Single Crystal Raman Spectroscopy of Selected Arsenite, Antimonite and Hydroxyantimonate Minerals

Total Page:16

File Type:pdf, Size:1020Kb

Single Crystal Raman Spectroscopy of Selected Arsenite, Antimonite and Hydroxyantimonate Minerals SINGLE CRYSTAL RAMAN SPECTROSCOPY OF SELECTED ARSENITE, ANTIMONITE AND HYDROXYANTIMONATE MINERALS Silmarilly Bahfenne B.App.Sci (Chem.) Chemistry Discipline This thesis is submitted as part of the assessment requirements of Master of Applied Science Degree at QUT February 2011 KEYWORDS Raman, infrared, IR, spectroscopy, synthesis, synthetic, natural, X-ray diffraction, XRD, scanning electron microscopy, SEM, arsenite, antimonate, hydroxyantimonate, hydrated antimonate, minerals, crystal, point group, factor group, symmetry, leiteite, schafarzikite, apuanite, trippkeite, paulmooreite, finnemanite. i ii ABSTRACT This thesis concentrates on the characterisation of selected arsenite, antimonite, and hydroxyantimonate minerals based on their vibrational spectra. A number of natural arsenite and antimonite minerals were studied by single crystal Raman spectroscopy in order to determine the contribution of bridging and terminal oxygen atoms to the vibrational spectra. A series of natural hydrated antimonate minerals was also compared and contrasted using single crystal Raman spectroscopy to determine the contribution of the isolated antimonate ion. The single crystal data allows each band in the spectrum to be assigned to a symmetry species. The contribution of bridging and terminal oxygen atoms in the case of the arsenite and antimonite minerals was determined by factor group analysis, the results of which are correlated with the observed symmetry species. In certain cases, synthetic analogues of a mineral and/or synthetic compounds isostructural or related to the mineral of interest were also prepared. These synthetic compounds are studied by non-oriented Raman spectroscopy to further aid band assignments of the minerals of interest. Other characterisation techniques include IR spectroscopy, SEM and XRD. From the single crystal data, it was found that good separation between different symmetry species is observed for the minerals studied. iii iv TABLE OF CONTENTS KEYWORDS ············································································ I ABSTRACT ············································································ III TABLE OF CONTENTS ···························································· V LIST OF FIGURES ······························································· VIII LIST OF TABLES ····································································· X LIST OF APPENDICES ···························································· XI LIST OF PUBLICATIONS ······················································· XII STATEMENT OF ORIGINALITY ··········································· XIII ACKNOWLEDGMENTS ························································ XIV 1 CHAPTER 1 ······································································ 1 1.1 INTRODUCTION ······················································· 3 1.2 GENERAL DESCRIPTION OF COMMON MINERALS ········ 4 1.2.1 Arsenic Trioxide ··················································· 4 1.2.2 Antimony Trioxide ················································ 6 1.2.3 Antimony Pentoxide ·············································· 7 1.3 STRUCTURAL STUDIES OF MINERALS ························ 8 1.3.1 Arsenite ····························································· 8 1.3.2 Antimonite ·························································· 9 1.3.3 Hydroxyantimonate ··············································· 9 1.4 VIBRATIONAL SPECTROSCOPY ································· 10 1.4.1 Arsenic Trioxide ················································· 11 1.4.2 Raman Investigations into Arsenite Speciation in Aqueous Solutions ·············································· 13 1.4.3 Existence of Polymeric Species in Aqueous Solutions ···· 16 1.4.4 Vibrational Spectroscopy of Arsenite Minerals ············· 19 1.4.5 Antimony Trioxide ·············································· 20 1.4.6 Raman Investigations of Antimony Speciation in Aqueous Solutions ·············································· 23 1.4.7 Vibrational Spectroscopy of Antimonite Minerals ········· 23 1.5 SYNTHETIC ARSENITES ·········································· 24 1.5.1 Preparation of Arsenites ········································ 24 1.5.2 Vibrational Spectroscopy of Synthetic Arsenites ··········· 25 1.6 SYNTHETIC ANTIMONITES ······································ 25 1.6.1 Preparation of Antimonites ···································· 25 1.6.2 Vibrational Spectroscopy of Synthetic Antimonites ······· 26 1.7 SYNTHETIC HYDROXYANTIMONATES ······················ 27 1.7.1 Preparation of Hydroxyantimonates ·························· 27 1.7.2 Vibrational Spectroscopy of Synthetic Hydroxyantimonates ············································ 28 1.8 PROJECT AIMS ······················································· 29 2 CHAPTER 2 ···································································· 31 2.1 INTRODUCTION ····················································· 33 2.2 SYNTHETIC PROCEDURES ······································· 33 2.2.1 Wet Chemistry Method ········································· 33 2.2.2 Hydrothermal Method ·········································· 34 2.3 INSTRUMENTAL TECHNIQUES ································· 35 v 2.3.1 Raman Microscopy ·············································· 36 2.3.2 Infrared Spectroscopy ··········································· 37 2.3.3 Scanning Electron Microscopy ································ 37 2.3.4 X-Ray Diffraction ··············································· 38 2.4 SPECTRAL MANIPULATION ····································· 38 3 CHAPTER 3 ···································································· 39 3.1 INTRODUCTION ····················································· 41 3.2 EXPERIMENTAL ····················································· 42 3.2.1 Mineral ···························································· 42 3.2.2 Synthetic Procedures ············································ 42 3.2.3 Raman Microscopy ·············································· 43 3.2.4 DFT Calculations ················································ 43 3.3 DESCRIPTION OF CRYSTAL STRUCTURE ··················· 43 3.4 RESULTS ································································ 44 3.4.1 X-ray Diffraction ················································ 44 3.4.2 Raman Microscopy ·············································· 46 3.4.2.1 Factor Group Analysis ······································· 46 3.4.2.2 Raman Spectra of Finnemanite ····························· 47 3.5 DISCUSSION ·························································· 51 3.6 CONCLUSION ························································· 56 4 CHAPTER 4 ···································································· 59 4.1 INTRODUCTION ····················································· 61 4.2 EXPERIMENTAL ····················································· 62 4.2.1 Minerals ··························································· 62 4.2.2 Synthetic Procedures ············································ 62 4.2.3 Raman Microscopy ·············································· 63 4.2.4 Hartree-Fock Calculations ····································· 63 4.3 DESCRIPTION OF CRYSTAL STRUCTURE ··················· 64 4.4 RESULTS ······························································· 65 4.4.1 Results of X-ray Diffraction ··································· 65 4.4.2 Scanning Electron Microscopy ································ 69 4.4.3 Raman Microscopy ·············································· 69 4.4.3.1 Factor Group Analysis ······································· 69 4.4.3.2 Raman Spectra of Paulmooreite ···························· 71 4.5 DISCUSSION ·························································· 76 4.6 CONCLUSION ························································· 82 5 CHAPTER 5 ···································································· 83 5.1 INTRODUCTION ····················································· 85 5.2 EXPERIMENTAL ····················································· 86 5.2.1 Minerals ··························································· 86 5.2.2 Synthesis of Leiteite ············································ 86 5.2.3 Raman Microscopy ·············································· 87 5.3 DESCRIPTION OF CRYSTAL STRUCTURE ··················· 87 5.4 RESULTS ······························································· 88 5.4.1 X-ray Diffraction ················································ 88 5.4.2 Scanning Electron Microscopy ································ 89 5.4.3 Raman Microscopy ·············································· 89 vi 5.4.3.1 Factor Group Analysis ······································· 89 5.4.3.2 Raman Spectra of Leiteite ···································· 91 5.5 DISCUSSION ·························································· 97 5.6 CONCLUSION ························································ 101 6 CHAPTER 6 ··································································· 101 6.1 INTRODUCTION ···················································· 103 6.2 EXPERIMENTAL ···················································· 104 6.2.1 Mineral ··························································· 104 6.2.2 Synthesis of ZnSb2O4 ·········································· 104 6.2.3 Synthesis of Trippkeite CuAs2O4 ···························· 105 6.2.4 Raman Microscopy ·············································
Recommended publications
  • This Is the Author Version Published As: QUT Digital Repository
    QUT Digital Repository: http://eprints.qut.edu.au/ This is the author version published as: Frost, Ray L. and Bahfenne, Silmarilly (2010) A Review of the Vibrational Spectroscopic Studies of Arsenite, Antimonite, and Antimonate Minerals. Applied Spectroscopy Reviews: an international journal of principles, methods, and applications, 45(2). pp. 101-129. Copyright Taylor & Francis 1 A Review of the Vibrational Spectroscopic Studies of Arsenite, Antimonite, and 2 Antimonate Minerals 3 4 Silmarilly Bahfenne and Ray L. Frost 5 6 Inorganic Materials Research program, School of Physical and Chemical Sciences, Queensland 7 University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia 8 9 Abstract 10 11 This review focuses on the vibrational spectroscopy of the compounds and minerals 12 containing the arsenite, antimonite and antimonate anions. The review collects and 13 correlates the published data. 14 15 Key words: Arsenite, antimonite, antimonate, infrared spectroscopy, Raman 16 spectroscopy 17 18 1 19 Arsenite, Antimonite and Antimonate Minerals 20 21 Introduction 22 23 Arsenic and antimony are found throughout the earth’s crust as a variety of minerals, although 24 not particularly abundant. It has been estimated that there are 2 grams of arsenic and 0.2 grams 25 of antimony in every tonne of crustal rocks [1]. Many arsenic-bearing minerals associated with 26 sulphides have been identified, such as arsenopyrite FeAsS, orpiment As2S3, and realgar α- 27 As4S4. When these ores are oxidised, As2O3 is obtained as a by-product. Antimony also 28 occurs with sulphur, Sb2S3 being the principal source. Many oxides have also been identified; 3+ 5+ 29 valentinite Sb2O3 and cervantite Sb Sb O4.
    [Show full text]
  • GRAESERITE, Featisasol3(OH), a NEW MINERAL SPECIES of the DERBYLITE GROUP from the MONTE LEONE NAPPE, BINNTAL REGION, WESTERN AL
    1083 The Canadian Mineralogist Vol.36, pp. 1083-1088(1998) GRAESERITE,FeaTisAsOl3(OH), A NEWMINERAL SPECIES OF THE DERBYLITE GROUP FROM THE MONTELEONE NAPPE, BINNTAL REGION, WESTERN ALPS, SWITZERLAND MICHAEL S. KRZEMNICKII Mineralagisch-Petrographischzs Instint, Universitiit Ba$eI, Bemoullistr. 30, CH-4056 Basel, Switzerl.and ERIC REUSSERI Iwtitut fiir Mincralogie und Petrographie, ETH-7zntram, Sonneggstr. 5, CH-8092 Zurich SwitzerLanl AssrRAcr Graeserite, ideally Fe4t3AsOl3(OH), is a new mineral species of the derbylite gloup, which includes derbylite, tomichite, a"ndhemloite. It is found in needle-shapedcrystals, elongate along the c axis. Graeserils i5 6sn6alinig, spacegtoup AXm, with the cell paramelersa 7 .184(2), b 14.289(6),c 5.006(2) A, p 105.17(2)",V 495.9(2) At, z=2, D,a.. =!.56 g/cm3.The VHNxgis_52L (Mohs hardness -595). The strongest five lines of the X-ray powder-diffraction pattern [d in An)(hkD] are: 2.681(100)@31), 2.846(80X131), 1.583(50X351), 3.117 (30)(220), nd 2.029(30)(122). Graeserite is black and metallic, with a black streak; it displays a conchoidal fracture. Pleochroism, bireflectance a"ndinternal reflections were not observed. The measured values of reflecrance in air are compared with those of other members of the derbylite group. Electron-microprobe analyses gave TiO2 40.89, Fe2O333.64, FeO"6" 3.94, PbO 5.00, As2O3 13.51,Sb2O3 1.43, and H2O"a" 1.30, loral 99.80 wt.7o. The empirical formula, based on 13 atoms of oxygen and one hydroxyl group, is (Fe3*z.qrFe2*o.gsTlos+Pbo.rs)>r.grTi3(As3*s.9aSb3*e.m)>r.orOrg(OH).
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINERALOGIST, VOL. 52, SEPTEMSER_OCTOBER, 1967 NEW MINERAL NAMES Mrcn,rBr F-r-Brscnnn Lonsdaleite Cr.u'lonn FnoNoer. lNn Uxsule B. MenvrN (1967) Lonsdaleite, a hexagonai polymorph oi diamond. N atwe 214, 587-589. The residue (about 200 e) from the solution of 5 kg of the Canyon Diablo meteorite was found to contain about a dozen black cubes and cubo-octahedrons up to about 0.7 mm in size. They were found to consist of a transparent substance coated by graphite. X-ray data showed the material to be hexagonal, rvith o 2.51, c 4.12, c/a I.641. The strongest X-ray lines are 2.18 (4)(1010), 2.061 (10)(0002), r.257 (6)(1120), and 1.075 (3)(rrr2). Electron probe analysis showed only C. It is accordingly the hexagonal (2H) dimorph of diamond. Fragments under the microscope were pale brownish-yellow, faintly birefringent, a slightly higher than 2.404. The hexagonal dimorph is named lonsdaleite for Prof. Kathleen Lonsdale, distin- guished British crystallographer. It has been synthesized by the General Electric co. and by the DuPont Co. and has also been reported in the Canyon Diablo and Goalpara me- teorites by R. E. Hanneman, H. M. Strong, and F. P. Bundy of General Electric Co. lSci.enc e, 155, 995-997 (1967) l. The name was approved before publication by the Commission on New Minerals and Mineral Names, IMA. Roseite J. OrrnueNn nNl S. S. Aucusrrtnrs (1967) Geochemistry and origin of "platinum- nuggets" in lateritic covers from ultrabasic rocks and birbirites otW.Ethiopia.
    [Show full text]
  • A New Mineral from Mn Ores of the Ushkatyn-III Deposit, 3 Central Kazakhstan and Metamorphic Rocks of the Wanni Glacier, Switzerland 4 5 Oleg S
    1 Revision 1 2 Gasparite-(La), La(AsO4), a new mineral from Mn ores of the Ushkatyn-III deposit, 3 Central Kazakhstan and metamorphic rocks of the Wanni glacier, Switzerland 4 5 Oleg S. Vereshchagin*1, Sergey N. Britvin1,6, Elena N. Perova1, Aleksey I. Brusnitsyn1, 6 Yury S. Polekhovsky1, Vladimir V. Shilovskikh2, Vladimir N. Bocharov2, 7 Ate van der Burgt3, Stéphane Cuchet4, and Nicolas Meisser5 8 1Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 St. 9 Petersburg, Russia 10 2Geomodel Centre, St. Petersburg State University, Uliyanovskaya St. 1, 198504 St. 11 Petersburg, Russia 12 3Geertjesweg 39, NL-6706EB Wageningen, The Netherlands 13 4ch. des Bruyeres 14, CH-1007 Lausanne, Switzerland 14 5Musée cantonal de géologie, Université de Lausanne, Anthropole, 1015 Lausanne, 15 Switzerland 16 6Kola Science Center, Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, 17 Murmansk Region, Russia 18 *E-mail: [email protected] 19 1 20 Abstract 21 Gasparite-(La), La(AsO4), is a new mineral (IMA 2018-079) from Mn ores of the Ushkatyn- 22 III deposit, Central Kazakhstan (type locality) and from alpine fissures in metamorphic rocks 23 of the Wanni glacier, Binn Valley, Switzerland (co-type locality). Gasparite-(La) is named 24 for its dominant lanthanide, according to current nomenclature of rare-earth minerals. 25 Occurrence and parageneses in both localities is distinct: minute isometric grains up to 15 µm 26 in size, associated with fridelite, jacobsite, pennantite, manganhumite series minerals 27 (alleghanyite, sonolite), sarkinite, tilasite and retzian-(La) are typically embedded into 28 calcite-rhodochrosite veinlets (Ushkatyn-III deposit), versus elongated crystals up to 2 mm in 29 size in classical alpine fissures in two-mica gneiss without indicative associated minerals 30 (Wanni glacier).
    [Show full text]
  • New Data on Cafarsite: Reinvestigation of Its Crystal Structure and Chemical Composition
    Eur. J. Mineral. 2018, 30, 859–868 Published online 9 May 2018 New data on cafarsite: reinvestigation of its crystal structure and chemical composition 1,* 2 1 1 GEORGIA CAMETTI ,MARIKO NAGASHIMA ,MARTIN FISCH and THOMAS ARMBRUSTER 1 Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Baltzerstr. 1þ3, 3012 Bern, Switzerland *Corresponding author, e-mail: [email protected] 2 Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan Abstract: The crystal structure of cafarsite from Wanni glacier, Monte Cervandone, was re-investigated by single-crystal X-ray diffraction (space group Pn3, R1 = 0.022) and new electron-microprobe analyses. The REE (mainly Ce and Y) were found to substitute Ca. A new anion site, four-coordinated by Ca, was located by difference Fourier analysis and refined with F scattering factors. Two octahedral sites (Ti1 and Fe2) are occupied by mainly Ti and Fe3þ, replacing each other whereas the octahedral site Mn1 hosts Mn2þ and Fe2þ. The new structure refinements and chemical analyses lead to the simplified chemical formula 3þ 2þ 2þ (Ca7.8Na0.8Mn0.5REE0.4)S9.5(Ti3.9Fe 2.1Fe 0.9Mn 0.1)S7(AsO3)14F0.5. According to our findings, there is no evidence for either H2O or OH in the structure. In contrast to the original study of 1977, the structure has no significant cation vacancies and is based on 14 AsO3 groups per formula unit, not on 12 AsO3 as previously suggested. Key-words: cafarsite; crystal structure; electron-microprobe analyses; calcium titanium arsenite; new formula; REE. 1. Introduction This study was initiated to clarify this contradiction and to determine whether H2O is actually present in cafarsite.
    [Show full text]
  • Clarke Jeff a 201709 Mscproj
    THE CHARACTERIZATION OF ARSENIC MINERAL PHASES FROM LEGACY MINE WASTE AND SOIL NEAR COBALT, ONTARIO by Jeff Clarke A research project submitted to the Department of Geological Sciences and Geological Engineering In conformity with the requirements for the degree of Master of Science in Applied Geology Queen’s University Kingston, Ontario, Canada (July, 2017) Copyright © Jeff Clarke, 2017 i ABSTRACT The Cobalt-Coleman silver (Ag) mining camp has a long history of mining dating back to 1903. Silver mineralization is hosted within carbonate veins and occurs in association with Fe-Co-Ni arsenide and sulpharsenide mineral species. The complex mineralogy presented challenges to early mineral processing methods with varying success of Ag recovery and a significant amount of arsenic (As) in waste material which was disposed in the numerous tailings deposits scattered throughout the mining camp, and in many instances disposed of uncontained. The oxidation and dissolution of As-bearing mineral phases in these tailings and legacy waste sites releases As into the local aquatic environment. Determining the distribution of primary and secondary As mineral species in different legacy mine waste materials provides an understanding of the stability of As. Few studies have included detailed advanced mineralogical characterization of As mineral species from legacy mine waste in the Cobalt area. As part of this study, a total of 28 samples were collected from tailings, processed material near mill sites and soils from the legacy Nipissing and Cart Lake mining sites. The samples were analyzed for bulk chemistry to delineate material with strongly elevated As returned from all sample sites. This sampling returned highly elevated As with up to 6.01% As from samples near mill sites, 1.71% As from tailings and 0.10% As from soils.
    [Show full text]
  • Franklin-Sterling 2017 Gem and Mineral Show
    Franklin-Sterling 2017 GEM & MINERAL SHOW SATURDAY, SEPTEMBER 23rd • 9-5 SUNDAY, SEPTEMBER 24th • 10-4 Littell Community Center FRANKLIN, NEW JERSEY The Fluorescent Mineral Capital of the World Miners Day and Volunteer Appreciation Day, Franklin Mineral Museum, May 7, 2017 Local miners and their families have been honored by the Franklin Mineral Museum for many years. Held on the first Sunday of May, Miners Day also honors museum volunteers. Attendance is by invitation, and the festivities include a buffet lunch, a concert by the famous Franklin Band, and awards to science students in local schools. Mineral collectors and citizens of New Jersey, thank these miners when you see them! They worked to mine our state's zinc and iron ores while recovering the mineral heritage displayed in museums here in Franklin and Sterling Hill, and at many other museums in our country and around the world. These miners worked at the Sterling Mine at Sterling Hill in Ogdensburg, N.J., with the exception of Bob Allen, a veteran of the Scrub Oaks Mine in Mine Hill, N.J. Left to right: Rich Gunderman, Bob Allen, Dick Bostwick (in front), Dom Lorenzo, Tom Laner, Steve Delmar, Mike Hallowich, Paul Rizzo, Andy Gancarcik, Al Restrepo, Chris Auer, Ed Keith, Lenny Talmadge (in back), Bernie Kozykowski, Harvey Barlow (in back), Doug Francisco, and Bill Rude. Sterling Hill miners who were present but missing from both photos are John Antal, Al Grazevich, Mike Gunderman, Ted Hanson, Fred Kirk, Steve Sanford, Henry Wisniewski, and John Yanish. Also present for Miners Day but missing from the photos is Ron Mishkin, who worked at Franklin in the sum- mers of 1952 and 1953, and later in iron mines near Dover.
    [Show full text]
  • Current Research on Artificial Arsenic Sulphide Pigments in Artworks: Ashort Review
    CONSERVATION OF CULTURAL HERITAGE 903 doi:10.2533/chimia.2008.903 CHIMIA 2008, 62,No. 11 Chimia 62 (2008) 903–907 ©Schweizerische Chemische Gesellschaft ISSN 0009–4293 Current Research on Artificial Arsenic Sulphide Pigments in Artworks: AShort Review Günter Grundmann*a and Mark Richterb Abstract: Ageneral re-examination of the artificial arsenic sulphide pigments orpiment, realgar and alacranite using polarised light microscopy (PLM), scanning electron microscopy (SEM) combined with energy and wavelength dis- persive X-ray analysis (EDX, WDX) and X-ray diffraction analysis (XRD) revealed the following results: wet-process precipitation products of artificial orpiment consist of golden yellow,amorphous, spherical particles ranging from 0.2 to 2 µmØ.Dry-process roasting and/or sublimation products with an arsenolite/sulphur mixtureconsist mainly of amorphous golden yellow oval drops and spherules of amorphous arsenic sulphide glass (g-AsxSx)with a smooth surface ranging from 1to20µmØinassociation with arsenolite crystal aggregates and members of the alacranite solid solution series (As8S8)–(As8S9). Abright lemon yellow to orange-red arsenic sulphide pigment on a sixteenth/seventeenth-century South German polychrome recumbent sculptureand aseventeenth-century Dutch painting attributed to Rembrandt’sstudio has been identified as an artificial orpiment produced with dry-process (roasting/sublimation) methods. The recumbent figurecontains (i) yellow,orange or red-brown amorphous splintery fragments and spherules of arsenic sulphide glass of up to 25 µm Ø, (ii) yellow,brown or red-brown crystalline spherules and splintery fragments of alacranite, (iii) lemon yellow to red-brown agglomerates of arsenic sulphide glass, and (iv) colourless irregular fragments or octahedral crystals of arsenolite. This type can be classified as ‘complex artificial orpiment’.
    [Show full text]
  • Crystalloluminescence and Temporary Mechanoluminescence of As203 Crystals
    Pratr~na, Vol. 18, No. 2, February 1982, pp. 127-135. © Printed in India. Crystalloluminescence and temporary mechanoluminescence of As203 crystals B P CHANDRA, P R TUTAKNE, A C BIYANI and B MAJUMDAR Department of Physics, Government Science College, Raipur 492 002, India MS received 24 August 1981 ; revised 21 December 1981 Abstract. Crystalloluminescence and temporary mechanoluminescence of AsaOa crystals are investigated. The crystalloluminescence spectra are similar to the photo- luminescence and mechanolumineseence (of fresh crystals, in COz atmosphere) spectra. The mechanoluminescence spectra of freshly grown crystals taken in air consist of the superposition of the photoluminescence and nitrogen emissions. The mechano- luminescence spectra of old crystals of AssO3 consist of only the nitrogen emission. The total number of crystalloluminescence flashes is linearly related to the total mass of the crystals grown. The mechanoluminescence intensity increases with the mass of the crystals. The mechanoluminescence intensity decreases with the age of the crys- tals and the rate of decrease increases with increasing temperature of the crystals. Different possibilities of crystalloluminescence and mechanoluminescence excitations in AssOs crystals are exlSlored and it is concluded that crystalloluminescence and mechanoluminescence are of different origins. Keywords. Crystalloluminescence; mechanoluminescence; photoluminescence; crys- tal-fracture; As~Os crystals. 1. Introduction Crystalloluminescence (CRL), the emission of light during crystallization of certain substances from solution and mechanoluminescence (ML), the emission of light during mechanical deformation of certain solids are known for a long time (Harvey 1957). It has been reported from time to time that the CRL and ML should be correlated in their excitation mechanism (Trautz 1905; Gernez 1905; Weiser 1918; Belyaev et al 1963; Takeda et al 1973).
    [Show full text]
  • Allchar Mineral Assemblage 3
    Geologica Macedonica, Vol. 15-16, p. 1-23 (2001-2002) Suppl. GEOME2 SSN 0352 - 1206 Manuscript received: December 15, 200 1 UDC: 553.08 (497 .7) Accepted: March 3, 2002 Original scientific paper ~• ALLCHAR l\1INERAL ASSEMBLAGE l 3 l 4 Blazo Boev , Vladimir Bermanec , Todor Serafimovski\ Sonja Lepitkova , Snezana Mikulcic , 5 5 5 Marin ~oufek\ Gligor Jovanovski , Trajce Stafilov , Metodija Najdoski IDepartment ofPetrology, Mineralogy and Geochemistry, Faculty ofMining and Geology, "Sv. Kiril i Metodij" University, Goce Delcev 89, MK-2000 Stip, Republic ofMacedonia 2Department ofMineral Deposits, Faculty ofMining and Geology, "Sv. Kiril i Metodij" University, Goce Delcev 89, MK-2000 Stip, Republic of Macedonia 3Institute ofMineralogy and Petrology, Department ofGeology, Faculty ofScience, University ofZagreb, Horvatovac bb, HR-JOOOO Zagreb, Croatia 4Department ofMineralogy and Petrology, Croatian Natural History Museum, Demetrova I, HR-JOOOO Zagreb, Croatia 5Institute of Chemistry, Faculty ofScience, "Sv. Kiril i Metodij" University, P.o. Box 162, MK-JOOI Skopje, Republic ofMacedonia Abstract. The paper is a summary of investigatioris carried out on minerals of the Allchar deposit. It discusses the TI-As-Sb-Au mineral ill emblage after detailed and intense research work. Four types of mineralization have been distinguished based on the mineral assemblage present: I. The first ly pe is characterised by high c ment of iron and sulphur, but lower arsenic and thalli um contenl. The pyrite-marcasite mineral assemblage is characterized by the presence of some quantities of arsenic-pyrite. 2. The second type is characterized by the high antimony and low iron and thallium content. Stibnite is the most common mineral in the group.
    [Show full text]
  • Primary Minerals of the Jáchymov Ore District
    Journal of the Czech Geological Society 48/34(2003) 19 Primary minerals of the Jáchymov ore district Primární minerály jáchymovského rudního revíru (237 figs, 160 tabs) PETR ONDRU1 FRANTIEK VESELOVSKÝ1 ANANDA GABAOVÁ1 JAN HLOUEK2 VLADIMÍR REIN3 IVAN VAVØÍN1 ROMAN SKÁLA1 JIØÍ SEJKORA4 MILAN DRÁBEK1 1 Czech Geological Survey, Klárov 3, CZ-118 21 Prague 1 2 U Roháèových kasáren 24, CZ-100 00 Prague 10 3 Institute of Rock Structure and Mechanics, V Holeovièkách 41, CZ-182 09, Prague 8 4 National Museum, Václavské námìstí 68, CZ-115 79, Prague 1 One hundred and seventeen primary mineral species are described and/or referenced. Approximately seventy primary minerals were known from the district before the present study. All known reliable data on the individual minerals from Jáchymov are presented. New and more complete X-ray powder diffraction data for argentopyrite, sternbergite, and an unusual (Co,Fe)-rammelsbergite are presented. The follow- ing chapters describe some unknown minerals, erroneously quoted minerals and imperfectly identified minerals. The present work increases the number of all identified, described and/or referenced minerals in the Jáchymov ore district to 384. Key words: primary minerals, XRD, microprobe, unit-cell parameters, Jáchymov. History of mineralogical research of the Jáchymov Chemical analyses ore district Polished sections were first studied under the micro- A systematic study of Jáchymov minerals commenced scope for the identification of minerals and definition early after World War II, during the period of 19471950. of their relations. Suitable sections were selected for This work was aimed at supporting uranium exploitation. electron microprobe (EMP) study and analyses, and in- However, due to the general political situation and the teresting domains were marked.
    [Show full text]