PLUMBAGO Plumbago Auriculata Characteristics Culture Noteworthy

Total Page:16

File Type:pdf, Size:1020Kb

PLUMBAGO Plumbago Auriculata Characteristics Culture Noteworthy PLUMBAGO Plumbago auriculata Characteristics Type: Broadleaf evergreen Bloom Time: Flowers freely Zone: 8 to 11 Flower: Showy Height: 1.00 to 3.00 feet Sun: Full sun to part shade Spread: 1.00 to 3.00 feet Water: Medium Bloom Color: Pale blue Maintenance: Medium Culture Winter hardy to USDA Zones 8-11 where it grows best in organically rich, fertile, well-drained soils in full sun to part shade. In cooler areas, grow in pots/containers which must be overwintered indoors. May be grown as a rounded shrub or trained with ties on a trellis as a vine. Site in locations protected from strong winds. During the growing season, it does best in consistently moist soils, but established plants are quite tolerant of some drought. When overwintering as a houseplant, bring indoors before first fall frost to a bright sunny room. Cut back stems hard in late winter to encourage new growth for the coming season. May be easily grown from seed, but plants generally will not flower until the second year. Noteworthy Characteristics Plumbago auriculata, commonly called cape leadwort or cape plumbago is a native to South Africa. It is a weak-stemmed perennial evergreen shrub that grows 6-7’ tall and 8-10’ wide in its native habitat. It more typically will grow 1-3’ per year and is often kept relatively compact through periodic prunings and/or a hard annual pruning. Features clusters (terminal racemes) of pale blue phlox-like flowers that bloom freely throughout the growing season. Flowers are followed by barbed fruit capsules. Oblong to oblanceolate green leaves (to 3” long) have ear-shaped bases, hence the species name. Ceratostigma plumbaginoides, a low-growing ground cover that is winter hardy, is in the same family as the within plant and is commonly called plumbago. Genus name comes from the Latin name derived from plumbum meaning lead and ago a termination of many Latin plant names used to indicate a resemblance or a property. Specific epithet refers to the ear-shaped bases of the leaves. Problems Watch for whiteflies, spider mites and mealy bugs on indoor plants. Garden Use Commonly grown in as a low hedge, ground cover or on fences. Can be grown in pots/containers for patios, decks or other sunny areas around the home or sink to the rim in garden areas. Houseplant. Courtesy of Missouri Botanical Society Plant Finder .
Recommended publications
  • Shrub List for Brighton 2010
    Shrub List For Brighton 2010 Large Shrubs 10’ -20’ Tall by 6’ – 25’ wide Acer ginnala Amur Maple Acer tataricum Tatarian Maple (better than Amur Maple) Acer grandidentatum Bigtooth Maple Amelanchier alnifolia Saskatoon Serviceberry Amelanchier canadensis Shadblow Serviceberry Caragana arborescens Siberian Peashrub Cercocarpus ledifolius Mountain Mahogany Cotoneaster lucidus Peking Cotoneaster Cowania mexicana Quince Bush, Cliffrose Crataefus ambigua Russian Hawthorn Forestiera neomexicana New Mexican Privet Hippophae rhamnoides Sea Buckthorn Juniperus species Juniper Kolkwitzia amabilis Beauty Bush Pinus mugo Mugo Pine species Prunus americana American Plum Prunus virginiana ‘Shubert’ Canada Red Chokecherry Ptelea trifoliata Wafer Ash or Hop tree Quercus gambelii Gambel Oak Rhus typhina Staghorn Sumac Robinia neomexicana New Mexico Locust Sambucus species Elders Shepherdia argentea Buffaloberry Syringa vulgaris Common Lilac Viburnum lantana Wayfaring Tree, Viburnum Medium Size Shrubs >10’ high by >8’ wide Amorpha fruticosa False Indigo Atriplex canescens Fourwing Saltbush Buddleia davidii Butterfly Bush Cercocarpus montanus Mountain Mahogany Chamaebatiaria millefolium Fernbush Chrysothamnus nauseosus Rubber Rabbitbrush Cornus sericea Redtwig Dogwood Cotinus coggygria Smoke Tree Cotoneaster species Cotoneaster Cytisus scoparius ‘Moonlight’ Moonlight Broom Euonymus alatus Burning Bush Forsythia x intermedia Forsythia Hibiscus syriacus Rose-of-Sharon Juniperus species Juniper Ligustrum vulgare Privet Lonicera species Honeysuckle Mahonia aquifolium Oregon Grape Holly Philadelphus species Mockorange Pyracantha coccinea Firethorn Physocarpus opulifolius Common Ninebark Prunus besseyi Western Sand Cherry Pyracantha coccinea species Firethorn Rhamnus frangula Glossy Buckthorn Ribes species Currant Sambucus species Elder Spiraea x vanhouttei Vanhouttei Spirea Symphoricarpos albus Snowberry Syringa meyeri „Palibin‟ Dwarf Korean Lilac Syringa patula „Miss Kim‟ Dwarf Lilac Viburnum species (dozens of different types) Small Size Shrubs > 5’ tall by >6.
    [Show full text]
  • Status of Insectivorous Plants in Northeast India
    Technical Refereed Contribution Status of insectivorous plants in northeast India Praveen Kumar Verma • Shifting Cultivation Division • Rain Forest Research Institute • Sotai Ali • Deovan • Post Box # 136 • Jorhat 785 001 (Assam) • India • [email protected] Jan Schlauer • Zwischenstr. 11 • 60594 Frankfurt/Main • Germany • [email protected] Krishna Kumar Rawat • CSIR-National Botanical Research Institute • Rana Pratap Marg • Lucknow -226 001 (U.P) • India Krishna Giri • Shifting Cultivation Division • Rain Forest Research Institute • Sotai Ali • Deovan • Post Box #136 • Jorhat 785 001 (Assam) • India Keywords: Biogeography, India, diversity, Red List data. Introduction There are approximately 700 identified species of carnivorous plants placed in 15 genera of nine families of dicotyledonous plants (Albert et al. 1992; Ellison & Gotellli 2001; Fleischmann 2012; Rice 2006) (Table 1). In India, a total of five genera of carnivorous plants are reported with 44 species; viz. Utricularia (38 species), Drosera (3), Nepenthes (1), Pinguicula (1), and Aldrovanda (1) (Santapau & Henry 1976; Anonymous 1988; Singh & Sanjappa 2011; Zaman et al. 2011; Kamble et al. 2012). Inter- estingly, northeastern India is the home of all five insectivorous genera, namely Nepenthes (com- monly known as tropical pitcher plant), Drosera (sundew), Utricularia (bladderwort), Aldrovanda (waterwheel plant), and Pinguicula (butterwort) with a total of 21 species. The area also hosts the “ancestral false carnivorous” plant Plumbago zelayanica, often known as murderous plant. Climate Lowland to mid-altitude areas are characterized by subtropical climate (Table 2) with maximum temperatures and maximum precipitation (monsoon) in summer, i.e., May to September (in some places the highest temperatures are reached already in April), and average temperatures usually not dropping below 0°C in winter.
    [Show full text]
  • Butterfly Plant List
    Butterfly Plant List Butterflies and moths (Lepidoptera) go through what is known as a * This list of plants is seperated by host (larval/caterpilar stage) "complete" lifecycle. This means they go through metamorphosis, and nectar (Adult feeding stage) plants. Note that plants under the where there is a period between immature and adult stages where host stage are consumed by the caterpillars as they mature and the insect forms a protective case/cocoon or pupae in order to form their chrysalis. Most caterpilars and mothswill form their transform into its adult/reproductive stage. In butterflies this case cocoon on the host plant. is called a Chrysilas and can come in various shapes, textures, and colors. Host Plants/Larval Stage Perennials/Annuals Vines Common Name Scientific Common Name Scientific Aster Asteracea spp. Dutchman's pipe Aristolochia durior Beard Tongue Penstamon spp. Passion vine Passiflora spp. Bleeding Heart Dicentra spp. Wisteria Wisteria sinensis Butterfly Weed Asclepias tuberosa Dill Anethum graveolens Shrubs Common Fennel Foeniculum vulgare Common Name Scientific Common Foxglove Digitalis purpurea Cape Plumbago Plumbago auriculata Joe-Pye Weed Eupatorium purpureum Hibiscus Hibiscus spp. Garden Nasturtium Tropaeolum majus Mallow Malva spp. Parsley Petroselinum crispum Rose Rosa spp. Snapdragon Antirrhinum majus Senna Cassia spp. Speedwell Veronica spp. Spicebush Lindera benzoin Spider Flower Cleome hasslerana Spirea Spirea spp. Sunflower Helianthus spp. Viburnum Viburnum spp. Swamp Milkweed Asclepias incarnata Trees Trees Common Name Scientific Common Name Scientific Birch Betula spp. Pine Pinus spp. Cherry and Plum Prunus spp. Sassafrass Sassafrass albidum Citrus Citrus spp. Sweet Bay Magnolia virginiana Dogwood Cornus spp. Sycamore Platanus spp. Hawthorn Crataegus spp.
    [Show full text]
  • Structure, Biology and Chemistry of Plumbago Auriculata (Plumbaginaceae)
    Structure, Biology and Chemistry of Plumbago auriculata (Plumbaginaceae) By Karishma Singh A dissertation submitted in partial fulfillment of the academic requirements for the degree of Doctor of Philosophy in Biolgical Sciences School of Life Sciences College of Agriculture, Engineering and Science University of Kwa-Zulu Natal Westville Durban South Africa 30 November 2017 i DEDICATION To my daughter Ardraya Naidoo, she has given me the strength and encouragement to excel and be a positive role model for her. “Laying Down the Footsteps She Can Be Proud To Follow” ii ABSTRACT Plumbago auriculata Lam. is endemic to South Africa and is often cultivated for its ornamental and medicinal uses throughout the world. Belonging to the family Plumbaginaceae this species contains specialized secretory structures on the leaves and calyces. This study focused on the micromorphological, chemical and biological aspects of the species. Micromorphological studies revealed the presence of salt glands on the adaxial and abaxial surface of leaves and two types of trichomes on the calyces. “Transefer cells” were reported for the first time in the genus. The secretory process of the salt glands was further enhanced by the presence of mitochondria, ribosomes, vacuoles, dictyosomes and rough endoplasmic reticulum cisternae. Histochemical and phytochemical studies revealed the presence of important secondary metabolites that possess many medicinal properties which were further analyzed by Gas chromatography-mass spectrometry (GC-MC) identifying the composition of compounds in the leaf and calyx extracts. A novel attempt at synthesizing silver nanoparticles proved leaf and calyx extracts to be efficient reducing and capping agents that further displayed good antibacterial activity against gram- positive and gram-negative bacteria.
    [Show full text]
  • Plants-Derived Biomolecules As Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences Against Coronaviruses
    plants Review Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses Arif Jamal Siddiqui 1,* , Corina Danciu 2,*, Syed Amir Ashraf 3 , Afrasim Moin 4 , Ritu Singh 5 , Mousa Alreshidi 1, Mitesh Patel 6 , Sadaf Jahan 7 , Sanjeev Kumar 8, Mulfi I. M. Alkhinjar 9, Riadh Badraoui 1,10,11 , Mejdi Snoussi 1,12 and Mohd Adnan 1 1 Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] (M.A.); [email protected] (R.B.); [email protected] (M.S.); [email protected] (M.A.) 2 Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania 3 Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 4 Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 5 Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India; [email protected] 6 Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India; [email protected] 7 Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma’ah 15341, Saudi Arabia; [email protected] 8 Department of Environmental Sciences, Central University of Jharkhand,
    [Show full text]
  • Attracts Sphinx Texas Discovery Gardens If Highlighted Yellow, Plant
    Texas Discovery Gardens If highlighted yellow, plant tolerates shade. SPRING 2019****! Apr.12 MembOnly, 13&14 Public Blue= NEW OFFERING! (N)ative Host/ Butterflies Plant Category # avail Common Name Botanic Name Height Sun Req. Plant Type (X)=Not Nectar Attracted Full Sun- Shrubs and Small Trees 1 X Chinese Abelia Abelia chinensis 4-8' part shade Evergreen N Full Sun- Shrubs and Small Trees 1 X Abelia 'Edward Goucher' Abelia X grandiflora 'EdGouc 4-8' part shade Evergreen N Shrubs and Small Trees 3 N Catclaw or Gregg's Acacia Acacia (Senegalia) greggii 25-50' Full Sun Deciduous N Acacia (Vachelia) Tropical Shrubs and Small Trees 17 X Whistling Thorn Acacia drepanolobium 18' Full Sun Deciduous N Full Sun- Perennial/D Perennials & Wildflowers Fern Acacia,Prairie Acacia Acacia angustissima 12-18" 2 N Part Sh ecid.GC N/H Mexican Yellow Shrubs and Small Trees 17 N Sweet Acacia, Huisache Acacia farnesiana (A. smallii) 30' Full Sun Deciduous N Full Sun- Tropical/Tender Perennial 12 X Chenille Plant Acalypha hispida 2-6' Part Sh Tropical Achillea filipendula X Perennials & Wildflowers 84 X Yarrow 'Moonshine' clypeolata 2.5' - 3' Full Sun Perennial YarrowFernleaf 'Summer Achillea millefolium 'Summer Full Sun- Painted Lady Perennials & Wildflowers 12 N Pastels' Pastels' 40'' Shade Perennial N/H Acleisanthes (angustifolia) Berlandier's Trumpets 3-6' Partial Sun Perennial Vines 2 N obtusa N Attracts Sphinx Silvery Actinomeris (SEE Verbesina) Full Sun- Wingstem 3-8' Perennial Checkerspot, alternifolia Part Sh Perennials & Wildflowers SEE N H Bordered
    [Show full text]
  • Effect of Growth Regulators in Callus Induction, Plumbagin Content and Indirect Organogenesis of Plumbago Zeylanica
    International Journal of Pharmacy and Pharmaceutical Sciences Academic Sciences ISSN- 0975-1491 Vol 4, Suppl 1, 2012 Research Article EFFECT OF GROWTH REGULATORS IN CALLUS INDUCTION, PLUMBAGIN CONTENT AND INDIRECT ORGANOGENESIS OF PLUMBAGO ZEYLANICA LUBAINA A.S, MURUGAN K Plant Biochemistry and Molecular biology Lab, Department of Botany, University College, Thiruvananthapuram, Kerala 695034, India. Email: [email protected] Received: 13 Oct 2011, Revised and Accepted: 13 Nov 2011 ABSTRACT A high frequency and rapid protocol for callus regeneration has been developed in the medicinal plant Plumbago zeylanica. The present investigation is further aimed at determination of the plumbagin content in the callus and invivo plant.Profuse, compact callus was induced and proliferated from explants on MS medium fortified with 2,4-D or NAA (0.5 – 3 mg/l) alone and 2,4-D (0.5 – 4 mg/l ) with BA or KIN (each at 0.1 mg/l , 0.5 mg/l ). For shoot regeneration from callus MS medium supplemented with BA (mg/l ) found to be the best medium when compared to other hormones tried. Best rooting of micro shoots obtained via callus regeneration observed on MS medium fortified with IBA (1.5 mg/l). The regenerated plants were acclimatized and then transferred to the field with 95% survival. The plumbagin content is comparatively higher in 2,4-D + BA hormonal combination or 2,4-D + KIN than in vivo condition.. The present study reports a successful indirect organogenesis protocol for the propagation of Plumbago zeylanica that helps in conservation and domestication. Keywords: Plumbago zeylanica L., Callus regeneration, Indirect organogenesis and Acclimatization.
    [Show full text]
  • Carnivorous Plant Responses to Resource Availability
    Carnivorous plant responses to resource availability: environmental interactions, morphology and biochemistry Christopher R. Hatcher A doctoral thesis submitted in partial fulfilment of requirements for the award of Doctor of Philosophy of Loughborough University November 2019 © by Christopher R. Hatcher (2019) Abstract Understanding how organisms respond to resources available in the environment is a fundamental goal of ecology. Resource availability controls ecological processes at all levels of organisation, from molecular characteristics of individuals to community and biosphere. Climate change and other anthropogenically driven factors are altering environmental resource availability, and likely affects ecology at all levels of organisation. It is critical, therefore, to understand the ecological impact of environmental variation at a range of spatial and temporal scales. Consequently, I bring physiological, ecological, biochemical and evolutionary research together to determine how plants respond to resource availability. In this thesis I have measured the effects of resource availability on phenotypic plasticity, intraspecific trait variation and metabolic responses of carnivorous sundew plants. Carnivorous plants are interesting model systems for a range of evolutionary and ecological questions because of their specific adaptations to attaining nutrients. They can, therefore, provide interesting perspectives on existing questions, in this case trait-environment interactions, plant strategies and plant responses to predicted future environmental scenarios. In a manipulative experiment, I measured the phenotypic plasticity of naturally shaded Drosera rotundifolia in response to disturbance mediated changes in light availability over successive growing seasons. Following selective disturbance, D. rotundifolia became more carnivorous by increasing the number of trichomes and trichome density. These plants derived more N from prey and flowered earlier.
    [Show full text]
  • Ceratostigma
    Ceratostigma Ceratostigma (/ˌsɛrətoʊˈstɪɡmə, sɪˌræ-/), or leadwort, plumbago, is a genus of eight species of flowering plants in the family Plumbaginaceae, native to warm temperate to tropical regions of Africa and Asia. Common names are shared with the genus Plumbago. They are flowering herbaceous plants, subshrubs, or small shrubs growing to 0.3–1 m (0.98– 3.28 ft) tall. The leaves are spirally arranged, simple, 1–9 cm long, usually with a hairy margin. Some of the species are evergreen, others deciduous. The flowers are produced in a compact inflorescence, each flower with a five-lobed corolla; flower colour varies from pale to dark blue to red-purple. The fruit is a small bristly capsule containing a single seed. Selected species Ceratostigma plumbaginoides (Bunge) Ceratostigma willmottianum Stapf Cultivation and uses Plants of this genus are valued in the garden for their late summer flower colour and their autumn leaf colour. The following varieties have gained the Royal Horticultural Society's Award of Garden Merit (confirmed 2017): Ceratostigma has been listed as one of the 38 plants that are used to prepare Bach flower remedies, a kind of alternative medicine promoted for its effect on mental and emotional health. Ceratostigma plumbaginoides, commonly called plumbago or leadwort, is a wiry, mat-forming perennial which spreads by rhizomes to form an attractive ground cover. Typically grows 6-10" tall on generally erect stems rising from the rhizomes. Oval to obovate, shiny, medium green leaves (to 2" long) turn bronze-red in autumn. Terminal clusters of 5-petaled, gentian blue flowers (1/2 to 3/4" diameter) appear above the foliage over a long summer to frost bloom period.
    [Show full text]
  • Carnivorous Plant Newsletter V42 N3 September 2013
    Technical Refereed Contribution Phylogeny and biogeography of the Sarraceniaceae JOHN BRITTNACHER • Ashland, Oregon • USA • [email protected] Keywords: History: Sarraceniaceae evolution The carnivorous plant family Sarraceniaceae in the order Ericales consists of three genera: Dar- lingtonia, Heliamphora, and Sarracenia. Darlingtonia is represented by one species that is found in northern California and western Oregon. The genus Heliamphora currently has 23 recognized species all of which are native to the Guiana Highlands primarily in Venezuela with some spillover across the borders into Brazil and Guyana. Sarracenia has 15 species and subspecies, all but one of which are located in the southeastern USA. The range of Sarracenia purpurea extends into the northern USA and Canada. Closely related families in the plant order Ericales include the Roridu- laceae consisting of two sticky-leaved carnivorous plant species, Actinidiaceae, the Chinese goose- berry family, Cyrillaceae, which includes the common wetland plant Cyrilla racemiflora, and the family Clethraceae, which also has wetland plants including Clethra alnifolia. The rather charismatic plants of the Sarraceniaceae have drawn attention since the mid 19th century from botanists trying to understand how they came into being, how the genera are related to each other, and how they came to have such disjunct distributions. Before the advent of DNA sequencing it was very difficult to determine their relationships. Macfarlane (1889, 1893) proposed a phylogeny of the Sarraceniaceae based on his judgment of the overlap in features of the adult pitchers and his assumption that Nepenthes is a member of the family (Fig. 1a). He based his phy- logeny on the idea that the pitchers are produced from the fusion of two to five leaflets.
    [Show full text]
  • Rain Garden Plant List
    Rain Garden Plant List This is by no means a complete list of the many plants suitable for your rain garden: Native or Botanical Name Common Name Category Naturalized Wet Zone Acer rubrum var. drummondii Southern Swamp Maple Tree Any Acorus calamus Sweet Flag Grass Any Adiantum capillus-veneris Southern Maidenhair Fern Fern Median Aesculus pavia Scarlet Buckeye Tree Yes Any Alstromeria pulchella Peruvian Lily Perennial Any Amorpha fruticosa False Indigo Wildflower Yes Any Andropogon gerardi Big Bluestem Grass Yes Median Andropogon scoparius Little Bluestem Grass Yes Median Aniscanthus wrightii Flame Acanthus Shrub Yes Median Aquilegia canadensis Columbine, Red Wildflower Yes Median Aquilegia ciliata Texas Blue Star Wildflower Yes Median Aquilegia hinckleyana Columbine, Hinckley's Perennial Median, Margin Aquilegia longissima Columbine, Longspur Wildflower Yes Center Asclepias tuberosa Butterfly Weed Wildflower Yes Margin Asimina triloba Pawpaw Tree Any Betula nigra River Birch Tree Yes Any Bignonia capreolata Crossvine Vine Yes Any Callicarpa americana American Beautyberry Shrub Yes Any Canna spp. Canna Lily Perennial No Any Catalpa bignonioides Catalpa Tree Yes Any Cephalanthus occidentalis Buttonbush Shrub Yes Any Chasmanthus latifolium Inland Sea Oats Grass Yes Median, Margin Cyrilla recemiflora Leatherwood or Titi Tree Tree Yes Median, Margin Clematis pitcheri Leatherflower Vine Yes Any Crataegus reverchonii Hawthorn Tree Yes Any Crinum spp. Crinum Perennial Any Delphinium virescens Prairie Larkspur Wildflower Yes Any Dryoptera normalis
    [Show full text]
  • Biodiversity Assessment for the Proposed Woodlands 407 Mining Operation
    Biodiversity Assessment for the Proposed Woodlands 407 Mining Operation Free State Province, South Africa DATE July 2018 REFERENCE Woodlands Biodiversity Scoping Report V1 Prepared for : Prepared by: Van Wyk Development Corporation (Pty) Ltd The Biodiversity Company 420 Vale Ave. Ferndale, 2194 Cell: +27 81 319 1225 Fax: +27 86 527 1965 [email protected] www.thebiodiversitycompany.com Biodiversity Scoping Assessment Woodlands Biodiversity Scoping Report Report Name Biodiversity Scoping Report for The Woodlands 407 MRA Project Submitted to Van Wyk Andrew Husted Report Reviewer (Pr Sci Nat 400213/11) Michael Adams Report Writer (Herpetofauna & Michael Adams is Cert Sci Nat registered (118544) and is an experienced Fauna) natural scientist with a specialisation in herpetofauna. He has over 10 years of experience working with reptiles and amphibians as a consultant and through various conservation initiatives. Martinus Erasmus Report Writer (Botany and Fauna) Martinus Erasmus (Cand Sci Nat) obtained his B-Tech degree in Nature Conservation in 2016 at the Tshwane University of Technology. Martinus has been conducting basic assessments and assisting specialists in field during his studies since 2015. The Biodiversity Company and its associates operate as independent consultants under the auspice of the South African Council for Natural Scientific Professions. We declare that we have no affiliation with or vested financial interests in the proponent, other than for work performed under the Environmental Impact Assessment Regulations, 2017. We have no conflicting Declaration interests in the undertaking of this activity and have no interests in secondary developments resulting from the authorisation of this project. We have no vested interest in the project, other than to provide a professional service within the constraints of the project (timing, time and budget) based on the principals of science.
    [Show full text]