Numerical Linear Algebra Revised February 15, 2010 4.1 the LU

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Linear Algebra Revised February 15, 2010 4.1 the LU Numerical Linear Algebra Revised February 15, 2010 4.1 The LU Decomposition The Elementary Matrices and badgauss In the previous chapters we talked a bit about the solving systems of the form Lx = b and Ux = b where L is lower triangular and U is upper triangular. In the exercises for Chapter 2 you were asked to write a program x=lusolver(L,U,b) which solves LUx = b using forsub and backsub. We now address the problem of representing a matrix A as a product of a lower triangular L and an upper triangular U: Recall our old friend badgauss. function B=badgauss(A) m=size(A,1); B=A; for i=1:m-1 for j=i+1:m a=-B(j,i)/B(i,i); B(j,:)=a*B(i,:)+B(j,:); end end The heart of badgauss is the elementary row operation of type 3: B(j,:)=a*B(i,:)+B(j,:); where a=-B(j,i)/B(i,i); Note also that the index j is greater than i since the loop is for j=i+1:m As we know from linear algebra, an elementary opreration of type 3 can be viewed as matrix multipli- cation EA where E is an elementary matrix of type 3. E looks just like the identity matrix, except that E(j; i) = a where j; i and a are as in the MATLAB code above. In particular, E is a lower triangular matrix, moreover the entries on the diagonal are 1's. We call such a matrix unit lower triangular. Theorem. 1. The product of (unit) lower triangular matrices is (unit) lower triangular. 2. The inverse of a (unit)lower triangular matrix is (unit) lower triangular. From badgauss we can conclude the following: Lk :::L1A = U where Lk :::L1 is a sequence of unit lower triangular matrices (in fact elementary matrices of type 3.) The −1 product of these is unit lower triangular and so is the inverse, thus letting L = (Lk :::L1) ; we get A = LU: There is an easier and more efficient way to get L: It turns out that L(j; i) = −a where a is given in the badgauss code above. Row Switching The necessity of row switching is seen in badgauss to avoid division by 0. It turns out that it is necessary to perform row interchanges for numerical reasons as well. Consider the following example of Forsythe and Moler. ulp 1 x 1 = 1 1 y 2 1 where u=ulp. The exact answer is 1 1 − 2ulp x = y = 1 − ulp 1 − ulp Rounding gives the respectable answer, x = 1 and y = 1: See if MATLAB agrees with this answer. Now suppose that we run badgauss on [A; b]; then we get ulp 1 1 0 −1=ulp −1=ulp Which gives the answer x = 0 and y = 1 by back substitution. What is the relative error of this answer? 1 0 k − k 1 1 2 1 k k 1 2 Now switch the first and second rows of [A; b] and run badgauss again. You should get 1 1 2 0 1 1 Which gives x = 1 and y = 1 by back substitution, an excellent answer. An approach to correcting this type of error is the partial pivoting strategy. Look at the badgauss code on the previous page. On the ith iteration of the Gaussian Elimination instead of automatically pivoting on B(i; i), choose k ≥ i where jB(k; i)j = max(jB(i : n; i)j) and pivot on B(k; i) instead (this will be B(j; j) after a row switch.) We are faced with the prospect of row interchanges, i.e. multiplication by elementary matrices of type 1. This will kill the possibility of L being lower triangular. The way out of this is by keeping track of all the row switches. A permutation matrix is a product of row switching matrices. Permutation matrices are easily identifiable as each row and each column has exactly on 1 and the other entries in the row or column are 0. The PLU Decomposition combines the row switching with the LU Decomposition. Theorem. The PLU Decomposition. If A is an n × n matrix then there is a permutation matrix P; a unit lower triangular matrix L and an upper triangular matrix U such that PA = LU MATLAB has a function which computes the LU Decomposition. A=ones(5)+diag(1:5) [L,U]=lu(A), A-L*U The lower triangular matrix L obtained always has 1's on the main diagonal. This permits a storage method which holds U on and above the diagonal and L below the diagonal. The call B=lu(A) will return a matrix B which stores L and U in this manner. The call [L,U]=lu(A) will return two matrices; with U an upper triangular matrix though the L will not necessarily be lower triangular { the rows need to be permuted. But it is the case that A=L*U. B=lu(A) triu(B)-U 2 (-tril(B,-1)+eye(5))- L But notice that L may not be lower triangular A=magic(5); [L,U]=lu(A) By permuting the rows of L we can make it into a lower triangular matrix. MATLAB will do a PLU Decomposition with [L,U,P]=lu(A) P*A-L*U We solve a system of equations using the PLU Decomposition in basically the same way as with an LU Decomposition. Suppose that PA = LU and Ax = b is to be solved, then A = P −1LU. Now solve Ly = P b and Ux = y, then Ax = P −1LUx = P −1Ly = P −1P b = b: 4.2 The QR Decomposition The QR Decomposition factors a matrix A as A = QR where Q is orthogonal and R is upper triangular. If the matrix A has linearly independent columns, then n ≥ m; and using the Gram-Schmidt process, we can find an m × n orthogonal matrix using B=grmsch(A) and an n × n upper triangular matrix R: In general given any A we can find using either Householder reflections or Givens rotations an m×m orthogonal matrix Q and an m × n upper triangular matrix R: We will do both versions of the QR decomposition. Gram Schmidt QR The Gram-Schmidt process is the following: Given vectors v1; : : : ; vn which are linearly independent, u1 = v1=kv1k for i = 2 : n w = vi for j = 1 : i − 1 w = w − (vi · uj)uj end ui = w=kwk end We have deliberately written Gram-Schmidt in this pseudo-code rather than MATLAB to highlight the dot product in the inner loop. Now if we solve for vi in this we see that vi = kwkui + (vi · u1)u1 + ::: + (vi · ui−1)ui−1 Or in matrix form if we let Q = [u1; : : : ; un]; and define ( ui · vj if j > i R(i; j) = kwk if j = i 0 if j < i then it is easy to check that A = QR: Note that if we know Q; then it is easy to find R by multiplying both sides by QT ; to get R = QT A: This would be an inefficient way to compute R: Using the Gram-Schmidt QR we can solve the Least Squares problem for Ax = b by looking at the normal equations: AT Ax = AT b; AT Ax = RT QT QRx = RT Rx = RT QT b 3 And clearly the solution to Rx = QT b will solve this equation. Use backsub to solve Rx = QT b: Modified Gram Schmidt The Gram Schmidt algorithm is unstable for certain matrices (see the Project) but a rather minor rearrangement of the computation will greatly improve the accuracy. The Modified Gram Schmidt method is the following: Again assuming v1; : : : vn are linearly independent. for i = 1 : n − 1 ui = vi=kvik for j = i + 1 : n vj = vj − (vj · ui)ui end end un = vn=kvnk The result of using the modified Gram Schmidt method will produce an m × n orthogonal matrix Q: The upper triangular matrix R comes from the basic projection relation Pi−1 w = vi − k=1(vi · uk)uk ui = w=kwk Which under the Modified Gram Schmidt arrangement becomes Pi−1 vi = k=1(vi · uk)uk + kvikui Thus, R(i; j) = vj · ui; while R(i; i) = kvik: Givens QR A Givens rotation, is arrived at by starting with an identity matrix G = I and assigning G(i; i) = c; G(i; j) = s; G(j; i) = −s; and G(j; j) = c where c2 + s2 = 1: Call this matrix givrot(n; i; j; c; s): This produces a rotation in the ij−plane. Theorem. G = givrot(n; i; j; c; s) is an orthogonal matrix. The method is based on the fact that a Givens rotation affects only entries in rows i and j: Theorem. For any vector v and integers i < j there is a Givens rotation G such that for w = Gv, w(j) = 0 and w(k) = v(k) for all k 6= i; j. Proof: Since Gv changes only the i and j entries, we get w(k) = v(k) for k 6= i; j: To get w(j) = 0 we simply need to solve these equations for c and s −sv(i) + cv(j) = 0 c2 + s2 = 1: Let v(j) v(i) s = and c = pv(i)2 + v(j)2 pv(i)2 + v(j)2 Suppose that we have v=rand(5,1) and we want to zero out the entry in the third position using the entry in the second position.
Recommended publications
  • 2 Homework Solutions 18.335 " Fall 2004
    2 Homework Solutions 18.335 - Fall 2004 2.1 Count the number of ‡oating point operations required to compute the QR decomposition of an m-by-n matrix using (a) Householder re‡ectors (b) Givens rotations. 2 (a) See Trefethen p. 74-75. Answer: 2mn2 n3 ‡ops. 3 (b) Following the same procedure as in part (a) we get the same ‘volume’, 1 1 namely mn2 n3: The only di¤erence we have here comes from the 2 6 number of ‡opsrequired for calculating the Givens matrix. This operation requires 6 ‡ops (instead of 4 for the Householder re‡ectors) and hence in total we need 3mn2 n3 ‡ops. 2.2 Trefethen 5.4 Let the SVD of A = UV : Denote with vi the columns of V , ui the columns of U and i the singular values of A: We want to …nd x = (x1; x2) and such that: 0 A x x 1 = 1 A 0 x2 x2 This gives Ax2 = x1 and Ax1 = x2: Multiplying the 1st equation with A 2 and substitution of the 2nd equation gives AAx2 = x2: From this we may conclude that x2 is a left singular vector of A: The same can be done to see that x1 is a right singular vector of A: From this the 2m eigenvectors are found to be: 1 v x = i ; i = 1:::m p2 ui corresponding to the eigenvalues = i. Therefore we get the eigenvalue decomposition: 1 0 A 1 VV 0 1 VV = A 0 p2 U U 0 p2 U U 3 2.3 If A = R + uv, where R is upper triangular matrix and u and v are (column) vectors, describe an algorithm to compute the QR decomposition of A in (n2) time.
    [Show full text]
  • QR Decomposition: History and Its Applications
    Mathematics & Statistics Auburn University, Alabama, USA QR History Dec 17, 2010 Asymptotic result QR iteration QR decomposition: History and its EE Applications Home Page Title Page Tin-Yau Tam èèèUUUÎÎÎ JJ II J I Page 1 of 37 Æâ§w Go Back fÆêÆÆÆ Full Screen Close email: [email protected] Website: www.auburn.edu/∼tamtiny Quit 1. QR decomposition Recall the QR decomposition of A ∈ GLn(C): QR A = QR History Asymptotic result QR iteration where Q ∈ GLn(C) is unitary and R ∈ GLn(C) is upper ∆ with positive EE diagonal entries. Such decomposition is unique. Set Home Page a(A) := diag (r11, . , rnn) Title Page where A is written in column form JJ II J I A = (a1| · · · |an) Page 2 of 37 Go Back Geometric interpretation of a(A): Full Screen rii is the distance (w.r.t. 2-norm) between ai and span {a1, . , ai−1}, Close i = 2, . , n. Quit Example: 12 −51 4 6/7 −69/175 −58/175 14 21 −14 6 167 −68 = 3/7 158/175 6/175 0 175 −70 . QR −4 24 −41 −2/7 6/35 −33/35 0 0 35 History Asymptotic result QR iteration EE • QR decomposition is the matrix version of the Gram-Schmidt orthonor- Home Page malization process. Title Page JJ II • QR decomposition can be extended to rectangular matrices, i.e., if A ∈ J I m×n with m ≥ n (tall matrix) and full rank, then C Page 3 of 37 A = QR Go Back Full Screen where Q ∈ Cm×n has orthonormal columns and R ∈ Cn×n is upper ∆ Close with positive “diagonal” entries.
    [Show full text]
  • A Fast Algorithm for the Recursive Calculation of Dominant Singular Subspaces N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 218 (2008) 238–246 www.elsevier.com/locate/cam A fast algorithm for the recursive calculation of dominant singular subspaces N. Mastronardia,1, M. Van Barelb,∗,2, R. Vandebrilb,2 aIstituto per le Applicazioni del Calcolo, CNR, via Amendola122/D, 70126, Bari, Italy bDepartment of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium Received 26 September 2006 Abstract In many engineering applications it is required to compute the dominant subspace of a matrix A of dimension m × n, with m?n. Often the matrix A is produced incrementally, so all the columns are not available simultaneously. This problem arises, e.g., in image processing, where each column of the matrix A represents an image of a given sequence leading to a singular value decomposition-based compression [S. Chandrasekaran, B.S. Manjunath, Y.F. Wang, J. Winkeler, H. Zhang, An eigenspace update algorithm for image analysis, Graphical Models and Image Process. 59 (5) (1997) 321–332]. Furthermore, the so-called proper orthogonal decomposition approximation uses the left dominant subspace of a matrix A where a column consists of a time instance of the solution of an evolution equation, e.g., the flow field from a fluid dynamics simulation. Since these flow fields tend to be very large, only a small number can be stored efficiently during the simulation, and therefore an incremental approach is useful [P. Van Dooren, Gramian based model reduction of large-scale dynamical systems, in: Numerical Analysis 1999, Chapman & Hall, CRC Press, London, Boca Raton, FL, 2000, pp.
    [Show full text]
  • Lecture 4: Applications of Orthogonality: QR Decompositions Week 4 UCSB 2014
    Math 108B Professor: Padraic Bartlett Lecture 4: Applications of Orthogonality: QR Decompositions Week 4 UCSB 2014 In our last class, we described the following method for creating orthonormal bases, known as the Gram-Schmidt method: ~ ~ Theorem. Suppose that V is a k-dimensional space with a basis B = fb1;::: bkg. The following process (called the Gram-Schmidt process) creates an orthonormal basis for V : 1. First, create the following vectors f ~v1; : : : ~vkg: • ~u1 = b~1: • ~u2 = b~2 − proj(b~2 onto ~u1). • ~u3 = b~3 − proj(b~3 onto ~u1) − proj(b~3 onto ~u2). • ~u4 = b~4 − proj(b~4 onto ~u1) − proj(b~4 onto ~u2) − proj(b~4 onto ~u3). ~ ~ ~ • ~uk = bk − proj(bk onto ~u1) − ::: − proj(bk onto k~u −1). 2. Now, take each of the vectors ~ui, and rescale them so that they are unit length: i.e. ~ui redefine each ~ui as the rescaled vector . jj ~uijj In this class, I want to talk about a useful application of the Gram-Schmidt method: the QR decomposition! We define this here: 1 The QR decomposition Definition. We say that an n×n matrix Q is orthogonal if its columns form an orthonor- n mal basis for R . As a side note: we've studied these matrices before! In class on Friday, we proved that for any such matrix, the relation QT · Q = I held; to see this, we just looked at the (i; j)-th entry of the product QT · Q, which by definition was the i-th row of QT dotted with the j-th column of A.
    [Show full text]
  • Massively Parallel Poisson and QR Factorization Solvers
    Computers Math. Applic. Vol. 31, No. 4/5, pp. 19-26, 1996 Pergamon Copyright~)1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0898-1221/96 $15.00 + 0.00 0898-122 ! (95)00212-X Massively Parallel Poisson and QR Factorization Solvers M. LUCK£ Institute for Control Theory and Robotics, Slovak Academy of Sciences DdbravskA cesta 9, 842 37 Bratislava, Slovak Republik utrrluck@savba, sk M. VAJTERSIC Institute of Informatics, Slovak Academy of Sciences DdbravskA cesta 9, 840 00 Bratislava, P.O. Box 56, Slovak Republic kaifmava©savba, sk E. VIKTORINOVA Institute for Control Theoryand Robotics, Slovak Academy of Sciences DdbravskA cesta 9, 842 37 Bratislava, Slovak Republik utrrevka@savba, sk Abstract--The paper brings a massively parallel Poisson solver for rectangle domain and parallel algorithms for computation of QR factorization of a dense matrix A by means of Householder re- flections and Givens rotations. The computer model under consideration is a SIMD mesh-connected toroidal n x n processor array. The Dirichlet problem is replaced by its finite-difference analog on an M x N (M + 1, N are powers of two) grid. The algorithm is composed of parallel fast sine transform and cyclic odd-even reduction blocks and runs in a fully parallel fashion. Its computational complexity is O(MN log L/n2), where L = max(M + 1, N). A parallel proposal of QI~ factorization by the Householder method zeros all subdiagonal elements in each column and updates all elements of the given submatrix in parallel. For the second method with Givens rotations, the parallel scheme of the Sameh and Kuck was chosen where the disjoint rotations can be computed simultaneously.
    [Show full text]
  • A Fast and Accurate Matrix Completion Method Based on QR Decomposition and L 2,1-Norm Minimization Qing Liu, Franck Davoine, Jian Yang, Ying Cui, Jin Zhong, Fei Han
    A Fast and Accurate Matrix Completion Method based on QR Decomposition and L 2,1-Norm Minimization Qing Liu, Franck Davoine, Jian Yang, Ying Cui, Jin Zhong, Fei Han To cite this version: Qing Liu, Franck Davoine, Jian Yang, Ying Cui, Jin Zhong, et al.. A Fast and Accu- rate Matrix Completion Method based on QR Decomposition and L 2,1-Norm Minimization. IEEE Transactions on Neural Networks and Learning Systems, IEEE, 2019, 30 (3), pp.803-817. 10.1109/TNNLS.2018.2851957. hal-01927616 HAL Id: hal-01927616 https://hal.archives-ouvertes.fr/hal-01927616 Submitted on 20 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Page 1 of 20 1 1 2 3 A Fast and Accurate Matrix Completion Method 4 5 based on QR Decomposition and L -Norm 6 2,1 7 8 Minimization 9 Qing Liu, Franck Davoine, Jian Yang, Member, IEEE, Ying Cui, Zhong Jin, and Fei Han 10 11 12 13 14 Abstract—Low-rank matrix completion aims to recover ma- I. INTRODUCTION 15 trices with missing entries and has attracted considerable at- tention from machine learning researchers.
    [Show full text]
  • Notes on Orthogonal Projections, Operators, QR Factorizations, Etc. These Notes Are Largely Based on Parts of Trefethen and Bau’S Numerical Linear Algebra
    Notes on orthogonal projections, operators, QR factorizations, etc. These notes are largely based on parts of Trefethen and Bau’s Numerical Linear Algebra. Please notify me of any typos as soon as possible. 1. Basic lemmas and definitions Throughout these notes, V is a n-dimensional vector space over C with a fixed Her- mitian product. Unless otherwise stated, it is assumed that bases are chosen so that the Hermitian product is given by the conjugate transpose, i.e. that (x, y) = y∗x where y∗ is the conjugate transpose of y. Recall that a projection is a linear operator P : V → V such that P 2 = P . Its complementary projection is I − P . In class we proved the elementary result that: Lemma 1. Range(P ) = Ker(I − P ), and Range(I − P ) = Ker(P ). Another fact worth noting is that Range(P ) ∩ Ker(P ) = {0} so the vector space V = Range(P ) ⊕ Ker(P ). Definition 1. A projection is orthogonal if Range(P ) is orthogonal to Ker(P ). Since it is convenient to use orthonormal bases, but adapt them to different situations, we often need to change basis in an orthogonality-preserving way. I.e. we need the following type of operator: Definition 2. A nonsingular matrix Q is called an unitary matrix if (x, y) = (Qx, Qy) for every x, y ∈ V . If Q is real, it is called an orthogonal matrix. An orthogonal matrix Q can be thought of as an orthogonal change of basis matrix, in which each column is a new basis vector. Lemma 2.
    [Show full text]
  • GRAM SCHMIDT and QR FACTORIZATION Math 21B, O. Knill
    GRAM SCHMIDT AND QR FACTORIZATION Math 21b, O. Knill GRAM-SCHMIDT PROCESS. Let ~v1; : : : ;~vn be a basis in V . Let ~w1 = ~v1 and ~u1 = ~w1=jj~w1jj. The Gram-Schmidt process recursively constructs from the already constructed orthonormal set ~u1; : : : ; ~ui−1 which spans a linear space Vi−1 the new vector ~wi = (~vi − projVi−1 (~vi)) which is orthogonal to Vi−1, and then normalizes ~wi to get ~ui = ~wi=jj~wijj. Each vector ~wi is orthonormal to the linear space Vi−1. The vectors f~u1; : : : ; ~un g form then an orthonormal basis in V . EXAMPLE. 2 2 3 2 1 3 2 1 3 Find an orthonormal basis for ~v1 = 4 0 5, ~v2 = 4 3 5 and ~v3 = 4 2 5. 0 0 5 SOLUTION. 2 1 3 1. ~u1 = ~v1=jj~v1jj = 4 0 5. 0 2 0 3 2 0 3 3 1 2. ~w2 = (~v2 − projV1 (~v2)) = ~v2 − (~u1 · ~v2)~u1 = 4 5. ~u2 = ~w2=jj~w2jj = 4 5. 0 0 2 0 3 2 0 3 0 0 3. ~w3 = (~v3 − projV2 (~v3)) = ~v3 − (~u1 · ~v3)~u1 − (~u2 · ~v3)~u2 = 4 5, ~u3 = ~w3=jj~w3jj = 4 5. 5 1 QR FACTORIZATION. The formulas can be written as ~v1 = jj~v1jj~u1 = r11~u1 ··· ~vi = (~u1 · ~vi)~u1 + ··· + (~ui−1 · ~vi)~ui−1 + jj~wijj~ui = r1i~u1 + ··· + rii~ui ··· ~vn = (~u1 · ~vn)~u1 + ··· + (~un−1 · ~vn)~un−1 + jj~wnjj~un = r1n~u1 + ··· + rnn~un which means in matrix form 2 3 2 3 2 3 j j · j j j · j r11 r12 · r1n A = 4 ~v1 ···· ~vn 5 = 4 ~u1 ···· ~un 5 4 0 r22 · r2n 5 = QR ; j j · j j j · j 0 0 · rnn where A and Q are m × n matrices and R is a n × n matrix which has rij = ~vj · ~ui, for i < j and vii = j~vij THE GRAM-SCHMIDT PROCESS PROVES: Any matrix A with linearly independent columns ~vi can be decomposed as A = QR, where Q has orthonormal column vectors and where R is an upper triangular square matrix with the same number of columns than A.
    [Show full text]
  • QR Decomposition on Gpus
    QR Decomposition on GPUs Andrew Kerr, Dan Campbell, Mark Richards Georgia Institute of Technology, Georgia Tech Research Institute {andrew.kerr, dan.campbell}@gtri.gatech.edu, [email protected] ABSTRACT LU, and QR decomposition, however, typically require ¯ne- QR decomposition is a computationally intensive linear al- grain synchronization between processors and contain short gebra operation that factors a matrix A into the product of serial routines as well as massively parallel operations. Achiev- a unitary matrix Q and upper triangular matrix R. Adap- ing good utilization on a GPU requires a careful implementa- tive systems commonly employ QR decomposition to solve tion informed by detailed understanding of the performance overdetermined least squares problems. Performance of QR characteristics of the underlying architecture. decomposition is typically the crucial factor limiting problem sizes. In this paper, we focus on QR decomposition in particular and discuss the suitability of several algorithms for imple- Graphics Processing Units (GPUs) are high-performance pro- mentation on GPUs. Then, we provide a detailed discussion cessors capable of executing hundreds of floating point oper- and analysis of how blocked Householder reflections may be ations in parallel. As commodity accelerators for 3D graph- used to implement QR on CUDA-compatible GPUs sup- ics, GPUs o®er tremendous computational performance at ported by performance measurements. Our real-valued QR relatively low costs. While GPUs are favorable to applica- implementation achieves more than 10x speedup over the tions with much inherent parallelism requiring coarse-grain native QR algorithm in MATLAB and over 4x speedup be- synchronization between processors, methods for e±ciently yond the Intel Math Kernel Library executing on a multi- utilizing GPUs for algorithms computing QR decomposition core CPU, all in single-precision floating-point.
    [Show full text]
  • How Unique Is QR? Full Rank, M = N
    LECTUREAPPENDIX · purdue university cs 51500 Kyle Kloster matrix computations October 12, 2014 How unique is QR? Full rank, m = n In class we looked at the special case of full rank, n × n matrices, and showed that the QR decomposition is unique up to a factor of a diagonal matrix with entries ±1. Here we'll see that the other full rank cases follow the m = n case somewhat closely. Any full rank QR decomposition involves a square, upper- triangular partition R within the larger (possibly rectangular) m × n matrix. The gist of these uniqueness theorems is that R is unique, up to multiplication by a diagonal matrix of ±1s; the extent to which the orthogonal matrix is unique depends on its dimensions. Theorem (m = n) If A = Q1R1 = Q2R2 are two QR decompositions of full rank, square A, then Q2 = Q1S R2 = SR1 for some square diagonal S with entries ±1. If we require the diagonal entries of R to be positive, then the decomposition is unique. Theorem (m < n) If A = Q1 R1 N 1 = Q2 R2 N 2 are two QR decom- positions of a full rank, m × n matrix A with m < n, then Q2 = Q1S; R2 = SR1; and N 2 = SN 1 for square diagonal S with entries ±1. If we require the diagonal entries of R to be positive, then the decomposition is unique. R R Theorem (m > n) If A = Q U 1 = Q U 2 are two QR 1 1 0 2 2 0 decompositions of a full rank, m × n matrix A with m > n, then Q2 = Q1S; R2 = SR1; and U 2 = U 1T for square diagonal S with entries ±1, and square orthogonal T .
    [Show full text]
  • The Sparse Matrix Transform for Covariance Estimation and Analysis of High Dimensional Signals
    The Sparse Matrix Transform for Covariance Estimation and Analysis of High Dimensional Signals Guangzhi Cao*, Member, IEEE, Leonardo R. Bachega, and Charles A. Bouman, Fellow, IEEE Abstract Covariance estimation for high dimensional signals is a classically difficult problem in statistical signal analysis and machine learning. In this paper, we propose a maximum likelihood (ML) approach to covariance estimation, which employs a novel non-linear sparsity constraint. More specifically, the covariance is constrained to have an eigen decomposition which can be represented as a sparse matrix transform (SMT). The SMT is formed by a product of pairwise coordinate rotations known as Givens rotations. Using this framework, the covariance can be efficiently estimated using greedy optimization of the log-likelihood function, and the number of Givens rotations can be efficiently computed using a cross- validation procedure. The resulting estimator is generally positive definite and well-conditioned, even when the sample size is limited. Experiments on a combination of simulated data, standard hyperspectral data, and face image sets show that the SMT-based covariance estimates are consistently more accurate than both traditional shrinkage estimates and recently proposed graphical lasso estimates for a variety of different classes and sample sizes. An important property of the new covariance estimate is that it naturally yields a fast implementation of the estimated eigen-transformation using the SMT representation. In fact, the SMT can be viewed as a generalization of the classical fast Fourier transform (FFT) in that it uses “butterflies” to represent an orthonormal transform. However, unlike the FFT, the SMT can be used for fast eigen-signal analysis of general non-stationary signals.
    [Show full text]
  • Coded QR Decomposition
    Coded QR Decomposition Quang Minh Nguyen1, Haewon Jeong2 and Pulkit Grover2 1 Department of Computer Science, National University of Singapore 2 Department of Electrical and Computer Engineering, Carnegie Mellon University Abstract—QR decomposition of a matrix is one of the essential • Previous works in ABFT for QR decomposition studied operations that is used for solving linear equations and finding applying coding on the Householder algorithm or the least-squares solutions. We propose a coded computing strategy Givens Rotation algorithm. Our work is the first to for parallel QR decomposition with applications to solving a full- rank square system of linear equations in a high-performance consider applying coding on the Gram-Schmidt algo- computing system. Our strategy is applied to the parallel Gram- rithm (and its variants). We show that using our strategy Schmidt algorithm, which is one of the three commonly used throughout the Gram-Schmidt algorithm1, vertical/hori- algorithms for QR decomposition. Conventional coding strategies zontal checksum structures are preserved (Section III). cannot preserve the orthogonality of Q. We prove a condition for • Simply applying linear coding cannot protect the Q-factor a checksum-generator matrix to restore the degraded orthogo- nality of the decoded Q through low-cost post-processing, and as the orthogonality is not preserved after linear trans- construct a checksum-generator matrix for single-node failures. forms. To circumvent this issue, we propose an innovative We obtain the minimal number of checksums required for single- post-processing technique to restore the orthogonality of node failures under the “in-node checksum storage setting”, where the Q-factor after coding.
    [Show full text]