Lisp, Jazz, Aikido Three Expressions of a Single Essence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glibc and System Calls Documentation Release 1.0
Glibc and System Calls Documentation Release 1.0 Rishi Agrawal <[email protected]> Dec 28, 2017 Contents 1 Introduction 1 1.1 Acknowledgements...........................................1 2 Basics of a Linux System 3 2.1 Introduction...............................................3 2.2 Programs and Compilation........................................3 2.3 Libraries.................................................7 2.4 System Calls...............................................7 2.5 Kernel.................................................. 10 2.6 Conclusion................................................ 10 2.7 References................................................ 11 3 Working with glibc 13 3.1 Introduction............................................... 13 3.2 Why this chapter............................................. 13 3.3 What is glibc .............................................. 13 3.4 Download and extract glibc ...................................... 14 3.5 Walkthrough glibc ........................................... 14 3.6 Reading some functions of glibc ................................... 17 3.7 Compiling and installing glibc .................................... 18 3.8 Using new glibc ............................................ 21 3.9 Conclusion................................................ 23 4 System Calls On x86_64 from User Space 25 4.1 Setting Up Arguements......................................... 25 4.2 Calling the System Call......................................... 27 4.3 Retrieving the Return Value...................................... -
Chapter 4 Programming in Perl
Chapter 4 Programming in Perl 4.1 More on built-in functions in Perl There are many built-in functions in Perl, and even more are available as modules (see section 4.4) that can be downloaded from various Internet places. Some built-in functions have already been used in chapter 3.1 and some of these and some others will be described in more detail here. 4.1.1 split and join (+ qw, x operator, \here docs", .=) 1 #!/usr/bin/perl 2 3 $sequence = ">|SP:Q62671|RATTUS NORVEGICUS|"; 4 5 @parts = split '\|', $sequence; 6 for ( $i = 0; $i < @parts; $i++ ) { 7 print "Substring $i: $parts[$i]\n"; 8 } • split is used to split a string into an array of substrings. The program above will write out Substring 0: > Substring 1: SP:Q62671 Substring 2: RATTUS NORVEGICUS • The first argument of split specifies a regular expression, while the second is the string to be split. • The string is scanned for occurrences of the regexp which are taken to be the boundaries between the sub-strings. 57 58 CHAPTER 4. PROGRAMMING IN PERL • The parts of the string which are matched with the regexp are not included in the substrings. • Also empty substrings are extracted. Note, however that trailing empty strings are removed by default. • Note that the | character needs to be escaped in the example above, since it is a special character in a regexp. • split returns an array and since an array can be assigned to a list we can write: splitfasta.ply 1 #!/usr/bin/perl 2 3 $sequence=">|SP:Q62671|RATTUS NORVEGICUS|"; 4 5 ($marker, $code, $species) = split '\|', $sequence; 6 ($dummy, $acc) = split ':', $code; 7 print "This FastA sequence comes from the species $species\n"; 8 print "and has accession number $acc.\n"; splitfasta.ply • It is not uncommon that we want to write out long pieces of text using many print statements. -
The Clon User Manual the Command-Line Options Nuker, Version 1.0 Beta 25 "Michael Brecker"
The Clon User Manual The Command-Line Options Nuker, Version 1.0 beta 25 "Michael Brecker" Didier Verna <[email protected]> Copyright c 2010{2012, 2015, 2017, 2020, 2021 Didier Verna Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the section entitled \Copy- ing" is included exactly as in the original. Permission is granted to copy and distribute translations of this manual into an- other language, under the above conditions for modified versions, except that this permission notice may be translated as well. Cover art by Alexis Angelidis. i Table of Contents Copying ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 1 Introduction :::::::::::::::::::::::::::::::::::::::::::::::::::: 3 2 Installation:::::::::::::::::::::::::::::::::::::::::::::::::::::: 5 3 Quick Start ::::::::::::::::::::::::::::::::::::::::::::::::::::: 7 3.1 Full Source :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 7 3.2 Explanation ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 7 4 Using Clon :::::::::::::::::::::::::::::::::::::::::::::::::::: 11 4.1 Synopsis Definition ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 4.1.1 Synopsis Items ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 4.1.1.1 Text :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: -
Noro Masamichi Sensei |
Noro Masamichi Sensei | www.kinomichi.com http://90plan.ovh.net/~kinomich/new/fr/noromasamichisensei Noro Masamichi Sensei Masamichi Noro, fondateur du Kinomichi ®, est un des principaux disciples du fondateur de l’Aïkido Morihei Ueshiba. De 1955 à 1961, il vécut à demeure auprès de son Maître. Il y suivit une formation intensive suite a laquelle il partira pour la France, missionné en qualité de délégué officiel pour le développement de l’Aïkido en Europe et en Afrique . En quelques années, il crée plus 200 dojos puis s’installe à Paris qu’il ne quittera plus. En 1979, souhaitant poursuivre sa propre recherche, il fonde le Kinomichi, art qu’il façonnera continuellement dans le respect de sa formation traditionnelle japonaise et à l’écoute des expressions corporelles occidentales. Masamichi Noro nous quitte le 15 Mars 2013. A son départ, une centaine d'enseignants de Kinomichi® continuent la transmission de son oeuvre à travers le monde . Takeharu Noro, son dernier fils et successeur, reprend la direction du Korindo Dojo et se consacre à la transmission du Kinomichi. DATES IMPORTANTES 1935-1961 Japon Aïkido Europe Masamichi NORO naît le 21 janvier 1935 à Aomori, ville du Nord du Japon. 1935 Il est le fils de Noro Yoshikatsu, entrepreneur dans le génie civil 1 sur 4 10/06/2015 21:10 Noro Masamichi Sensei | www.kinomichi.com http://90plan.ovh.net/~kinomich/new/fr/noromasamichisensei rénovateur du port de guerre d'Ominato dans les années 40, et de Rin Nozawa, descendante d'une famille de nobles propriétaires terriens. Masamichi NORO rencontre Maître Morihei UESHIBA, fondateur de l'Aïkido, 1955 auprès duquel il étudie de 1955 à 1961 en tant que pensionnaire (UCHI- DESHI), au Dojo de Tokyo et d’Iwama. -
The Machine That Builds Itself: How the Strengths of Lisp Family
Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology. -
16.5. Getopt — Parser for Command Line Options — Python V2.6.4
Navigation • index • modules | • next | • previous | • Python v2.6.4 documentation » • The Python Standard Library » • 16. Generic Operating System Services » 16.5. getopt — Parser for command line options¶ This module helps scripts to parse the command line arguments in sys.argv. It supports the same conventions as the Unix getopt() function (including the special meanings of arguments of the form ‘-‘ and ‘--‘). Long options similar to those supported by GNU software may be used as well via an optional third argument. A more convenient, flexible, and powerful alternative is the optparse module. This module provides two functions and an exception: getopt.getopt(args, options[, long_options])¶ Parses command line options and parameter list. args is the argument list to be parsed, without the leading reference to the running program. Typically, this means sys.argv[1:]. options is the string of option letters that the script wants to recognize, with options that require an argument followed by a colon (':'; i.e., the same format that Unix getopt() uses). Note Unlike GNU getopt(), after a non-option argument, all further arguments are considered also non-options. This is similar to the way non-GNU Unix systems work. long_options, if specified, must be a list of strings with the names of the long options which should be supported. The leading '--' characters should not be included in the option name. Long options which require an argument should be followed by an equal sign ('='). Optional arguments are not supported. To accept only long options, options should be an empty string. Long options on the command line can be recognized so long as they provide a prefix of the option name that matches exactly one of the accepted options. -
Shell Script Getopts Example
Shell Script Getopts Example Gail is constrainedly cryoscopic after delegable Hilbert sag his parcloses illuminatingly. Gonzales often tootle irresistibly when tripersonal Giordano discomposed dissonantly and buffer her Barbarossa. Robert misdraws rompishly. Find that getopts script example we use later will contain whitespace separation with command Instantly share code, notes, and snippets. OPTARG is set to the period character found. They cease in many cases unneeded and brief fact that cartoon always press them its just like matter of personal coding style. File or directory or found. Operator precedence is used when there within five is more arguments. Typically, shell scripts use getopts to parse arguments passed to them. There did many ways to against your remedy environment. Nothing gets printed when no command line options are provided. The return status is zero unless an outcome is encountered while determining the name avid the he directory within an invalid option is supplied. The exit code will be success failure. Log in charge use details from one require these accounts. How does log lumber and cpu usage by an application? Now consider running it bore an unsupported option. No need only pass the positional parameters through to borrow external program. How can I check took a directory exists in a candy shell script? What extent its purpose? When optional, the fashion can buckle on led off additional functionality, as ugly a boolean option. In those cases, it contains a pointer to that parameter. How environment check ride a variable is set to Bash? Connect and deploy knowledge write a single location that is structured and fatigue to search. -
From JSON to JSEN Through Virtual Languages of the Creative Commons Attribution License (
© 2021 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions A.of Ceravola, the Creative F. Joublin:Commons From Attribution JSON to license JSEN through(http://c reativecommons.org/licenses/by/4Virtual Languages .0/). Open Access Open Journal of Web Technology (OJWT) Volume 8, Issue 1, 2021 www.ronpub.com/ojwt ISSN 2199-188X From JSON to JSEN through Virtual Languages Antonello Ceravola, Frank Joublin Honda Research Institute Europe GmbH, Carl Legien Str. 30, Offenbach/Main, Germany, {Antonello.Ceravola, Frank.Joublin}@honda-ri.de ABSTRACT In this paper we describe a data format suitable for storing and manipulating executable language statements that can be used for exchanging/storing programs, executing them concurrently and extending homoiconicity of the hosting language. We call it JSEN, JavaScript Executable Notation, which represents the counterpart of JSON, JavaScript Object Notation. JSON and JSEN complement each other. The former is a data format for storing and representing objects and data, while the latter has been created for exchanging/storing/executing and manipulating statements of programs. The two formats, JSON and JSEN, share some common properties, reviewed in this paper with a more extensive analysis on what the JSEN data format can provide. JSEN extends homoiconicity of the hosting language (in our case JavaScript), giving the possibility to manipulate programs in a finer grain manner than what is currently possible. This property makes definition of virtual languages (or DSL) simple and straightforward. Moreover, JSEN provides a base for implementing a type of concurrent multitasking for a single-threaded language like JavaScript. -
The Semantics of Syntax Applying Denotational Semantics to Hygienic Macro Systems
The Semantics of Syntax Applying Denotational Semantics to Hygienic Macro Systems Neelakantan R. Krishnaswami University of Birmingham <[email protected]> 1. Introduction body of a macro definition do not interfere with names oc- Typically, when semanticists hear the words “Scheme” or curring in the macro’s arguments. Consider this definition of and “Lisp”, what comes to mind is “untyped lambda calculus a short-circuiting operator: plus higher-order state and first-class control”. Given our (define-syntax and typical concerns, this seems to be the essence of Scheme: it (syntax-rules () is a dynamically typed applied lambda calculus that sup- ((and e1 e2) (let ((tmp e1)) ports mutable data and exposes first-class continuations to (if tmp the programmer. These features expose a complete com- e2 putational substrate to programmers so elegant that it can tmp))))) even be characterized mathematically; every monadically- representable effect can be implemented with state and first- In this definition, even if the variable tmp occurs freely class control [4]. in e2, it will not be in the scope of the variable definition However, these days even mundane languages like Java in the body of the and macro. As a result, it is important to support higher-order functions and state. So from the point interpret the body of the macro not merely as a piece of raw of view of a working programmer, the most distinctive fea- syntax, but as an alpha-equivalence class. ture of Scheme is something quite different – its support for 2.2 Open Recursion macros. The intuitive explanation is that a macro is a way of defining rewrites on abstract syntax trees. -
Star TEX: the Next Generation Several Ideas on How to Modernize TEX Already Exist
TUGboat, Volume 33 (2012), No. 2 199 Star TEX: The Next Generation Several ideas on how to modernize TEX already exist. Some of them have actually been implemented. Didier Verna In this paper, we present ours. The possible future Abstract that we would like to see happening for TEX is some- what different from the current direction(s) TEX's While T X is unanimously praised for its typesetting E evolution has been following. In our view, modern- capabilities, it is also regularly blamed for its poor izing TEX can start with grounding it in an old yet programmatic offerings. A macro-expansion system very modern programming language: Common Lisp. is indeed far from the best choice in terms of general- Section 2 clarifies what our notion of a \better", or purpose programming. Several solutions have been \more modern" TEX is. Section 3 on the next page proposed to modernize T X on the programming E presents several approaches sharing a similar goal. side. All of them currently involve a heterogeneous Section 4 on the following page justifies the choice approach in which T X is mixed with a full-blown pro- E of Common Lisp. Finally, section 5 on page 205 gramming language. This paper advocates another, outlines the projected final shape of the project. homogeneous approach in which TEX is first rewrit- ten in a modern language, Common Lisp, which 2 A better TEX serves both at the core of the program and at the The T X community has this particularity of being scripting level. All programmatic macros of T X are E E a mix of two populations: people coming from the hence rendered obsolete, as the underlying language world of typography, who love it for its beautiful itself can be used for user-level programming. -
Yoshimitsu Yamada Est Né Le 1È Février 1938
Yoshimitsu Yamada est né le 1è février 1938. Il est actuellement 8è Dan Shihan. Son père est le cousin de Tadashi Abe ; c’est grâce à ce dernier que Yamada Senseï débute l’Aïkido. Uchi Deshi de Morihei Ueshiba depuis 1955 et pendant près de dix ans, Yamada Senseï se distingue par sa maîtrise de l’anglais qui le prédispose à enseigner l’Aïkido aux soldats américains. C’est tout naturellement qu’on l’envoie à New York en 1964, afin devenir professeur à l’Aïkikaï de New York. Il est reconnu pour sa pédagogie solide et claire des techniques de base. Il dirige des stages à travers le monde entier (France, Allemagne, Russie, Amérique…). Il est également à la tête de la Fédération américaine d’Aïkido, ainsi que la Fédération d’Amérique Latine. Yamada Senseï a édité de nombreux DVD pédagogiques. Beaucoup de ses élèves ont une réputation solide, et sont actuellement 7è Dan Yoshimitsu YAMADA est né le 17 février 1938 à Tokyo. Le jeune Yoshimitsu est originaire d'une famille proche de Maître UESHIBA. En effet, à la mort de ses parents, son père Ichiro YAMADA, a été adopté par la famille de Tadashi ABE, élève du fondateur. Cousins, les jeunes Ichiro et Tadashi sont élevés comme des frères. C’est à l’occasion d’une démonstration du fondateur, au sein de la famille, que le jeune Yoshimitsu découvre l’Aïkido. C’est encore un enfant mais il est déjà très attiré par la pratique du Maître. La situation préoccupante du Japon pendant la guerre, pousse les deux familles à émigrer en Corée pendant les années quarante. -
CLOPS: a DSL for Command Line Options
CLOPS: A DSL for Command Line Options Mikol´aˇsJanota, Fintan Fairmichael, Viliam Holub, Radu Grigore, Julien Charles, Dermot Cochran, and Joseph R. Kiniry School of Computer Science and Informatics, Lero — The Irish Software Engineering Research Centre, and The Complex and Adaptive Systems Laboratory (CASL), University College Dublin, Ireland Abstract. Programmers often write custom parsers for the command line input of their programs. They do so, in part, because they believe that both their program’s parameterization and their option formats are simple. But as the program evolves, so does the parameterization and the available options. Gradually, option parsing, data structure complexity, and maintenance of related program documentation becomes unwieldy. This article introduces a novel DSL called CLOPS that lets a program- mer specify command line options and their complex inter-dependencies in a declarative fashion. The DSL is supported by a tool that gener- ates the following features to support command line option processing: (1) data structures to represent option values, (2) a command line parser that performs validity checks, and (3) command line documentation. We have exercised CLOPS by specifying the options of a small set of pro- grams like ls, gzip, and svn which have complex command line inter- faces. These examples are provided with the Open Source release of the CLOPS system. 1 Introduction A boiling frog is a well known phenomenon in software development. Just as a frog meets its fate in water that is slowly heated, so do software projects become unmanageable as their complexity gradually increases. Processing of command line options is not an exception.