System Generator for DSP. 44 Constraining the Core . 44 Simulation . 45 Synthesis and Implementation . 46 Chapter 5: C Model Features . 47 Overview . 47 Installation . 48 C Model Interface. 49 CORDIC v6.0 Send Feedback 2 PG105 August 6, 2021 www.xilinx.com Compiling . 53 Linking. 53 Dependent Libraries . 54 Example . 55 Chapter 6: Test Bench Demonstration Test Bench . 56 Appendix A: Upgrading Migrating to the Vivado Design Suite. 58 Upgrading in the Vivado Design Suite . 58 Appendix B: Debugging Finding Help on Xilinx.com . 62 Debug Tools . 63 Simulation Debug. 64 AXI4-Stream Interface Debug . 65 Appendix C: Additional Resources and Legal Notices Xilinx Resources . 66 Documentation Navigator and Design Hubs . 66 References . 67 Revision History . 67 Please Read: Important Legal Notices . 68 CORDIC v6.0 Send Feedback 3 PG105 August 6, 2021 www.xilinx.com IP Facts Introduction LogiCORE IP Facts Table Core Specifics This Xilinx® LogiCORE™ IP core implements a Versal™ ACAP
    [Show full text]
  • Numerical Linear Algebra Revised February 15, 2010 4.1 the LU
    Numerical Linear Algebra Revised February 15, 2010 4.1 The LU Decomposition The Elementary Matrices and badgauss In the previous chapters we talked a bit about the solving systems of the form Lx = b and Ux = b where L is lower triangular and U is upper triangular. In the exercises for Chapter 2 you were asked to write a program x=lusolver(L,U,b) which solves LUx = b using forsub and backsub. We now address the problem of representing a matrix A as a product of a lower triangular L and an upper triangular U: Recall our old friend badgauss. function B=badgauss(A) m=size(A,1); B=A; for i=1:m-1 for j=i+1:m a=-B(j,i)/B(i,i); B(j,:)=a*B(i,:)+B(j,:); end end The heart of badgauss is the elementary row operation of type 3: B(j,:)=a*B(i,:)+B(j,:); where a=-B(j,i)/B(i,i); Note also that the index j is greater than i since the loop is for j=i+1:m As we know from linear algebra, an elementary opreration of type 3 can be viewed as matrix multipli- cation EA where E is an elementary matrix of type 3. E looks just like the identity matrix, except that E(j; i) = a where j; i and a are as in the MATLAB code above. In particular, E is a lower triangular matrix, moreover the entries on the diagonal are 1's. We call such a matrix unit lower triangular.
    [Show full text]
  • A Review on Hardware Accelerator Design and Implementation of CORDIC Algorithm for a Gaming Application
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-9 Issue-9, July 2020 A Review on Hardware Accelerator Design and Implementation of CORDIC Algorithm for a Gaming Application Trupthi B, Jalendra H E, Srilaxmi C P, Varun M S, Geethashree A Abstract - Co-ordinate Digital rotation computer is the full The conversion of rectangular to polar and polar to form of CORDIC.CORDIC is a process for finding functions rectangular function are the two major operations in using less hardware like shifts, subs/adds and then compares. It's CORDIC. Basically, they are the two different co-ordinates the algorithm used for some elementary functions which are calculated in real-time and many conversions like from to represent the 2D plane. The Rectangular form is rectangular to polar co-ordinate and vice versa. Rectangular to represented by a real part (horizontal axis) and an imaginary polar and polar to rectangular is an important operation in (Vertical axis) part of the vector. The Rectangular form is CORDIC which are generally used in ALUs, wireless shown by a real part (horizontal axis) and an imaginary communications, DSP processors etc. This paper proposes the (Vertical axis) part of the vector [8].The rectangular co- implementation of physical design for CORDIC algorithm for ordinates are in the form of (x, y) where „x‟ stands for a polar to rectangular and rectangular to polar conversions, by the use of RTL code in written in Verilog and fed to pre-processor, horizontal plane and „y‟ stands for the vertical plane from cordic core and post processor.
    [Show full text]
  • Massively Parallel Poisson and QR Factorization Solvers
    Computers Math. Applic. Vol. 31, No. 4/5, pp. 19-26, 1996 Pergamon Copyright~)1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0898-1221/96 $15.00 + 0.00 0898-122 ! (95)00212-X Massively Parallel Poisson and QR Factorization Solvers M. LUCK£ Institute for Control Theory and Robotics, Slovak Academy of Sciences DdbravskA cesta 9, 842 37 Bratislava, Slovak Republik utrrluck@savba, sk M. VAJTERSIC Institute of Informatics, Slovak Academy of Sciences DdbravskA cesta 9, 840 00 Bratislava, P.O. Box 56, Slovak Republic kaifmava©savba, sk E. VIKTORINOVA Institute for Control Theoryand Robotics, Slovak Academy of Sciences DdbravskA cesta 9, 842 37 Bratislava, Slovak Republik utrrevka@savba, sk Abstract--The paper brings a massively parallel Poisson solver for rectangle domain and parallel algorithms for computation of QR factorization of a dense matrix A by means of Householder re- flections and Givens rotations. The computer model under consideration is a SIMD mesh-connected toroidal n x n processor array. The Dirichlet problem is replaced by its finite-difference analog on an M x N (M + 1, N are powers of two) grid. The algorithm is composed of parallel fast sine transform and cyclic odd-even reduction blocks and runs in a fully parallel fashion. Its computational complexity is O(MN log L/n2), where L = max(M + 1, N). A parallel proposal of QI~ factorization by the Householder method zeros all subdiagonal elements in each column and updates all elements of the given submatrix in parallel. For the second method with Givens rotations, the parallel scheme of the Sameh and Kuck was chosen where the disjoint rotations can be computed simultaneously.
    [Show full text]
  • A.1 CORDIC Algorithm
    Research on Hardware Intellectual Property Cores Based on Look-Up Table Architecture for DSP Applications HOANG VAN PHUC Doctoral Program in Electronic Engineering Graduate School of Electro-Communications The University of Electro-Communications A thesis submitted for the degree of DOCTOR OF ENGINEERING September 2012 I would like to dedicate this dissertation to my parents, my wife and my daughter. Research on Hardware Intellectual Property Cores Based on Look-Up Table Architecture for DSP Applications APPROVED Asso. Prof. Cong-Kha PHAM, Chairman Prof. Kazushi NAKANO Prof. Yoshinao MIZUGAKI Prof. Koichiro ISHIBASHI Asso. Prof. Takayuki NAGAI Date Approved by Chairman c Copyright 2012 by HOANG Van Phuc All Rights Reserved. 和文要旨 DSPアプリケーションのためのルックアップテーブルアーキテ クチャに基づくハードウェアIPコアに関する研究 ホアン ヴァンフック 電気通信学研究科電子工学専攻博士後期課程 電気通信大学大学院 本論文は,ルックアップテーブル(LUT)アーキテクチャに基づく省面積 かつ高性能なハードウェア IP コアを提案し,DSP アプリケーションに適用 することを目的としている.LUT ベースの IP コアおよびこれらに基づいた 新しい計算システムを提案した.ここで,提案する計算システムには,従来 の演算と提案する IP コアを含む.提案する IP コアには,乗算や二乗計算等 の基本演算と,正弦関数や対数・真数計算等の初等関数が含まれる. まず初めに,高効率な LUT 乗算器および二乗回路の設計を目的として, 2つの方法を提案した.1つは,全幅結果が不要な場合に DSP に応用可能 な打切り定数乗算器である.このアーキテクチャには,LUT ベースの計算と DSP 用の打切り定数乗算器という2つのアプローチを組み合わせた.最適な パラメータと LUT の内容を探索するために,LUT 最適化アルゴリズムの検 討を行った.さらに,固定幅二乗回路向けに LUT ハイブリッドアーキテク チャを改良した.この技術は,二乗回路における性能,誤計算率,複雑さの 間の妥協点を見いだすために,LUT 論理回路と従来の論理回路の両方を採用 したものである. 初等関数の計算については,LUT ベースの計算と線形差分法を組み合わせ て,2つのアーキテクチャを提案した.1つは,ディジタル周波数合成器, 適応信号処理技術および正弦関数生成器に利用可能な正弦関数計算のために, 線形差分法を改良したものである.他の方法と比較して誤計算率が変わらな い一方で,LUT の規模と複雑さを抑える最適パラメータを探索するために数 値解析と最適化を行った.その他に,対数計算および真数計算向けに,疑似
    [Show full text]
  • An Optimization of CORDIC Algorithm and FPGA Implementation
    International Journal of Hybrid Information Technology Vol.8, No.6 (2015), pp.217-228 http://dx.doi.org/10.14257/ijhit.2015.8.6.21 An Optimization of CORDIC Algorithm and FPGA Implementation Rui Xua, Zhanpeng Jiangb, Hai Huangc, Changchun Dongd Department of Integrated circuits design and integrated systems,Harbin University of Science and Technology ,Harbin, Heilongjiang, China [email protected], b [email protected], [email protected] [email protected] Abstract ASIC and FPGA ASIC and FPGA are considered to be the ideal platform for special fast calculations because of the hardware structure, and how to achieve computational algorithm by is the hotpot of research. The CORDIC (Coordinate Rotational Digital Computer) can break the basis functions down to operations of shift and addition or subtraction, which can be used to lay the foundation for the realization of complex logic. But the functions selected by traditional CODIC for angle encoding are too complex, which will lead to some problems, such as too much of area consumption and large delay. In this paper, an optimization of CORDIC algorithm are proposed, which reduce the consumption of Adders and comparators, decrease the complexity and delay of the algorithm implement in hardware. The proposed algorithms are modeled in Verilog Hardware Description Language and implemented with FPGA. The simulation results show that the functions of sine and cosine are realized successfully, and the proposed algorithm not only improves the computation speed but also reduces
    [Show full text]
  • FPGA Technology in Beam Instrumentation and Related Tools
    FPGA technology in beam instrumentation and related tools Javier Serrano CERN, Geneva, Switzerland DIPAC 2005. Lyon, France. 7 June 2005. Plan of the presentation z FPGA architecture basics z FPGA design flow z Performance boosting techniques z Doing arithmetic with FPGAs z Example: RF cavity control in CERN’s Linac 3. DIPAC 2005. Lyon, France. 7 June 2005. A preamble: basic digital design Clk [31:0] DataInB[31:0] [31:0] D[31:0] Q[31:0] [31:0] D[0] Q[0] [31:0] 0 dataBC[31:0] dataSelectC [31:0] [31:0] [31:0] D[31:0] Q[31:0] [31:0] DataOut[31:0] DataSelect [31:0] 1 DataOut[31:0] DataOut_3[31:0] [31:0] High clock rate: [31:0] + [31:0] sum[31:0] DataInA[31:0] [31:0] D[31:0] Q[31:0] 144.9 MHz on a [31:0] [31:0] 6.90 ns dataAC[31:0] Xilinx Spartan IIE. DataSelect D[0] Q[0] D[0] Q[0] dataSelectC dataSelectCD1 Clk [31:0] D[31:0] Q[31:0] [31:0] 0 [31:0] [31:0] [31:0] [31:0] DataInB[31:0] [31:0] D[31:0] Q[31:0] [31:0] [31:0] D[31:0] Q[31:0] [31:0] DataOut[31:0] dataACd1[31:0] [31:0] 1 dataBC[31:0] DataOut[31:0] DataOut_3[31:0] Higher clock rate: [31:0] [31:0] + [31:0] D[31:0] Q[31:0] [31:0] DataInA[31:0] [31:0] D[31:0] Q[31:0] [31:0] 151.5 MHz on the [31:0] [31:0] sum_1[31:0] sum[31:0] dataAC[31:0] 6.60 ns same chip.
    [Show full text]
  • A Unified Reconfigurable CORDIC Processor for Floating-Point Arithmetic
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 June 2018 doi:10.20944/preprints201806.0393.v1 Article A Unified Reconfigurable CORDIC Processor for Floating-Point Arithmetic Linlin Fang 1, Bingyi Li 1, Yizhuang Xie 1,* and He Chen 1 1 Beijing Key Laboratory of Embedded Real-time Information Processing Technology, Beijing Institute of Technology, Beijing 100081, China; [email protected] (L.F.); [email protected] (B.L.); [email protected] (Y.X.); [email protected] (H.C.) * Correspondence: [email protected]; Tel.: +86-156-5279-7282 Abstract: This paper presents a unified reconfigurable coordinate rotation digital computer (CORDIC) processor for floating-point arithmetic. It can be configured to operate in multi-mode to achieve a variety of operations and replaces multiple single-mode CORDIC processors. A reconfigurable pipeline-parallel mixed architecture is proposed to adapt different operations, which maximizes the sharing of common hardware circuit and achieves the area-delay-efficiency. Compared with previous unified floating-point CORDIC processors, the consumption of hardware resources is greatly reduced. As a proof of concept, we apply it to 16384 16384 points target Synthetic Aperture Radar (SAR) imaging system, which is implemented on Xilinx XC7VX690T FPGA platform. The maximum relative error of each phase function between hardware and software computation and the corresponding SAR imaging result can meet the accuracy index requirements. Keywords: reconfigurable architecture; CORDIC; Field Programmable Gate Array(FPGA); SAR imaging 1. Introduction The CORDIC algorithm involves a simple shift-and-add iterative procedure to perform several computing tasks. It can execute the rotation of a two-dimensional (2-D) vector in linear, circular, and hyperbolic coordinates systems [1].
    [Show full text]