Download the May 2021 Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evans.2013.HD189733.Albedo.Pdf
ORE Open Research Exeter TITLE The Deep Blue Color of HD 189733b: Albedo Measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at Visible Wavelengths AUTHORS Evans, T.M.; Pont, F.; Sing, David K.; et al. JOURNAL Astrophysical Journal DEPOSITED IN ORE 15 December 2014 This version available at http://hdl.handle.net/10871/16042 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication The Astrophysical Journal Letters, 772:L16 (5pp), 2013 August 1 doi:10.1088/2041-8205/772/2/L16 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS Thomas M. Evans1,Fred´ eric´ Pont2,DavidK.Sing2, Suzanne Aigrain1, Joanna K. Barstow1, Jean-Michel Desert´ 3,7, Neale Gibson4, Kevin Heng5, Heather A. Knutson3, and Alain Lecavelier des Etangs6 1 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK; [email protected] 2 School of Physics, University of Exeter, EX4 4QL Exeter, UK 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 4 European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany 5 University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern, Switzerland 6 Institut d’Astrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris, France Received 2013 May 31; accepted 2013 June 15; published 2013 July 11 ABSTRACT We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290–570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. -
China's Space Program
China’s Space Program An Introduction China’s Space Program ● Motivations ● Organization ● Programs ○ Satellites ○ Manned Space flight ○ Lunar Exploration Program ○ International Relations ● Summary China’s Space Program Motivations Stated Purpose ● Explore outer space and to enhance understanding of the Earth and the cosmos ● Utilize outer space for peaceful purposes, promote human civilization and social progress, and to benefit the whole of mankind ● Meet the demands of economic development, scientific and technological development, national security and social progress ● Improve the scientific and cultural knowledge of the Chinese people ● Protect China's national rights and interests ● Build up China’s national comprehensive strength National Space Motivations • Preservation of its political system is overriding goal • The CCP prioritizes investments into space technology ○ Establish PRC as an equal among world powers ○ Space for international competition and cooperation ○ Manned spaceflight ● Foster national pride ● Enhance the domestic and international legitimacy of the CCP. ○ Space technology is metric of political legitimacy, national power, and status globally China’s Space Program Organization The China National Space Administration (CNSA) ● The China National Space Administration (CNSA, GuóJiā HángTiān Jú,) ○ National space agency of the People's Republic of China ○ Responsible for the national space program. ■ Planning and development of space activities. The China National Space Administration ● CNSA and China Aerospace -
Suzanne Aigrain on Behalf of the Corot Exoplanet Science Team Why Space?
Suzanne Aigrain on behalf of the CoRoT exoplanet science team Why space? • Atmosphere limits precision photometry from the ground • Scintillation limit ~2 mmag • Representative transit depths for Sun-like star • Jupiter: 10 mmag • Neptune: 1.3 mmag • Earth: 0.1 mmag • Weather and daytime limit temporal coverage from the ground • Many sources of noise transit timescales removed • colour dependent differential extinction, seeing, etc... 27 December 2006 The satellite • PI: Annie Baglin, LESIA, Meudon • CNES PROTEUS bus • 27cm aperture telescope • Soyuz II-1b launcher from Baikonour • Polar orbit • 2.5 year minimum lifetime Payload 27cm telescope layout focal box Full images, windowing and target selection Focal planeSeismology detector (Vincent Lapeyrere) Exopplnat detector (Farid Karioty) • Sismo field • 5 windows / CCD • 5.7 < mV < 9.5 • 32s sampling (1s on request) • frame transfer mode • used for astrometry 2.8° • 10 bright stars • 10 background windows • 11600 faint stars • 400 background windows CoRoT_Booklet_talks_summer2007 2 seismo exo SCAO Pointing stability Barycenter X of the stellar image x-coord of stellar image barycenter Stability performances : x axis: rms 0.12 pixel y axis: rms 0.15 pixel ~ 0RMS.3 a stability:rc sec. 0.12 pixel in x 0.15 pixel in y ~0.3 arcsec Vibrations due to the entrance and exit form ecclipses vibrations due to Earth eclipse ingress and egress CoRoT_Booklet_talks_summer2007 3 Exo field 2.8° • Exo field • up to 6000 LCs / CCD • 11.5 < mV < 16 • 512s sampling (32s for 500 objects / CCD) • 3 colours for -
Cvetoje- Vic, Anthony Cheetham, Frantz Martinache, Barnaby Norris, Peter Tuthill
Dr Benjamin Pope Lecturer in Astrophysics and DECRA Fellow Advisor: Prof. David Hogg Affiliation: School of Mathematics & Physics University of Queensland, St Lucia, QLD 4072, Australia and Centre for Astrophysics University of Southern Queensland, West Street, Toowoomba, QLD 4350, Australia Homepage: benjaminpope.github.io email: [email protected] orcid: 0000-0003-2595-9114 Education and Previous Positions 2017-2020 NASA Sagan Fellow, New York University Advisor: Prof. David Hogg 2017 Postdoctoral Research Associate, University of Sydney Advisor: Prof. Peter Tuthill 2013-2017 Doctor of Philosophy in Astrophysics, University of Oxford Thesis: “Observing Bright Stars and their Planets from the Earth and from Space” Balliol College | Supervisors: Prof. Suzanne Aigrain, Prof. Patrick Roche 2013-14 Master of Science in Astrophysics, University of Sydney Thesis: “Vision and Revision: Wavefront Sensing from the Image Domain” Supervisor: Prof. Peter Tuthill 2012 Bachelor of Science (Advanced) with Honours in Physics, University of Sydney First Class Honours, with the University Medal Thesis: “Dancing in the Dark: Kernel Phase Interferometry of Ultracool Dwarfs” Supervisors: Prof. Peter Tuthill, Dr. Frantz Martinache 2010-2011 Study Abroad at the University of California, Berkeley Research project with Prof. Charles H. Townes, Infrared Spatial Interferometer. Grants ARC Discovery Early Career Research Award (DECRA) AUD $444,075.00 NASA TESS Cycle 3 Guest Investigator USD $50,000 TESS Cycle 2 Guest Investigator USD $50,000 Balliol Balliol Interdisciplinary Institute Research Grant College GBP £3,000 Teaching 2021 Extragalactic Astrophysics & Cosmology, University of Queensland 2019 Master of Data Science Guest Lecturer, NYU Center for Data Science 2017 Bayesian Reasoning Honours Lecturer, University of Sydney 2017 Honours Project Supervisor, University of Sydney Supervised Alison Wong and Matthew Edwards, both to First Class Honours and PhD acceptance. -
February 18, 2015 Dr. Joan Johnson-Freese Professor, Naval War College Testimony Before the U.S.-China Economic & Security R
February 18, 2015 Dr. Joan Johnson-Freese Professor, Naval War College Testimony before the U.S.-China Economic & Security Review Commission “China’s Space & Counterspace Programs” The question before the Commission concerns how the United States (U.S.) can achieve stated U.S. goals regarding space security given a rapidly expanding and increasingly sophisticated Chinese space program.1 The importance of protecting the space environment and U.S. space assets in orbit, assets which provide information critical to the U.S. civilian and military sectors and overall U.S. national security, has required that goals be considered and reconsidered at many levels and within multiple communities of the U.S. government. Therefore, it is appropriate to begin by referencing the multiple and nested U.S. strategies related to or referencing space, specifically the 2010 National Security Strategy (NSS), the 2010 National Space Policy (NSP), the 2010 Quadrennial Defense Review (QDR) and the 2011 National Security Space Strategy (NSSS)2 for analytic parameters. Guidance in the NSS is simply stated. “To promote security and stability in space, we will pursue activities consistent with the inherent right of self-defense, deepen cooperation with allies and friends, and work with all nations toward the responsible and peaceful use of space.” (p. 31)3 These general ideas are reiterated in the NSP as “the United States considers the sustainability, stability, and free access to, and use of, space vital to its national interests.” (NSP p.3) With security, sustainability, free-access and stability as overall goals, the NSSS recognizes the importance of working with all space-faring nations due to the nature of the space environment stated as both contested, congested and competitive (NSS p.i) and “… a domain that no nation owns, but on which all rely,” (NSSS p.i). -
Nawal Husnoo, Frédéric Pont, David Sing, Kevin Heng, Suzanne Aigrain, Leigh Fletcher, Jaemin Lee, Tom Evans
Opacity and spectra in hot Jupiters Nawal Husnoo, Frédéric Pont, David Sing, Kevin Heng, Suzanne Aigrain, Leigh Fletcher, Jaemin Lee, Tom Evans. Contact: [email protected]. We are developing a set of tools for generating absorption coeffcients for hot Jupiter atmospheres. We focus on the visible spectrum, where we plan to use the routines for generating "frst guess" models for the upcoming transmission spectra of hot Jupiters (HST program in progress, PI: Sing). We also plan to study the atmospheric temperature-pressure profle of hot Jupiters (Heng et al. 2011)[1], with a focus on the effects of various types of clouds. The transmission spectrum of an exoplanet allows us to probe the atmosphere for elemental and molecular species. In the visible spectrum, sodium, potassium, titanium oxide and vanadium oxide are expected to be dominant [2], (depending on the composition and temperature). Absorption due to clouds/hazes can also be relevant [3]. In this project, we seek "frst guess" models to guide the ongoing observations of transmission spectra of transiting planets with HST. We seek to link the transmission spectrum with the "refection spectrum" in the visible, and compare the effects of scattering due to grains and absorption due to gasses. Transmission spectrum We perform fnite element integration for visible light rays that travel in a grazing geometry through the planet's atmosphere to generate the transmission spectrum. Absorption from the radiatively active species in the atmosphere causes wavelength-selective dimming in the light. Figure 1 shows an example of a transmission spectrum (HD 189733b), where we have plotted a model that includes the sodium D lines, Figure 1: Plot showing the latest reduction of the transmission spectroscopy for HD 189733b (our and Mie scattering for small particles (r<<λ), giving the Rayleigh regime. -
Per Aspera Ad Astra: Identifying Opportunities for International Cooperation with China in Space Exploration
Lund University Masters (Two Years) in Global Studies Department of Political Science Spring 2014 Per aspera ad astra: Identifying Opportunities for International Cooperation with China in Space Exploration Author: Philippe Cyr Supervisor: Prof. Dr. Christian Göbel Abstract Space exploration is an area of growing international interest and activity. China is an emerging space power, has become increasingly active in space exploration, and has advocated for further international cooperation in various space activities. To identify opportunities for international cooperation proposed frameworks have used technical and policy parameters to locate suitable partners for specific projects. With the goal of more accurately informing these frameworks this paper will explore China’s policy parameters by measuring the degree to which the international environment enables and constrains China’s space exploration ambitions. Specifically, this study analyzes two Chinese civilian space exploration programs and three cooperative space projects with international partners as case studies to identify domestic and foreign policy considerations informing China’s position in. It is found that in addition to national prestige economic development and progress in science and technology development are major motivations for China’s selection of space exploration activities. Key words: space exploration; international cooperation; science and technology; China; Chinese foreign policy 1 Acknowledgements I would like to thank my two supervisors – Wu Xinbo and Christian Göbel – for their input. Their recommendations and availability were of great assistance over the course of writing this thesis. I would also like to thank Dr. Neil DeGrasse Tyson for taking time to provide me with guidance for a career in the space industry back in 2009. -
Today Oxford
www.oxfordtoday.ox.ac.uk Michaelmas Term 2010 Volume 23 No 1 OX FOR D TODAY THE UNIVERSITY MAGAZINE 20 | WILFRED THESIGER AFRICA SEEN THROUGH HIS LENS 30 | SCIENCE WHEN TO SHARE GENE DATA? 45 | GEOFFREY HILL SEAMUS PERRY ON OUR GREATEST LIVING POET PRIME MINISTERS Why has Oxford produced so many? OXF01.cover 1 8/10/10 3:37:5 pm FROM HOME Since 1821 the Oxfordand Cambridge Club has provided alumni of both universities with an exclusive home from home in the heartofthe Capital. Todaymembers can relax, dine and meetfriends in supremely elegant surroundings thatalso featurewell stocked libraries,sports facilities and first-class bedroom accommodation. Reciprocal clubs welcome members of the Oxfordand Cambridge Club in 35 countriesaround the world. Formoreinformation, please contact: [email protected] or call +44 (0)20 7321 5110 Oxfordand Cambridge Club,71Pall Mall,LondonSW1Y 5HD www.oxfordandcambridgeclub.co.uk OX FOR D TODAY EDITOR: Dr Richard Lofthouse DEPUTY ART EDITOR: Steven Goldring DESIGNER: Victoria Ford HEAD OF PUBLICATIONS AND WEB OFFICE: Anne Brunner-Ellis PRODUCTION EDITOR: Kate Lloyd SUB EDITOR: Elizabeth Tatham PICTURE EDITOR: Joanna Kay DESIGN DIRECTOR: Dylan Channon Thanks to Simon Kirrane, Esther Woodman, Helen Cox, Emma Swift EDITORIAL ENQUIRIES: Janet Avison Public Affairs Directorate Tel: 01865 280545 Fax: 01865 270178 [email protected] www.oxfordtoday.ox.ac.uk ALUMNI ENQUIRIES, INCLUDING CHANGE OF ADDRESS: Claire Larkin Alumni Offi ce Tel: 01865 611610 Michaelmas [email protected] COVER IMAGE: HARRY BORDEN/CORBIS OUTLINE, ROB JUDGES www.alumni.ox.ac.uk Term 2010 University of Oxford, University Offi ces, Wellington Square, Oxford OX1 2JD ADVERTISING ENQUIRIES: Marie Longstaff Future Plus, Beaufort Court, 30 Monmouth Street, Bath BA1 2BW Tel: 01225 822849 [email protected] www.futureplc.com Oxford Today is published in February, June and October. -
Gaussian Processes
Gaussian processes: the next step in exoplanet data analysis Suzanne Aigrain (University of Oxford) Neale Gibson, Tom Evans, Amy McQuillan Steve Roberts, Steve Reece, Mike Osborne ... let the data speak Gaussian processes: the next step in exoplanet data analysis Suzanne Aigrain (University of Oxford) Neale Gibson, Tom Evans, Amy McQuillan Steve Roberts, Steve Reece, Mike Osborne Gaussian processes for modelling systematics 5 high precision time-series stochastic correlated disentangle noise Figure 1. The ‘raw’ HD 189733 NICMOS dataset used as an example for our Gaussian process model. Left: Raw light curves of HD 189733 for each of the 18 wavelength channels, from 2.50µmto1.48µmtoptobottom.Right:Theopticalstateparametersextracted from the spectra plotted as a time series. These are used as the input parameters for our GP model. The red lines represent a GP regression on the input parameters, used to remove the noise and test how this effects the GP model. the noisy input parameters. We also checked that the choice wavelength channels. In this example, only orbits 2, 3 and 5 of hyperprior length scale had little effect on the results, by are used to determine the parameters and hyperparameters setting them to large values, and repeating the procedure of the GP (or ‘train’ the GP), and are shown by the red with varying length scales ensuring the transmission spec- points4. Orbit 4 (green points) was not used... in the traininglet the data speak tra were not significantly altered. set. Predictive distributions were calculated for orbits 2–5, and are shown by the grey regions, which plot the 1 and 2σ confidence intervals. -
Statistics and Exoplanets
FM 8: Statistics and Exoplanets Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.8, on 29 Sep 2021 at 23:15:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1743921316002726 Astronomy in Focus, Volume 1, Focus Meeting 8 XXIXth IAU General Assembly, August 2015 c International Astronomical Union 2016 Piero Benvenuti, ed. doi:10.1017/S1743921316002726 Introduction Suzanne Aigrain1 and Eric Feigelson2 1 Department of Physics, University of Oxford, Keble Road, Oxford, OX3 9UU, UK email: [email protected] 2 TBD email: Department of Astronomy & Astrophysics and Center for Astrostatistics, Penn State University, 525 Davey Laboratory, University Park PA 16802 USA Abstract. The IAU’s Statistics and Exoplanets Focus Meeting brings together observers, mod- elers and methodologists to discuss the intricate challenges of extracting and interpreting faint planetary signals from dominant starlight. Initiated by the IAU’s new groups concentrating on astroinformatics and astrostatistics, the meeting stimulated the wider exoplanetary community as well as experts in data and science analysis. This proceedings presented selected papers from the Focus Meeting. Keywords. methods: data analysis, methods: statistical, (stars:) planetary systems 1. Motivation The discovery and characterization of exoplanets requires both superbly accurate in- strumentation and sophisticated statistical methods, to extract weak planetary signals from dominant starlight, very large samples and noisy datasets. While numerous exo- planet conferences take place each year, these mostly focus on observational results, their physical implications, and current or future instrument developments; the statistical as- pects of the papers presented, while important, are not usually central to the program. -
Suzanne Aigrain: Refereed Publications
Suzanne Aigrain: Refereed publications 1. Bayesian detection of planetary transits: A modified version of the Gregory-Loredo method for periodic signal detection, S. Aigrain & F. Favata, Astronomy & Astrophysics, 395, 625 (2002) 2. The photospheric abundances of active binaries - I: Detailed analysis of HD 113816 (IS Vir) and HD 119285 (V851 Cen), D. Katz, F. Favata, S. Aigrain & G. Micela, Astronomy & Astrophysics, 397, 747 (2003) 3. Detecting planetary transits in the presence of stellar variability: Optimal filtering and the use of colour information, S. Carpano, S. Aigrain & F. Favata, Astronomy & Astrophysics, 401, 743 (2003) 4. Characterising stellar micro-variability for planetary transit searches, S. Aigrain, F. Favata & G. Gilmore, Astronomy & Astrophysics, 414, 1139 (2004) 5. Practical planet prospecting, S. Aigrain & M. Irwin, Monthly Notices of the Royal Astronomical Society, 350, 331 (2004) 6. Comparative blind test of five planetary transit detection algorithms on realistic synthetic light curves, C. Moutou, F. Pont, P. Barge, S. Aigrain, M. Auvergne, D. Blouin, R. Cautain, A. R. Erikson, V. Guis, P. Guterman, M. Irwin, A. F. Lanza, D. Queloz, H. Rauer, H. Voss & S. Zucker, Astronomy & Astrophysics, 437, 355 (2005) 7. The Monitor project: rotation of low mass stars in the open cluster M34, J. M. Irwin, S. Aigrain, S. T. Hogkin, M. J. Irwin, J. Bouvier, C. Clarke, L. Hebb & E. Moraux, Monthly Notices of the Royal Astronomical Society, 370, 954 (2006) 8. The Monitor project: Searching for occultations in young open clusters, S. Aigrain, S. T. Hogkin, J. M. Irwin, L. Hebb, M. J. Irwin, F. Favata, E. Moraux & F. Pont, Monthly Notices of the Royal Astronomical Society, 375, 29 (2007) 9. -
Nº De Aluna: 26055 CHINA's SPACE PROGRAM: a NEW TOOL FOR
Nº de Aluna: 26055 CHINA’S SPACE PROGRAM: A NEW TOOL FOR PRC “SOFT POWER” IN INTERNATIONAL RELATIONS? MARA IMRAN ___________________________________________________ MASTER DISSERTATION Supervisor: Dr. Tiago Moreira de Sá SEPTEMBER 2010 DECLARATION I declare that this thesis is the result of my independent and personal research. Its content is original and all sources consulted are duly mentioned in the text, notes and bibliography. The candidate, ____________________ Lisbon, .... of ............... of ............... I declare that this thesis is able to be submitted to public examination. The supervisor, ____________________ Lisbon, .... of ............... of .............. i Personal Dedication In the name of God Almighty, most gracious and most merciful, who blessed me with the wisdom and knowledge to accomplish my goal. I dedicate this work to my dear husband, Dr. Tayyab Imran who encouraged me in my desire and determination to enhance my knowledge. I could not have completed this journey without him. He inspired, motivated, and challenged me in every step of life since I married, especially for believing in me. Also, I would like to dedicate my work to my baby who is soon to arrive in this world. ii ACKNOWLEDGMENTS It is with great pleasure that I thank the many people who made my education and this thesis possible. It has been a fantastic experience for me, as a person from Romania, to study and live for two years in Portugal. My life has become much more enriched by this experience. I have established friendship with many nice people and as a student I got the chance to learn a lot about Portuguese culture and history.