The Effects of Stellar Activity on Detecting and Characterising Exoplanets

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Stellar Activity on Detecting and Characterising Exoplanets The effects of stellar activity on detecting and characterising exoplanets Suzanne Aigrain R. Angus, J. Barstow, V. Rajpaul, E. Gillen, H. Parviainen, B. Pope, S. Roberts, A. McQuillan, N. Gibson, T. Mazeh, F. Pont, S. Zucker Timescales Solar irradiance (SoHO/VIRGO) Transits are easy to separate from Active regions photometric variations due to star spots … up to a point! Activity-induced variability is more problematic for: - transmission spectroscopy - radial velocity planet searches - phase curve studies Granulation Orbit Transits Oscillations (Aigrain, Favata & Gilmore 2004) Filtering activity to detect transits Iterative non-linear filter followed by least-squares box-shaped transit search (Aigrain & Irwin 2004) P ~ 20h, depth 0.0003, Rplanet ~ 2 REarth (CoRoT-7b, Leger et al. 2009) When does activity matter for transit searches? Transit SNR = sqrt(Ntransits) x depth / sigma(Ttransit) where: Intrinsic stellar variability on 6 hour time- - Ntransits is number of transits scales from Kepler (Gilliland et al. 2011) - Ttransit is duration of transit Activity means Kepler would have needed 7 rather than 4 years to reach SNR of 10 for Earth-like planets in the Sun habitable zone of Sun-like stars This can be addressed, at least partially, by modelling the activity-induced variations simultaneously with the transits Modelling stellar signals and instrumental systematics jointly using Gaussian Processes (GPs) Model activity as a quasi-periodic a Gaussian process. Example from K2 Campaign 7 Simultaneously model pointing-related systematics K2SC pipeline - Aigrain et al. 2016. Code and LCs available - talk to Hannu Parviainen First planet candidate catalog: Pope et al. (2016, on arXiv this week) Activity in transit spectra • In any kind of high precision transit studies, need to worry about spots (see e.g. Pont et al. 2013): • occulted: distort transit, or make it seem shallower • un-occulted: make transit appear deeper • Both effects are very important and hard to correct for transmission spectroscopy • even in the IR (see e.g. Barstow et al. 2015 - JWST) • Plages may also be important (low contrast but large area) - Oshagh et al. (2014) Spectroscopic effects of star spots Contrast between 5000 K photosphere and cool spots with different temperatures (MARCS models, Gustafsson et al. 2008, log g = 4.5, [Fe/H] = 0) TiO / VO Tspot = 3500 K H2O Mg Tspot = 4750 K Na Accounting for spots in transmission spectra 4 D. K. Sing et al. Estimatecoefficients with spectrum/temperature 1D stellar atmospheric models andof finallyspots using from a fully 3D time-dependent hydrodynamic stellar atmospheric model. 8 D. K. Sing et al. occultedWe computed spots limb-darkening coefficients for the linear law HD189733b, I(µ) 1 u(1 µ)(1) Sing et al. (2012) I(1) = − − as well as the Claret (2000) four-parameter limb-darkening law Tspot ~ 4250K - unique way to I(µ) 1 c (1 µ1/2) c (1measureµ) spot temperatures on I(1) = − 1 − − 2 − c (1 µ3/2) c (1 µ2). (2)other stars! − 3 − − 4 − 8 D. K. Sing et al. For the 1D models, we followed the procedures of Sing (2010) Figure 3. STIS white light curve for visit 1 (black) and visit 2 (red) with using 1D Kurucz ATLAS models2 and the transmission function the instrument trends removed. The points showing occulted spot features of the G430L grating (see Table 1). The four-parameter law is the are indicated with boxes. The best-fitting transit models for both visits are best representation of the stellar model intensity distribution itself, shown in grey using the unspotted points. while the linear law is the most useful in this study when fitting for 3.1 Instrument systematic trends the coefficients from the transit light curves. We constructed a 3D time-dependent hydrodynamical model at- As in past STIS studies, we applied orbit-to-orbit flux corrections mosphere using the STAGGERCODE (Nordlund & Galsgaard 1995) with by fitting for a fourth-order polynomial to the photometric time aresolutionof2403 grid points, spanning 4 4Mm2 on the hori- series, phased on the HST orbital period. The systematic trends zontal axes and 2.2 Mm on the vertical axis.× The simulation has a were fit simultaneously with the transit parameters in the fit. Higher time-average effective temperature Teff 5050 K, surface gravity order polynomial fits were not statistically justified, based upon log g 4.53 and metallicity [Fe/H]⟨ 0.0⟩ = (based on the solar com- the Bayesian information criteria (BIC; Schwarz 1978). Compared position= of Asplund, Grevesse & Sauval= 2005), which is close to the to the standard χ 2, the BIC penalizes models with larger num- stellar parameters of Bouchy et al. (2005). Full 3D radiative transfer bers of free parameters, giving a useful criterion to help select was computed in local thermodynamic equilibrium (LTE) based on between different models with different numbers of free param- continuous and spectral line opacities provided by Trampedach (in eters, and helps ensure that the preferred model does not over- preparation) and Plez (private communication); see also Gustafsson Figure 8. Plotted is the occulted-spotfit the data. The feature baseline from flux level visit of 2 each at (top visit to was bottom) let free to et al. (2008). We obtain monochromatic surface intensities Iλ(µ, φ, 3300, 3950, 4450, 4950 andvary 5450 in time Å along linearly, with described the best-fitting by two fit parameters. spot solution. In addi- x, y, t)withasamplingofλ/%λ 20 000 in wavelength for 17 tion, we found it useful to also fit for further systematic trends polar angles µ,fourazimuthalangles= φ and a time series of 10 which correlated with the detector position of the spectra, as de- snapshots that span 30 min of stellar time t, with a horizontal res- Figure 10. Spectral≈ signature of the stellar spots occultation derived from Figuretermined 8. Plotted from a is linear the occulted-spot spectral trace feature in IRAF fromand visit the 2 dispersion- at (top to bottom)olution of 120 120 grid points in x and y. Limb-darkening laws × 3300,direction 3950, subpixel 4450, 4950 shift and between 5450 Å spectral along with exposures, the best-fitting measured spot by solution.theI(µ)/ STISI(1) (see G430L Fig. 4) (closed were derived black by and averaging green symbols)Iλ(µ, φ, x, y and, t) ACS (open symbols) cross-correlation. data.over horizontal The spot grid, is azimuth modelled angle and with time, stellar providing atmospheric a statistical models of different We found that fitting the systematic trends with a fourth-order representation of the surface granulation, and integrating over each temperaturesFigure ranging 10. Spectral from signature 4750 toof 3500the stellar K in spots 250 occultation K intervals derived (blue from to orange, polynomial HST orbital period correction and linear baseline limited bandpassthe and STIS the G430Ltransmission (closed function; black and the green result symbols) was normalized and ACS (open symbols) S/N values to the range of 9000 to 10 000 (precisions levels of 0.011 respectively),to the disc-centredata. The and intensity spotTeff is at modelledµ 50001. A withK more for stellar detailed the stellar atmospheric description temperature. modelsof of different = = to 0.01 per cent). These limiting values match similar previous the 3D modeltemperatures will be given ranging in from a forthcoming 4750 to 3500 paper K inby 250 WH. K intervals (blue to orange, pre-SM4 STIS observations of HD 209458b, which also similarly Whilerespectively), limb darkening and isTeff stronger5000 at K near-UV for the stellar and blue temperature. wave- corrected for these systematic trends (Brown 2001; Ballester et al. lengths,As in compared Pont et to the al. red (2008), and= near-infrared, we model the white the effects light stel- of unocculted spots 2007; Knutson et al. 2007b; Sing et al. 2008a). With the additional bylar intensity assuming profile that is also thepredicted emission to be close spectrum to linear (see Fig. of 4). spots corresponds to correction of position-related trends (see Fig. 1), we were able to Fortunately,As a linear in Pont stellar et al. intensity (2008), profile we model makes it the much effects easier of to unocculted spots increase the extracted S/N to values of 14 000 per image, which acompare stellarby fit limb-darkening spectrumassuming that of coefficients the lower emission to temperature model spectrum values, because of than spots it the corresponds rest of to the star is 80 per cent of the Poisson-limited value. These additional free is less ambiguousa stellar asspectrum to which of limb-darkening lower temperature law to choose than the and rest of the star ∼ covering a fraction of the stellar surface and assuming no change in parameters in the fit are also justified by the BIC as well as a reduced becausecovering the fit is not a fraction complicated of the by degeneracies stellar surface when and fitting assuming for no change in χ 2 value. In a fit excluding the position-dependent systematic trends the surface brightness outside spots. We neglect the effect of faculae ν multiplethe limb-darkening surface brightness coefficients. outside In the spots. white We light-curve neglect the fits, effect of faculae for the first STIS visit, we find a BIC value of 277 from a fit with 73 onwe performed the transmission fits allowing the spectrum. linear coefficient The term spots to vary freely,then lead to an overall 2 on the transmission spectrum. The spots then lead to an overall degrees of freedom (DOF), eight free parameters and a reduced χ ν as well as fits setting the coefficients to their 1D and 3D predicted of 3.31. Including the position-related trends lowers the BIC value dimmingvalues withdimming the of four-parameter the of star.the star.
Recommended publications
  • Evans.2013.HD189733.Albedo.Pdf
    ORE Open Research Exeter TITLE The Deep Blue Color of HD 189733b: Albedo Measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at Visible Wavelengths AUTHORS Evans, T.M.; Pont, F.; Sing, David K.; et al. JOURNAL Astrophysical Journal DEPOSITED IN ORE 15 December 2014 This version available at http://hdl.handle.net/10871/16042 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication The Astrophysical Journal Letters, 772:L16 (5pp), 2013 August 1 doi:10.1088/2041-8205/772/2/L16 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS Thomas M. Evans1,Fred´ eric´ Pont2,DavidK.Sing2, Suzanne Aigrain1, Joanna K. Barstow1, Jean-Michel Desert´ 3,7, Neale Gibson4, Kevin Heng5, Heather A. Knutson3, and Alain Lecavelier des Etangs6 1 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK; [email protected] 2 School of Physics, University of Exeter, EX4 4QL Exeter, UK 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 4 European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany 5 University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern, Switzerland 6 Institut d’Astrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris, France Received 2013 May 31; accepted 2013 June 15; published 2013 July 11 ABSTRACT We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290–570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope.
    [Show full text]
  • Suzanne Aigrain on Behalf of the Corot Exoplanet Science Team Why Space?
    Suzanne Aigrain on behalf of the CoRoT exoplanet science team Why space? • Atmosphere limits precision photometry from the ground • Scintillation limit ~2 mmag • Representative transit depths for Sun-like star • Jupiter: 10 mmag • Neptune: 1.3 mmag • Earth: 0.1 mmag • Weather and daytime limit temporal coverage from the ground • Many sources of noise transit timescales removed • colour dependent differential extinction, seeing, etc... 27 December 2006 The satellite • PI: Annie Baglin, LESIA, Meudon • CNES PROTEUS bus • 27cm aperture telescope • Soyuz II-1b launcher from Baikonour • Polar orbit • 2.5 year minimum lifetime Payload 27cm telescope layout focal box Full images, windowing and target selection Focal planeSeismology detector (Vincent Lapeyrere) Exopplnat detector (Farid Karioty) • Sismo field • 5 windows / CCD • 5.7 < mV < 9.5 • 32s sampling (1s on request) • frame transfer mode • used for astrometry 2.8° • 10 bright stars • 10 background windows • 11600 faint stars • 400 background windows CoRoT_Booklet_talks_summer2007 2 seismo exo SCAO Pointing stability Barycenter X of the stellar image x-coord of stellar image barycenter Stability performances : x axis: rms 0.12 pixel y axis: rms 0.15 pixel ~ 0RMS.3 a stability:rc sec. 0.12 pixel in x 0.15 pixel in y ~0.3 arcsec Vibrations due to the entrance and exit form ecclipses vibrations due to Earth eclipse ingress and egress CoRoT_Booklet_talks_summer2007 3 Exo field 2.8° • Exo field • up to 6000 LCs / CCD • 11.5 < mV < 16 • 512s sampling (32s for 500 objects / CCD) • 3 colours for
    [Show full text]
  • Cvetoje- Vic, Anthony Cheetham, Frantz Martinache, Barnaby Norris, Peter Tuthill
    Dr Benjamin Pope Lecturer in Astrophysics and DECRA Fellow Advisor: Prof. David Hogg Affiliation: School of Mathematics & Physics University of Queensland, St Lucia, QLD 4072, Australia and Centre for Astrophysics University of Southern Queensland, West Street, Toowoomba, QLD 4350, Australia Homepage: benjaminpope.github.io email: [email protected] orcid: 0000-0003-2595-9114 Education and Previous Positions 2017-2020 NASA Sagan Fellow, New York University Advisor: Prof. David Hogg 2017 Postdoctoral Research Associate, University of Sydney Advisor: Prof. Peter Tuthill 2013-2017 Doctor of Philosophy in Astrophysics, University of Oxford Thesis: “Observing Bright Stars and their Planets from the Earth and from Space” Balliol College | Supervisors: Prof. Suzanne Aigrain, Prof. Patrick Roche 2013-14 Master of Science in Astrophysics, University of Sydney Thesis: “Vision and Revision: Wavefront Sensing from the Image Domain” Supervisor: Prof. Peter Tuthill 2012 Bachelor of Science (Advanced) with Honours in Physics, University of Sydney First Class Honours, with the University Medal Thesis: “Dancing in the Dark: Kernel Phase Interferometry of Ultracool Dwarfs” Supervisors: Prof. Peter Tuthill, Dr. Frantz Martinache 2010-2011 Study Abroad at the University of California, Berkeley Research project with Prof. Charles H. Townes, Infrared Spatial Interferometer. Grants ARC Discovery Early Career Research Award (DECRA) AUD $444,075.00 NASA TESS Cycle 3 Guest Investigator USD $50,000 TESS Cycle 2 Guest Investigator USD $50,000 Balliol Balliol Interdisciplinary Institute Research Grant College GBP £3,000 Teaching 2021 Extragalactic Astrophysics & Cosmology, University of Queensland 2019 Master of Data Science Guest Lecturer, NYU Center for Data Science 2017 Bayesian Reasoning Honours Lecturer, University of Sydney 2017 Honours Project Supervisor, University of Sydney Supervised Alison Wong and Matthew Edwards, both to First Class Honours and PhD acceptance.
    [Show full text]
  • Nawal Husnoo, Frédéric Pont, David Sing, Kevin Heng, Suzanne Aigrain, Leigh Fletcher, Jaemin Lee, Tom Evans
    Opacity and spectra in hot Jupiters Nawal Husnoo, Frédéric Pont, David Sing, Kevin Heng, Suzanne Aigrain, Leigh Fletcher, Jaemin Lee, Tom Evans. Contact: [email protected]. We are developing a set of tools for generating absorption coeffcients for hot Jupiter atmospheres. We focus on the visible spectrum, where we plan to use the routines for generating "frst guess" models for the upcoming transmission spectra of hot Jupiters (HST program in progress, PI: Sing). We also plan to study the atmospheric temperature-pressure profle of hot Jupiters (Heng et al. 2011)[1], with a focus on the effects of various types of clouds. The transmission spectrum of an exoplanet allows us to probe the atmosphere for elemental and molecular species. In the visible spectrum, sodium, potassium, titanium oxide and vanadium oxide are expected to be dominant [2], (depending on the composition and temperature). Absorption due to clouds/hazes can also be relevant [3]. In this project, we seek "frst guess" models to guide the ongoing observations of transmission spectra of transiting planets with HST. We seek to link the transmission spectrum with the "refection spectrum" in the visible, and compare the effects of scattering due to grains and absorption due to gasses. Transmission spectrum We perform fnite element integration for visible light rays that travel in a grazing geometry through the planet's atmosphere to generate the transmission spectrum. Absorption from the radiatively active species in the atmosphere causes wavelength-selective dimming in the light. Figure 1 shows an example of a transmission spectrum (HD 189733b), where we have plotted a model that includes the sodium D lines, Figure 1: Plot showing the latest reduction of the transmission spectroscopy for HD 189733b (our and Mie scattering for small particles (r<<λ), giving the Rayleigh regime.
    [Show full text]
  • Today Oxford
    www.oxfordtoday.ox.ac.uk Michaelmas Term 2010 Volume 23 No 1 OX FOR D TODAY THE UNIVERSITY MAGAZINE 20 | WILFRED THESIGER AFRICA SEEN THROUGH HIS LENS 30 | SCIENCE WHEN TO SHARE GENE DATA? 45 | GEOFFREY HILL SEAMUS PERRY ON OUR GREATEST LIVING POET PRIME MINISTERS Why has Oxford produced so many? OXF01.cover 1 8/10/10 3:37:5 pm FROM HOME Since 1821 the Oxfordand Cambridge Club has provided alumni of both universities with an exclusive home from home in the heartofthe Capital. Todaymembers can relax, dine and meetfriends in supremely elegant surroundings thatalso featurewell stocked libraries,sports facilities and first-class bedroom accommodation. Reciprocal clubs welcome members of the Oxfordand Cambridge Club in 35 countriesaround the world. Formoreinformation, please contact: [email protected] or call +44 (0)20 7321 5110 Oxfordand Cambridge Club,71Pall Mall,LondonSW1Y 5HD www.oxfordandcambridgeclub.co.uk OX FOR D TODAY EDITOR: Dr Richard Lofthouse DEPUTY ART EDITOR: Steven Goldring DESIGNER: Victoria Ford HEAD OF PUBLICATIONS AND WEB OFFICE: Anne Brunner-Ellis PRODUCTION EDITOR: Kate Lloyd SUB EDITOR: Elizabeth Tatham PICTURE EDITOR: Joanna Kay DESIGN DIRECTOR: Dylan Channon Thanks to Simon Kirrane, Esther Woodman, Helen Cox, Emma Swift EDITORIAL ENQUIRIES: Janet Avison Public Affairs Directorate Tel: 01865 280545 Fax: 01865 270178 [email protected] www.oxfordtoday.ox.ac.uk ALUMNI ENQUIRIES, INCLUDING CHANGE OF ADDRESS: Claire Larkin Alumni Offi ce Tel: 01865 611610 Michaelmas [email protected] COVER IMAGE: HARRY BORDEN/CORBIS OUTLINE, ROB JUDGES www.alumni.ox.ac.uk Term 2010 University of Oxford, University Offi ces, Wellington Square, Oxford OX1 2JD ADVERTISING ENQUIRIES: Marie Longstaff Future Plus, Beaufort Court, 30 Monmouth Street, Bath BA1 2BW Tel: 01225 822849 [email protected] www.futureplc.com Oxford Today is published in February, June and October.
    [Show full text]
  • Gaussian Processes
    Gaussian processes: the next step in exoplanet data analysis Suzanne Aigrain (University of Oxford) Neale Gibson, Tom Evans, Amy McQuillan Steve Roberts, Steve Reece, Mike Osborne ... let the data speak Gaussian processes: the next step in exoplanet data analysis Suzanne Aigrain (University of Oxford) Neale Gibson, Tom Evans, Amy McQuillan Steve Roberts, Steve Reece, Mike Osborne Gaussian processes for modelling systematics 5 high precision time-series stochastic correlated disentangle noise Figure 1. The ‘raw’ HD 189733 NICMOS dataset used as an example for our Gaussian process model. Left: Raw light curves of HD 189733 for each of the 18 wavelength channels, from 2.50µmto1.48µmtoptobottom.Right:Theopticalstateparametersextracted from the spectra plotted as a time series. These are used as the input parameters for our GP model. The red lines represent a GP regression on the input parameters, used to remove the noise and test how this effects the GP model. the noisy input parameters. We also checked that the choice wavelength channels. In this example, only orbits 2, 3 and 5 of hyperprior length scale had little effect on the results, by are used to determine the parameters and hyperparameters setting them to large values, and repeating the procedure of the GP (or ‘train’ the GP), and are shown by the red with varying length scales ensuring the transmission spec- points4. Orbit 4 (green points) was not used... in the traininglet the data speak tra were not significantly altered. set. Predictive distributions were calculated for orbits 2–5, and are shown by the grey regions, which plot the 1 and 2σ confidence intervals.
    [Show full text]
  • Statistics and Exoplanets
    FM 8: Statistics and Exoplanets Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.8, on 29 Sep 2021 at 23:15:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1743921316002726 Astronomy in Focus, Volume 1, Focus Meeting 8 XXIXth IAU General Assembly, August 2015 c International Astronomical Union 2016 Piero Benvenuti, ed. doi:10.1017/S1743921316002726 Introduction Suzanne Aigrain1 and Eric Feigelson2 1 Department of Physics, University of Oxford, Keble Road, Oxford, OX3 9UU, UK email: [email protected] 2 TBD email: Department of Astronomy & Astrophysics and Center for Astrostatistics, Penn State University, 525 Davey Laboratory, University Park PA 16802 USA Abstract. The IAU’s Statistics and Exoplanets Focus Meeting brings together observers, mod- elers and methodologists to discuss the intricate challenges of extracting and interpreting faint planetary signals from dominant starlight. Initiated by the IAU’s new groups concentrating on astroinformatics and astrostatistics, the meeting stimulated the wider exoplanetary community as well as experts in data and science analysis. This proceedings presented selected papers from the Focus Meeting. Keywords. methods: data analysis, methods: statistical, (stars:) planetary systems 1. Motivation The discovery and characterization of exoplanets requires both superbly accurate in- strumentation and sophisticated statistical methods, to extract weak planetary signals from dominant starlight, very large samples and noisy datasets. While numerous exo- planet conferences take place each year, these mostly focus on observational results, their physical implications, and current or future instrument developments; the statistical as- pects of the papers presented, while important, are not usually central to the program.
    [Show full text]
  • Suzanne Aigrain: Refereed Publications
    Suzanne Aigrain: Refereed publications 1. Bayesian detection of planetary transits: A modified version of the Gregory-Loredo method for periodic signal detection, S. Aigrain & F. Favata, Astronomy & Astrophysics, 395, 625 (2002) 2. The photospheric abundances of active binaries - I: Detailed analysis of HD 113816 (IS Vir) and HD 119285 (V851 Cen), D. Katz, F. Favata, S. Aigrain & G. Micela, Astronomy & Astrophysics, 397, 747 (2003) 3. Detecting planetary transits in the presence of stellar variability: Optimal filtering and the use of colour information, S. Carpano, S. Aigrain & F. Favata, Astronomy & Astrophysics, 401, 743 (2003) 4. Characterising stellar micro-variability for planetary transit searches, S. Aigrain, F. Favata & G. Gilmore, Astronomy & Astrophysics, 414, 1139 (2004) 5. Practical planet prospecting, S. Aigrain & M. Irwin, Monthly Notices of the Royal Astronomical Society, 350, 331 (2004) 6. Comparative blind test of five planetary transit detection algorithms on realistic synthetic light curves, C. Moutou, F. Pont, P. Barge, S. Aigrain, M. Auvergne, D. Blouin, R. Cautain, A. R. Erikson, V. Guis, P. Guterman, M. Irwin, A. F. Lanza, D. Queloz, H. Rauer, H. Voss & S. Zucker, Astronomy & Astrophysics, 437, 355 (2005) 7. The Monitor project: rotation of low mass stars in the open cluster M34, J. M. Irwin, S. Aigrain, S. T. Hogkin, M. J. Irwin, J. Bouvier, C. Clarke, L. Hebb & E. Moraux, Monthly Notices of the Royal Astronomical Society, 370, 954 (2006) 8. The Monitor project: Searching for occultations in young open clusters, S. Aigrain, S. T. Hogkin, J. M. Irwin, L. Hebb, M. J. Irwin, F. Favata, E. Moraux & F. Pont, Monthly Notices of the Royal Astronomical Society, 375, 29 (2007) 9.
    [Show full text]
  • 30Th March – 1St April 2016 University of Exeter
    30th March – 1st April 2016 University of Exeter 2 Welcome to the third UK Exoplanet Community Meeting taking place at the University of Exeter Local Organising Committee (green*) Scientific Organising Committee (orange*) Emma Way Isabelle Baraffe Ben Drummond David Sing Tiffany Kataria Sasha Hinkley Hannah Wakeford Nathan Mayne Tom Evans Didier Queloz Felix Sainsbury-Martinez Don Pollacco Sam Morrell Christiane Helling David Skålid Amundsen Jayesh Goyal Elisabeth Matthews Florian Debras *LOC and SOC members will be identifiable by the coloured dots on their name badges 3 Scientific Programme Wednesday 30th March 09:30 – 10:15 Welcome / Registration / Tea & Coffee 10:15 – 10:25 Introduction I Baraffe Session I Detection & statistics 10:30 – 11:05 (Invited) D Ségransan (Geneva) Title: TBC 11:05 – 11:30 A Triaud (Cambridge, Postdoc) The many reasons to search for circumbinary planets 11:30 – 11:55 H Osborn (Warwick, PhD) Single transit detections in the era of high-precision photometry 11:55 – 12:10 Tea / Coffee 12:10 – 12:35 S Durkan (Queen’s Belfast, PhD) High constrast imaging with Spitzer: Constraining the frequency of giant planets out to 1000 AU 12:35 – 13:00 H Celga (Queen’s Belfast, Postdoc) The Rossiter McLaughlin effect reloaded: Convective problems and new solutions 13:00 – 14:00 Lunch / Posters 14:00 – 14:25 M Bonavita (Edinburgh, Postdoc) Constraints on the frequency of sub-stellar companions on wide circumbinary orbits 14:25 – 14:50 S Aigrain (Oxford, Staff) K2SC: Unleashing the potential of K2 for active stars Session II
    [Show full text]
  • Suzanne Aigrain Exoplanets - 30/01/08 Off the Cuff List
    Some interesting things to do with transits Suzanne Aigrain Exoplanets - 30/01/08 Off the cuff list • True mass and radius • Rossiter effect • Detection of small planets • Atmospheric studies • Transit timing True massM. Gillo n et&al.: De tectradiusion of transits of the nearby hot Neptune GJ 436 b L15 Table 1. Parameters for the GJ 436 system, host star and transiting planet. Star (very) inflated planets - additional heat source? Stellar mass [M ] 0.44 ( 0.04)∗ dense planets - corSteel lmass?ar radius [R! ] 0.44 (± 0.04) neptune-mass and smaller planets! - composition?± can we really tell? Planet Period [days] 2.64385 0.00009∗ ± Eccentricity 0.16 0.02∗ ± Orbital inclination [◦] 86.5 0.2 Radius ratio 0.082± 0.005 Planet mass [M ] 22.6 ±1.9 Planet radius [R⊕ ] 3.95+±0.41 ⊕ 0.28 − +2600 [km] 25 200 1800 − T [BJD] 2 454 222.616 0.001 tr ± ∗ From M07. photometry, or using the lower-accuracy data from St.-Luc and Wise, leads to changes of 5% in the radius ratio. If the stellar radius is lef∼t as a free parameter in the lightcurve fit, the best-fit values are R = 0.46 R , Rpl = 26 500 km, and ! i = 86◦. This is an independent indication that the radius deter- mination of the primary is basically correct. 4. Discussion The measured radius of GJ 436 b is comparable to that of Neptune and Uranus. Figure 3 places it in the context of the mass-http://obsradius dwwwiagra.unigem for.ch/~pont/simpleTSolar System planABLE.datets and transiting ex- oplanets.
    [Show full text]
  • Download the May 2021 Newsletter
    Volume26 Issue 9 NWASNEWS MAY 2021 Newsletter for the Wiltshire, Swindon, BLACK HOLE EDITION Beckington, Bath Astronomical Societies I’m am sorry I may have confused our provided the first image of a black hole has speaker topic for this evening, several rea- been further refined and magnetic streams sons, but it will not be Black Holes. have been seen around the black hole Wiltshire Society Page 2 (Asterisms talk by Martin was booked to event horizon. Also discovery of one of the Swindon Stargazers 3 replace one about the Big Bang—but dur- smallest black holes ever detected has ing a talk about the Spanish Observatory been found a mere 1200 light years away Beckington AS and Star Quest Astronomy 4 and memories coming up on Facebook I (not close enough to affect us). Group page. thought it was asterisms and the speaker With this in mind I thought it was time to replied Big Bang. Either way our speaker is Black Holes 5-15 take a look at where science is with the eminently capable, and is awaiting publica- theories around black holes, hence a spe- tion of has observational book from Spring- SPACE NEWS 16-30 cial edition, and further confusion for me. 4th flight for Ingenuity er about lesser known stellar asterisms, Russia to build own space station had had taught astronomy of the Big Bang. April also saw a few transits of the Sun by Ingenuity images Perseverance the International Space Station. While few To add to my personal confusion whilst Astronomers ask UN to protect skies April night passes were visible this means it Mysterious Sun Corona heat source? putting together the space news section of was passing in the day time and close to Black Hole Neutron Star Collisions this bumper 44 page newsletter two topics the Sun’s declination.
    [Show full text]
  • Corot Discovery Challenges the Definition of Extra-Solar Planets 7 October 2008
    CoRoT discovery challenges the definition of extra-solar planets 7 October 2008 Dr. Hans Deeg, from the Instituto de Astrofisica de Canarias (IAC) commented, "On the other hand it could also be a very low-mass brown dwarf, a ‘failed star’ which never got massive and hot enough to shine like a normal star." Dr Suzanne Aigrain of the University of Exeter, explains why this new object is such an important find for planet hunters: "There is no clear consensus among scientists where to draw the exact boundary between planets and brown dwarfs. No object has been found before which is so close to this boundary, yet orbits its host star so rapidly. Many astronomers had started to think that such objects did not exist.” "Of course, it could be a rare object which CoRoT found by sheer luck", comments Dr. Francois Bouchy, another member of the discovery team from Institut d'Astrophysique de Paris (IAP), "but it could also be the first member of a new family of very massive planets which form around stars more (PhysOrg.com) -- The CoRoT satellite has massive than our Sun. There seems to be an discovered a planet-sized object so exotic that emerging trend: more massive stars have more astronomers are unsure whether to call it a planet. massive planets." The object, named CoRoT-Exo-3b, is approximately the same size as Jupiter, but more CoRoT (COnvection, ROtation and planetary than 20 times its mass. It orbits a star slightly Transits) is a 27-cm aperture space telescope larger than the Sun every 4 and a quarter days, designed to detect tiny changes in brightness from and passes in front of the star each time.
    [Show full text]