Crystalloluminescence and Temporary Mechanoluminescence of As203 Crystals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Single Crystal Raman Spectroscopy of Selected Arsenite, Antimonite and Hydroxyantimonate Minerals
SINGLE CRYSTAL RAMAN SPECTROSCOPY OF SELECTED ARSENITE, ANTIMONITE AND HYDROXYANTIMONATE MINERALS Silmarilly Bahfenne B.App.Sci (Chem.) Chemistry Discipline This thesis is submitted as part of the assessment requirements of Master of Applied Science Degree at QUT February 2011 KEYWORDS Raman, infrared, IR, spectroscopy, synthesis, synthetic, natural, X-ray diffraction, XRD, scanning electron microscopy, SEM, arsenite, antimonate, hydroxyantimonate, hydrated antimonate, minerals, crystal, point group, factor group, symmetry, leiteite, schafarzikite, apuanite, trippkeite, paulmooreite, finnemanite. i ii ABSTRACT This thesis concentrates on the characterisation of selected arsenite, antimonite, and hydroxyantimonate minerals based on their vibrational spectra. A number of natural arsenite and antimonite minerals were studied by single crystal Raman spectroscopy in order to determine the contribution of bridging and terminal oxygen atoms to the vibrational spectra. A series of natural hydrated antimonate minerals was also compared and contrasted using single crystal Raman spectroscopy to determine the contribution of the isolated antimonate ion. The single crystal data allows each band in the spectrum to be assigned to a symmetry species. The contribution of bridging and terminal oxygen atoms in the case of the arsenite and antimonite minerals was determined by factor group analysis, the results of which are correlated with the observed symmetry species. In certain cases, synthetic analogues of a mineral and/or synthetic compounds isostructural or related to the mineral of interest were also prepared. These synthetic compounds are studied by non-oriented Raman spectroscopy to further aid band assignments of the minerals of interest. Other characterisation techniques include IR spectroscopy, SEM and XRD. From the single crystal data, it was found that good separation between different symmetry species is observed for the minerals studied. -
Allchar Mineral Assemblage 3
Geologica Macedonica, Vol. 15-16, p. 1-23 (2001-2002) Suppl. GEOME2 SSN 0352 - 1206 Manuscript received: December 15, 200 1 UDC: 553.08 (497 .7) Accepted: March 3, 2002 Original scientific paper ~• ALLCHAR l\1INERAL ASSEMBLAGE l 3 l 4 Blazo Boev , Vladimir Bermanec , Todor Serafimovski\ Sonja Lepitkova , Snezana Mikulcic , 5 5 5 Marin ~oufek\ Gligor Jovanovski , Trajce Stafilov , Metodija Najdoski IDepartment ofPetrology, Mineralogy and Geochemistry, Faculty ofMining and Geology, "Sv. Kiril i Metodij" University, Goce Delcev 89, MK-2000 Stip, Republic ofMacedonia 2Department ofMineral Deposits, Faculty ofMining and Geology, "Sv. Kiril i Metodij" University, Goce Delcev 89, MK-2000 Stip, Republic of Macedonia 3Institute ofMineralogy and Petrology, Department ofGeology, Faculty ofScience, University ofZagreb, Horvatovac bb, HR-JOOOO Zagreb, Croatia 4Department ofMineralogy and Petrology, Croatian Natural History Museum, Demetrova I, HR-JOOOO Zagreb, Croatia 5Institute of Chemistry, Faculty ofScience, "Sv. Kiril i Metodij" University, P.o. Box 162, MK-JOOI Skopje, Republic ofMacedonia Abstract. The paper is a summary of investigatioris carried out on minerals of the Allchar deposit. It discusses the TI-As-Sb-Au mineral ill emblage after detailed and intense research work. Four types of mineralization have been distinguished based on the mineral assemblage present: I. The first ly pe is characterised by high c ment of iron and sulphur, but lower arsenic and thalli um contenl. The pyrite-marcasite mineral assemblage is characterized by the presence of some quantities of arsenic-pyrite. 2. The second type is characterized by the high antimony and low iron and thallium content. Stibnite is the most common mineral in the group. -
Alt I5LNER&S
4r>.'44~' ¶4,' Alt I5LNER&SI 4t *vX,it8a.rsAt s 4"5' r K4Wsx ,4 'fv, '' 54,4 'T~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~' 4>i4^ 44 4 r 44,4 >s0 s;)r i; X+9;s tSiX,.<t;.W.FE0''¾'"',f,,v-;, s sHteS<T^ 4~~~~~~~~~~~~~~~~~~~~'44'" 4444 ;,t,4 ~~~~~~~~~' "e'(' 4 if~~~~~~~~~~0~44'~"" , ",4' IN:A.S~~ ~ ~ C~ f'"f4444.444"Z'.4;4 4 p~~~~~~~~~~~~~~~~~~~44'1s-*o=4-4444's0zs*;.-<<<t4 4 4 A'.~~~44~~444) O 4t4t '44,~~~~~~~~~~i'$'" a k -~~~~~~44,44.~~~~~~~~~~~~~~~~~~44-444444,445.44~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.V 4X~~~~~~~~~~~~~~4'44 44 444444444.44. AQ~~ ~ ~~~~, ''4'''t :i2>#ZU '~f"44444' i~~'4~~~k AM 44 2'tC>K""9N 44444444~~~~~~~~~~~,4'4 4444~~~~IT fpw~~ ~ ~ ~ ~ ~ ~ 'V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ae, ~~~~~~~~~~~~~~~~~~~~~~2 '4 '~~~~~~~~~~4 40~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' 4' N.~~..Fg ~ 4F.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ " ~ ~ ~ 4 ~~~ 44zl "'444~~474'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ &~1k 't-4,~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ :"'".'"~~~~~~~~~~~~~~~~~"4 ~~ 444"~~~~~~~~~'44*#"44~~~~~~~~~~4 44~~~~~'f"~~~~~4~~~'yw~~~~4'5'# 44'7'j ~4 y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~""'4 1L IJ;*p*44 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~44~~~~~~~~~~~~~~~~~~~~1 q A ~~~~~ 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~W~~k* A SYSTEMATIC CLASSIFICATION OF NONSILICATE MINERALS JAMES A. FERRAIOLO Department of Mineral Sciences American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 172: ARTICLE 1 NEW YORK: 1982 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 172, article l, pages 1-237, -
Arsenic-Transforming Microbes and Their Role in Biomining Processes
Environ Sci Pollut Res (2013) 20:7728–7739 DOI 10.1007/s11356-012-1449-0 MINING AND THE ENVIRONMENT - UNDERSTANDING PROCESSES, ASSESSING IMPACTS AND DEVELOPING REMEDIATION Arsenic-transforming microbes and their role in biomining processes L. Drewniak & A. Sklodowska Received: 15 October 2012 /Accepted: 19 December 2012 /Published online: 9 January 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract It is well known that microorganisms can dissolve Introduction different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital An ongoing challenge for the mining industry is the elements (e.g., P, Fe, S, Mg and Mo), but some may also development and application of efficient, low-cost and contain toxic metals or metalloids, like arsenic. The toxicity environmentally friendly methods of metal recovery. of arsenic is disclosed after the dissolution of the mineral, Considerable effort is currently devoted to the improve- which raises two important questions: (1) why do micro- ment of existing technologies, particularly those intended organisms dissolve arsenic-bearing minerals and release this for (1) metal recovery from low-grade ores, which has metal into the environment in a toxic (also for themselves) not been economic for many years, and (2) mine and form, and (2) How do these microorganisms cope with this wastewater treatment. A well-recognized way of extract- toxic element? In this review, we summarize current knowl- ing metals from mineral resources not accessible by edge about arsenic-transforming microbes and their role in conventional mining is the use of methods based on biomining processes. -
Shin-Skinner January 2018 Edition
Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com. -
Toxicological Profile for Arsenic
TOXICOLOGICAL PROFILE FOR ARSENIC U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2007 ARSENIC ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. ARSENIC iii UPDATE STATEMENT A Toxicological Profile for Arsenic, Draft for Public Comment was released in September 2005. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine/Applied Toxicology Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 ARSENIC iv This page is intentionally blank. v FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a public health statement that describes, in nontechnical language, a substance's relevant toxicological properties. -
Claudetite As2o3 C 2001-2005 Mineral Data Publishing, Version 1
Claudetite As2O3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. As crystals, thin tabular on {010}, with {111} and {111}, and cleavages, to 5 cm; also as crusts. Twinning: Commonly as penetration or contact twins on {100}. Physical Properties: Cleavage: Perfect micaceous cleavage on {010}. Fracture: Splintery. Tenacity: Very flexible; deforms plastically. Hardness = 2.5 D(meas.) = 4.14–4.15 D(calc.) = 4.186 Optical Properties: Transparent. Color: Colorless to white; colorless in transmitted light. Luster: Vitreous; pearly on cleavage surfaces. Optical Class: Biaxial (+). Orientation: Y = b; X ∧ c ' 84◦; Z ∧ c ' 6◦. Dispersion: r< v, strong. α = 1.871(5) β = 1.92(2) γ = 2.01(1) 2V(meas.) = 58◦ Cell Data: Space Group: P 21/n (synthetic). a = 5.25(1) b = 12.99(1) c = 4.53(1) β =93◦53(20)0 Z=4 X-ray Powder Pattern: San Domingo mines, Portugal. 3.245 (100), 3.454 (50), 2.771 (35), 4.924 (25), 2.264 (25), 3.356 (20), 3.328 (18) Chemistry: (1) (2) As 75.99 75.74 O [23.84] 24.26 insol. 0.17 Total [100.00] 100.00 (1) Smoln´ık,Slovakia; average of two analyses, O by difference. (2) As2O3. Polymorphism & Series: Dimorphous with arsenolite. Occurrence: A secondary oxidation product derived from realgar, arsenopyrite, or other arsenic-bearing minerals. Also produced as a sublimate during mine fires. Association: Arsenolite, realgar, orpiment, sulfur. Distribution: From the San Domingo mines, Algarve, Portugal. At Cala˜nas, Andalusia; large cleavages from Rio Tinto, Huelva, Spain. -
Bond Paths and Van Der Waals Interactions in Orpiment, As2s3
6550 J. Phys. Chem. A 2010, 114, 6550–6557 Bond Paths and van der Waals Interactions in Orpiment, As2S3 G. V. Gibbs,*,† A. F. Wallace,‡ R. Zallen,§ R. T. Downs,| N. L. Ross,⊥ D. F. Cox,# and K. M. Rosso∇ Departments of Geosciences, Materials Science and Engineering and Mathematics, Department of Physics, Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, U.S.A., Earth Science DiVision, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Geosciences, UniVersity of Arizona, Tucson, Arizona 85721, U.S.A., and Chemical and Materials Science DiVision, and the W.R. Wiley EnVironmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, U.S.A ReceiVed: March 16, 2010; ReVised Manuscript ReceiVed: April 27, 2010 The calculated electron density distribution for orpiment, As2S3, reveals that As-S, S-S, and As-As bond paths are associated with the experimental interlayer directed bonded interactions detected in a combined infrared and Raman study. The successful modeling of the infrared- and Raman-determined interlayer bonded interactions together with bond paths and the structuralization of a variety of inorganic molecules in terms of “key-lock” bond path mainstays support the argument that van der Waals forces in inorganic molecular crystals are directional. Introduction Orpiment, As2S3, is a 2:3 coordinated material that has been studied extensively by solid-state experimentalists. It acts as a large-bandgap semiconductor at ambient conditions -
Biological Crystallization of Scorodite for Arsenic Removal
BIOSCORODITE: Biological crystallization of scorodite for arsenic removal 12 Thesis committee Thesis supervisor Prof. dr. ir. C.J.N. Buisman Professor of Biological Recovery and Reuse Technology Wageningen University Thesis co-supervisor Dr. ir. J. Weijma Researcher at the sub-department of Environmental Technology Wageningen University Other members Prof. dr. P.C. de Ruiter, Wageningen University Prof. dr. G.J.W. Euverink, University of Groningen Dr. G. van Weert, Oretome Limited, Caledon East, Canada Dr. ir. J.L. Huisman, Paques B.V., Balk This research was conducted under the auspices of the Graduate School SENSE (Socio- economic and Natural Sciences of the Environment). BIOSCORODITE: Biological crystallization of scorodite for arsenic removal Paula Andrea Gonzalez Contreras Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 22 June 2012 at 11 a.m. in the Aula. 14 Paula Andrea Gonzalez Contreras Bioscorodite: Biological crystallization of scorodite for arsenic removal, 206 pages. Thesis, Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English. ISBN: 978-94-6173-294-1 "Every search begins with beginner's luck and ends with the victor's being severely tested" Paulo Coelho (from The Alchemist) CONTENTS Chapter 1 9 General Introduction Chapter 2 27 Arsenic speciation Chapter 3 -
Crystal Chemistry of Cadmium Oxysalt and Associated Minerals from Broken Hill, New South Wales
Crystal Chemistry of Cadmium Oxysalt and associated Minerals from Broken Hill, New South Wales Peter Elliott, B.Sc. (Hons) Geology and Geophysics School of Earth and Environmental Sciences The University of Adelaide This thesis is submitted to The University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy September 2010 Table of contents Abstract.......................................................................................................................vii Declaration................................................................................................................ viii Acknowlegements........................................................................................................ix List of published papers ..............................................................................................x Chapter 1. Introduction ..............................................................................................1 1.1 General introduction ............................................................................................1 1.2 Crystal Chemistry ................................................................................................2 1.2.1 Characteristics of Cadmium..........................................................................3 1.2.2 Characteristics of Lead .................................................................................4 1.2.3 Characteristics of Selenium ..........................................................................5 -
THE CRYSTAL STRUCTURE of CLAUDETITE (MONOCLINIC Aszoa)
THE CRYSTAL STRUCTURE OF CLAUDETITE (MONOCLINIC AszOa) Arrnnr J. Fnunn, Jn., Uniaersity of Chicago,Chi,cago, Illinois Assrnecr From a complete difiraction record of a single crystal of claudetite taken by equi-incli- nation Weissenburg and Precession techniques, the unit cell dimensions were conf.rmed as: a:5.25 it, b:12 87 L, e:4.54 A, 9:93'49'. The cell contains four AsrOs.Due to the appar- ent faint appearance of an odd order (0&0) refiection, doubt was cast upon the existence of a twofold screw axis (2r). The presenceof the 21,and hence of the space group P21/n,was confirmed by the comparison of the Harker-Patterson sections P (x0z) and P (tclz). From these sections and from Patterson projections on (001) and (100) the eight arsenic atoms were found to be in two general fourfold positions, one set at r:.258, y:.102, z:.040; the other set at r:.363, y: .352, z:.C07; and their symmetry equivalents. From electron density projections and intensity checks, the twelve oxygen atoms were found to be in thtee generalfourfold positions at t:.45, y:.22, z:.03; x:.62, y:'41, z:.18; and r:.95, y: .16, z: .13; and their symmetry equivalents. The structure is one of linked AsOsgroups sharing all oxygens to fcrm an irregular sheet parallel to the perfect (010) cleavage. INrnonucrtoN Claudetite, the monoclinic form of AszOa,is found in nature as a sec- ondary mineral, formed by the oxidation of realgar, arsenopyrite, or other arsenic minerals (1). The habit of its crystals is tabular, forming thin plates on [010] ; both penetration and contact twins on { 100} are very common. -
IMA Master List
The New IMA List of Minerals – A Work in Progress – Updated: September 2014 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name : it is the presently accepted mineral name (and in the table, minerals are sorted by name). CNMMN/CNMNC approved formula : it is the chemical formula of the mineral. IMA status : A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year : for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p.