EDTI's Technical Guideline for Interconnection of Generators to The

Total Page:16

File Type:pdf, Size:1020Kb

EDTI's Technical Guideline for Interconnection of Generators to The TECHNICAL GUIDELINE FOR THE INTERCONNECTION OF DISTRIBUTED ENERGY RESOURCES TO EPCOR DISTRIBUTION AND TRANSMISSION INC.’S DISTRIBUTION SYSTEM January 5, 2017 Francesco Mannarino SVP, Electricity Operations Mansur Bitar Director, Distribution Kirstine Hull Director, Planning & Engineering Darren McCrank Director, System Operations Rob Reimer Director, Metering & Wholesale Energy Suresh Sharma Director, Transmission EPCOR acknowledges the use of other documents developed by the utility industry and industry committees as the framework and sources in producing this technical guideline. Technical Guideline for Interconnection of Distributed Energy Resources to EDTI’s Distribution System Version 3 2 CONTENTS INTRODUCTION AND LIMITATION 6 1.0 GENERAL INTERCONNECTION AND PROTECTION REQUIREMENTS 9 1.1 EDTI’S DISTRIBUTION SYSTEM 10 1.1.1 General Characteristics 11 1.1.2 System Frequency 11 1.1.3 Voltage Regulation 11 1.1.4 Power Quality 12 1.1.5 Voltage Unbalance 12 1.1.6 Fault Levels 12 1.1.7 System Grounding 12 1.1.8 Fault and Line Clearing 12 1.1.9 Limit for DER Connection 13 1.2 DER FACILITY 13 1.2.1 Smart Inverters 1.2.2 Mitigation of Adverse Effects 13 1.2.3 Synchronism 13 1.2.4 Voltage Regulation and Power Factor 14 1.2.5 Frequency Control 15 1.2.6 Voltage Unbalance 16 1.2.7 Grounding 16 1.2.8 Resonance and Self-Excitation of Induction Generators 16 1.2.9 Single-Phase DER Facilities 16 Technical Guideline for Interconnection of Distributed Energy Resources to EDTI’s Distribution System Version 3 3 1.3 INTERCONNECTION 17 1.3.1 Safety 17 1.3.2 Point of Common Coupling 17 1.3.3 Point of Disconnection 17 1.3.4 Phasing 19 1.3.5 Voltage Flicker 19 1.3.6 Harmonics 19 1.3.7 Inadvertent Energization of EDTI’s Facilities 20 1.3.8 Network System Interconnection 20 1.3.9 Dedicated Transformer 21 1.3.10 Interconnection Grounding 21 1.3.11 Interrupting Device Ratings and Fault Levels 21 1.3.12 Phase and Ground Fault Protection 22 1.3.13 Overvoltage and Undervoltage Protection 22 1.3.14 Overfrequency and Underfrequency Protection 23 1.3.15 Unbalanced Phase Protection 23 1.3.16 Anti-Islanding Protection 23 1.3.17 Requirements for Transfer Trip 24 1.3.18 Reverse Power Relay Protection 25 1.3.19 Visibility and Controllability 25 1.3.20 Protection from Electromagnetic Interference 26 1.3.21 Surge Withstand Performance 26 1.3.22 Special Interconnection Protection 26 1.4 TYPICAL INTERCONNECTION PROTECTIVE REQUIREMENTS 26 1.4.1 Single-Phase Generators 29 1.4.2 Three-Phase Synchronous Generators 29 1.4.3 Three-Phase Induction Generators and Three-Phase Inverter Systems 30 1.4.4 Generators Paralleling for Six Cycles or Less (Closed Transition Switching) 30 1.4.5 Mitigation of Protection System Failure 30 1.5 INTERCONNECTION PROTECTION APPROVAL 31 2.0 METERING 32 2.1 GENERAL 33 2.2 METERING REQUIREMENTS 33 2.3 MEASUREMENT TRANSFORMERS 33 2.4 REMOTE COMMUNICATIONS EQUIPMENT 34 2.5 SAFETY REQUIREMENTS 34 3.0 CONSTRUCTION 35 4.0 INSPECTION 37 Technical Guideline for Interconnection of Distributed Energy Resources to EDTI’s Distribution System Version 3 4 5.0 TESTING 39 5.1 GENERAL 40 5.2 CERTIFICATION CRITERIA 41 5.3 TYPE TESTING 42 5.3.1 Inverters 42 5.3.2 Synchronous Generators 42 5.3.3 Induction Generators 42 5.3.4 Anti-Islanding Test 43 5.3.5 Export Limit Test 43 5.3.6 In-Rush Current Test 43 5.3.7 Synchronization Test 43 5.4 COMMISSIONING TEST 43 5.4.1 Certified Equipment 44 5.4.2 Non-Certified Equipment 44 5.4.3 Verification of Settings 45 5.4.4 Trip Tests 45 5.4.5 On-Load Tests 45 5.4.6 Switchgear and Metering 45 5.5 PERIODIC TESTING 46 6.0 DATA REQUIREMENTS 47 7.0 MARKING AND TAGGING 49 8.0 MAINTENANCE 51 TERMS AND DEFINITIONS 53 APPENDICES 59 Appendix 1 Interconnection Review Study Outline 60 Appendix 2 Single-Line Diagram for Delta-Wye Secondary Interconnection 61 Appendix 3 Single Line Diagram for Wye-Wye Secondary Interconnection 62 Appendix 4 Single Line Diagram for Primary Interconnection 63 Appendix 5 Schedule of Accuracies for Metering Equipment 64 Appendix 6 Example Test Procedures 65 Appendix 7 Reference Notes 69 Appendix 8 Applicable Codes and Standards 70 Technical Guideline for Interconnection of Distributed Energy Resources to EDTI’s Distribution System Version 3 5 INTRODUCTION AND LIMITATION Technical Guideline for Interconnection of Distributed Energy Resources to EDTI’s Distribution System Version 3 6 INTRODUCTION A distributed energy resource (DER) is any technology that produces power and is connected to an electric distribution system (including, but not limited to, distributed generation, microgeneration and battery energy resources)1. A DER can use a variety of energy -sources, including, but not limited to, liquid petroleum fuels, biofuels, natural gas, solar, hydro, wind and geothermal. Electricity storage devices are also DERs. This guideline establishes criteria and requirements for the interconnection of DERs within the electric distribution system of EPCOR Distribution and Transmission Inc. (EDTI). Specifically, this guideline defines the technical requirements for connecting DERs that are not exclusively owned by EDTI, but are connected to EDTI’s distribution system with a primary operating voltage of 25,000 V (25 kV) or less. Requirements relevant to the safety, operation, performance, testing and maintenance of the interconnection are provided. The requirements established in this document cover a broad spectrum of interests. The addition of DERs to the distribution system may change the system and its response. Attaining a technically sound, strong and safe interconnection between DERs and the distribution system mandates diligence on the part of everyone involved in the interconnection. The requirements in this guideline need to be cooperatively understood and met by everyone involved in the interconnection, including designers, manufacturers, users, owners and operators of both DERs and distribution systems. This guideline has been developed with reference to national and international standards such as Canadian Standards Association (CSA) C22.3 No. 9-08, Interconnection of Distributed Resources and Electricity Supply Systems, and the Institute of Electrical and Electronic Engineers (IEEE) standard 1547, Standard for Interconnecting Distributed Resources with Electric Power Systems. This document does not constitute a design handbook. Distributed energy resource providers (DERPs) who are considering the development of a DER facility intended for connection to EDTI’s distribution system should engage the services of a professional engineer or a registered consulting firm qualified to provide design and consulting services for electrical interconnection facilities. For inquiries relating to the connection of DERs, please contact EDTI Customer Engineering Services at [email protected]. 1 Alberta Electric System Operator (AESO) Distributed Energy Resources Policy Recommendations Technical Guideline for Interconnection of Distributed Energy Resources to EDTI’s Distribution System Version 3 7 LIMITATION The criteria and requirements in this document are applicable to all distributed energy resource technologies and to the primary and secondary voltages of EDTI’s distribution systems. Installation of DERs on radial primary and secondary distribution systems is the main emphasis of this guideline (restrictions relating to EDTI’s downtown secondary network distribution system are described in section 1.3.8). The requirements in this document shall be met at the point of common coupling, although the location of the protective devices may not necessarily be at that point. This interconnection guideline is a minimum requirement for the interconnection of DERs. Additional requirements may have to be met by both the DERP and EDTI to ensure that the final interconnection design meets all local, national and international standards and codes, and is safe for the application intended. This guideline does not address any liability provisions agreed to elsewhere by both parties in a commercial agreement or tariff terms and conditions. Technical Guideline for Interconnection of Distributed Energy Resources to EDTI’s Distribution System Version 3 8 1.0 GENERAL INTERCONNECTION AND PROTECTION REQUIREMENTS Technical Guideline for Interconnection of Distributed Energy Resources to EDTI’s Distribution System Version 3 9 1.0 GENERAL INTERCONNECTION AND PROTECTION REQUIREMENTS A DERP’s DERs and interconnection installation must meet all applicable international, national, provincial and local construction and safety codes. Any DERP may operate 60 Hz, three-phase or single-phase generating equipment, in parallel with EDTI’s distribution system and in accordance with the EDTI Interconnection Operating and Maintenance Agreement, provided that the equipment and DERP meet or exceed the requirements of this guideline. Sections 1.1, 1.2 and 1.3, respectively, define the following technical requirements: • The distribution system’s technical requirements (the DERP’s equipment must be able to operate within the ranges specified in this section) • Technical requirements to be met by the DERP • Technical requirements to be met by the facilities interconnecting the producing facility with the distribution system These requirements promote safe operation and minimize the impact on electrical equipment within the EDTI distribution system, including other customers. These requirements do not address the protection for the DERP’s DER equipment. It is the responsibility of the DERP to provide such protection. The DERP is responsible for protecting its DER equipment in such a manner that utility system outages, short-circuits or other disturbances, including excessive zero-sequence currents and ferroresonant overvoltages, do not damage the DERP’s DER equipment. As required in this guideline, the DERP’s protective equipment must also prevent excessive or unnecessary tripping that would affect EDTI’s reliability and the quality of power provided to other customers. The DERP is required to install, operate and maintain, in good order and repair and in conformity with good electrical practice, the facilities required by this guideline for safe parallel operation with EDTI’s distribution system.
Recommended publications
  • Xpole Pfim-X
    Eaton.com Protective Devices Residual Current Devices PFIM-X Catalog Protective Devices General 1.1 Residual Current Devices - General Data Short description of the most important RCD types Symbol Description Eaton standard. Suitable for outdoor installation (distribution boxes for outdoor installation and building sites) up to -25° C. Conditionally surge-current proof (>250 A, 8/20 µs) for general application. Type AC: AC current sensitive RCCB Type A: AC and pulsating DC current sensitive RCCB, not affected by smooth DC fault currents up to 6 mA Type F: AC and pulsating DC current sensitive RCCB, trips also at frequency mixtures (10 Hz, 50 Hz, 1000 Hz), min. 10 ms time-delayed, min. 3 kA surge current proof, higher load capacity with smooth DC fault currents up to 10 mA Frequency range up to 20 kHz Trips also at frequency mixtures (10 Hz, 50 Hz, 1000 Hz) Type B: All-current sensitive RCD switchgear for applications where DC fault currents may occur. Non-selective, non- delayed. Protection against all kinds of fault currents. Type B+: All-current sensitive RCD switchgear for applications where DC fault currents may occur. Non-selective, non-delayed. Protection against all kinds of fault currents. Provides enhanced fire safety. RCD of type G (min 10 ms time delay) surge current-proof up to 3 kA. For system components where protection G against unwanted tripping is needed to avoid personal injury and damage to property. Also for systems involving ÖVE E 8601 long lines with high capacitive reactance. Some versions are sensitive to pulsating DC. Some versions are available in all-current sensitive design.
    [Show full text]
  • The IT Earthing System (Unearthed Neutral) in LV
    Collection Technique .......................................................................... Cahier technique no. 178 The IT earthing system (unearthed neutral) in LV F. Jullien I. Héritier “Cahiers Techniques” is a collection of documents intended for engineers and technicians, people in the industry who are looking for more in-depth information in order to complement that given in product catalogues. Furthermore, these “Cahiers Techniques” are often considered as helpful “tools” for training courses. They provide knowledge on new technical and technological developments in the electrotechnical field and electronics. They also provide better understanding of various phenomena observed in electrical installations, systems and equipments. Each “Cahier Technique” provides an in-depth study of a precise subject in the fields of electrical networks, protection devices, monitoring and control and industrial automation systems. The latest publications can be downloaded from the Schneider Electric internet web site. Code: http://www.schneider-electric.com Section: Experts’ place Please contact your Schneider Electric representative if you want either a “Cahier Technique” or the list of available titles. The “Cahiers Techniques” collection is part of the Schneider Electric’s “Collection technique”. Foreword The author disclaims all responsibility subsequent to incorrect use of information or diagrams reproduced in this document, and cannot be held responsible for any errors or oversights, or for the consequences of using information and diagrams contained in this document. Reproduction of all or part of a “Cahier Technique” is authorised with the prior consent of the Scientific and Technical Division. The statement “Extracted from Schneider Electric “Cahier Technique” no. .....” (please specify) is compulsory. no. 178 The IT earthing system (unearthed neutral) in LV François JULLIEN Joined Schneider Electric’s Low Voltage activity in 1987.
    [Show full text]
  • A Review of Protection Systems for Distribution Networks Embedded with Renewable Generation
    University of Wollongong Research Online Faculty of Engineering and Information Faculty of Engineering and Information Sciences - Papers: Part A Sciences 1-1-2016 A review of protection systems for distribution networks embedded with renewable generation Joel Kennedy University of Wollongong, [email protected] Philip Ciufo University of Wollongong, [email protected] Ashish P. Agalgaonkar University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/eispapers Part of the Engineering Commons, and the Science and Technology Studies Commons Recommended Citation Kennedy, Joel; Ciufo, Philip; and Agalgaonkar, Ashish P., "A review of protection systems for distribution networks embedded with renewable generation" (2016). Faculty of Engineering and Information Sciences - Papers: Part A. 5151. https://ro.uow.edu.au/eispapers/5151 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] A review of protection systems for distribution networks embedded with renewable generation Abstract The rapid growth of grid-connected embedded generation is changing the operational characteristics of power distribution networks. Amongst a range of issues being reported in the research, the effect of these changes on so-called 'traditional protection systems' has not gone without attention. Looking to the future, the possibility of microgrid systems and deliberate islanding of sections of the network will require highly flexible distribution management systems and a e-designr of protection strategies. This paper explores the envisaged protection issues concerned with large penetrations of embedded generation in distribution networks extending into auto-reclosure and protection device coordination.
    [Show full text]
  • Technical Application Papers No.3 Distribution Systems and Protection Against Indirect Contact and Earth Fault
    Technical Application Papers No.3 Distribution systems and protection against indirect contact and earth fault Technical Application Papers Distribution systems and protection against indirect contact and earth fault Index 6.2.1 Miniature circuit-breakers System pro M and System pro M compact with 1 Introduction ........................................2 residual current protection ....................23 6.2.2 Residual current releases for Tmax 2 Main definitions ..............................3 moulded-case circuit-breakers ..............28 6.2.3 Electronic releases PR… ranges for 3 Protection against earth moulded-case and air circuit-breakers with integrated residual current protection ....29 fault 6.2.4 Residual current relay with external transformer ...........................................30 3.1 General aspects ......................................5 6.3 The solution with function G ..................31 4 Classification of electrical 6.4 Protection function G or residual current distribution systems protection? ...........................................33 6.4.1 Typical applications of residual current ........................................... circuit-breakers 4.1 TT system ...............................................6 33 4.2 TN system ...............................................6 6.4.2 Typical applications of moulded-case 4.3 IT system ................................................7 and air circuit-breakers equipped with function G against earth fault .................34 4.4 Conclusions ............................................7
    [Show full text]
  • Consolidated Edison Company of New York, Inc. Electric Case Testimonies Volume 3
    CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. ELECTRIC CASE TESTIMONIES VOLUME 3 TAB NO. WITNESSES 9 Electric Infrastructure and Operations Panel Milovan Blair Robert Schimmenti Walter Alvarado Patrick McHugh Hugh Grant Matt Sniffen 10 Customer Energy Solutions Matt Ketschke Damian Sciano Vicky Kuo Thomas Magee Margarett Jolly Janette Espino 11 Municipal Infrastructure Support Panel Robert Boyle Theresa Kong John Minucci 12 Customer Operations Panel Marilyn Caselli Chris Grant Chris Osuji Hollis Krieger Michael Murphy Matt Sexton CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. ELECTRIC INFRASTRUCTURE AND OPERATIONS PANEL TABLE OF CONTENTS I. Introduction ............................................. 1 A. Introduction and Qualifications of Panel Members ....... 1 B. Purpose of Filing ...................................... 7 C. Key Themes ............................................ 13 D. Testimony Format ...................................... 18 II. Electric System Description ............................. 19 A. Importance of Electric Infrastructure to Service Area . 19 B. Description of T&D Systems ............................ 21 C. Transmission System ................................... 22 D. Transmission and Area Substations ..................... 23 E. Distribution System ................................... 25 F. Distributed Energy Resources .......................... 27 III. Business Cost Optimization ............................ 28 IV. T&D Capital and O&M Summary Information ................. 37 V. Detail of T&D Programs/Projects ........................
    [Show full text]
  • Circuit Breaker Control Guidelines for Vacclad-W Metal-Clad Switchgear
    Application Paper AP083012EN Circuit breaker control guidelines for VacClad-W metal-clad switchgear Circuit breaker control Control breaker control equipment Relays Eaton’s VCP-W circuit breaker has a motor charged Microprocessor-based or solid-state relays spring type stored energy closing mechanism. would generally require dc power or reliable Closing the breaker charges accelerating springs. uninterruptible ac supply for their logic circuits. Protective relays or the control switch will energize a shunt trip coil to release the accelerating springs Auxiliary switches and open the breaker. This requires a reliable Optional circuit breaker and cell auxiliary switches source of control power for the breaker to function are available where needed for interlocking or as a protective device. Figure 2 and Figure 3 control of auxiliary devices. Typical applications and show typical ac and dc control schematics for type operation are described in Figure 1 and Table 1. VCP-W circuit breakers. Breaker auxiliary switches and MOC switches For ac control, a capacitor trip device is used are used for breaker open/close status and with each circuit breaker shunt trip to ensure that interlocking. energy will be available for tripping during fault conditions. A control power transformer is required Auxiliary contacts available for controls or external on the source side of each incoming line breaker. use from auxiliary switch located on the circuit Closing bus tie or bus sectionalizing breakers breaker are typically limited in number by the will require automatic transfer of control power. breaker control requirements as follows: This control power transformer may also supply • Breakers with ac control voltage: 1NO and 3NC other ac auxiliary power requirements for the switchgear.
    [Show full text]
  • Before the New York State Public Service Commission
    BEFORE THE NEW YORK STATE PUBLIC SERVICE COMMISSION ------------------------------------------------------x : In the Matter of : : Proceeding on Motion of the : Commission as to the Rates, Charges, : Before Rules and Regulations of Consolidated : Hon. William Bouteiller Edison Company of New York, Inc. for : Hon. Michelle L. Phillips Electric Service. : Hon. Rudy Stegemoeller : Administrative Law Judges : P.S.C. Case No. 07-E-0523 : : ------------------------------------------------------x INITIAL BRIEF ON BEHALF OF CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. IN SUPPORT OF A PERMANENT ELECTRIC RATE INCREASE Dated: November 30, 2007 New York, New York TABLE OF CONTENTS Page I. OVERVIEW OF PROCEEDING........................................................................................1 A. Procedural Overview.....................................................................................................1 1. Initial Filing .............................................................................................................1 2. Leaves Suspended....................................................................................................2 3. Conferences..............................................................................................................2 4. Active Parties...........................................................................................................3 5. Discovery .................................................................................................................4 6. Preliminary
    [Show full text]
  • 7 CONTROL and PROTECTION of HYDRO ELECTRIC STATION 7.1 Introduction 7.1.1 Control System the Main Control And
    CHAPTER –7 CONTROL AND PROTECTION OF HYDRO ELECTRIC STATION 7.1 Introduction 7.1.1 Control System The main control and automation system in a hydroelectric power plant are associated with start and stop sequence for the unit and optimum running control of power (real and reactive), voltage and frequency. Data acquisition and retrieval is used to cover such operations as relaying plant operating status, instantaneous system efficiency, or monthly plant factor, to the operators and managers. Type of control equipment and levels of control to be applied to a hydro plant are affected by such factors as number, size and type of turbine and generator. The control equipment for a hydro power plant include control circuits/logic, control devices, indication, instrumentation, protection and annunciation at the main control board and at the unit control board for generation, conversion and transmission operation including grid interconnected operation of hydro stations including small hydro stations. These features are necessary to provide operators with the facilities required for the control and supervision of the station’s major and auxiliary equipment. In the design of these features consideration must be given to the size and importance of the station with respect to other stations in the power system, location of the main control room with respect to the equipments to be controlled and all other station features which influence the control system. The control system of a power station plays an important role in the station’s rendering reliable service; this function should be kept in mind in the design of all control features.
    [Show full text]
  • Microgrid Design Considerations
    Microgrid Design Considerations Dr. Arindam Maitra, EPRI September 8, 2016 Part 3 of 3 © 2015 Electric Power Research Institute, Inc. All rights reserved. Outline – Microgrid Design and Analysis Tutorial Part II Time Topics 14:30-15:00 Design analysis • Needs and Key Interconnection Issues (Arindam Maitra) 15:30-17:30 Design analysis (cont.) • Methods and Tools • Case Studies #1: Renewable Rich Microgrids - Protection Case Studies (Mohamed El Khatib) #2: Rural radial #3: Secondary n/w 17:00-17:30 Q&A 17:30 Adjourn 2 © 2015 Electric Power Research Institute, Inc. All rights reserved. Microgrids .Optimization of microgrid design is challenging and inherently contains many unknowns… Regulatory Issues Value of Resiliency System Design Challenges Engineering Studies Costs 3 © 2015 Electric Power Research Institute, Inc. All rights reserved. Integrating Customer DER with Utility Assets Customer Utility Assets Assets Micro Grid Controller SCADA/DMS/ / DERMS* Enterprise Integrate d Grid Energy Storage* Isolating Device* Distribution Transformer *New assets 4 © 2015 Electric Power Research Institute, Inc. All rights reserved. Microgrid Types .Commercial/Industrial Microgrids: Built with the goal of reducing demand and costs during normal operation, although the operation of critical functions during outages is also important, especially for data centers. .Community/City/Utility and Network Microgrids: Improve reliability of critical infrastructure, deferred asset investment, emission and energy policy targets and also promote community participation. .University Campus Microgrids: Meet the high reliability needs for research labs, campus housing, large heating and cooling demands at large cost reduction opportunities, and lower emission targets. Most campuses already have DG resources, with microgrid technology linking them together.
    [Show full text]
  • Arc Fault Circuit Interrupters the Next Generation of Fire Prevention - the Next Generation of Recovery Opportunities
    Arc Fault Circuit Interrupters The Next Generation of Fire Prevention - The Next Generation of Recovery Opportunities By: William N. Clark, Esq. Cozen O’Connor 1900 Market Street Philadelphia, PA 19103 (215) 665-2000 or (800) 523-2900 www.cozen.com [email protected] Atlanta Charlotte Cherry Hill Chicago Dallas Las Vegas Los Angeles London New York Newark San Diego San Francisco Seattle Washington, D.C. West Conshohocken Wichita Wilmington These materials are intended to raise questions concerning current issues in the law. They are not intended to provide legal advice. Readers should not act or rely on this material without seeking specific legal advice on matters which concern them. Copyright © 2003 Cozen O’Connor ALL RIGHTS RESERVED Manufacturers of electrical equipment have developed a new product that they claim is at the forefront of circuit protection technology. This new product is called the Arc Fault Circuit Interrupter (AFCI). AFCIs provide protection against arcing in fixed wiring, appliance cords and extension cords. The United States Consumer Product Safety Commission (“CPSC”) and National Association of State Fire Marshals ("NASFM") have called AFCIs the "most promising fire protection technology since the advent of the smoke detector."i This paper explores arcing, AFCI technology and recovery opportunities that may arise from this new technology. 1. The Fire Problem During the five-year period between 1994 and 1998, there was an average of 73,500 electrical fires per year.ii Annually, electrical fires cause an average of 591 deaths, 2,247 injuries and $1,047,900,000 in property damage.iii Of the 73,500 electrical fires per year, 60,900 (82%) were caused by arcs.iv The CPSC estimates that AFCI technology can prevent 50-75% of residential electrical fires.v Similarly, NASFM predicts that AFCI technology could prevent 55,125 fires annually, thereby saving 440 lives, 1,685 injuries and $785,925,000 in property damage, if AFCIs are installed to protect all branch wiring in residences.vi Residences are divided into four electrical zones.
    [Show full text]
  • Basic Distribution Engineering for Utility System Operations
    BasicBasic DistributionDistribution EngineeringEngineering forfor UtilityUtility SystemSystem OperationsOperations An Introduction to Electric Utility Distribution System Design and Safety Concepts April 20, 2010 George Ello WhatWhat WeWe WillWill DiscussDiscuss inin thethe ContextContext ofof SafetySafety SystemSystem ConstructionConstruction andand ““ThreatsThreats”” toto FeedersFeeders // FeederFeeder FaultsFaults GroundingGrounding TouchTouch potentialspotentials ProtectiveProtective devicesdevices FaultFault clearingclearing VoltageVoltage backfeedbackfeed VoltageVoltage swellsswells andand lightninglightning 2010 Basic Distribution George Ello Engineering 2 AA WordWord onon SafetySafety SafetySafety inin allall electricelectric operations,operations, forfor utilityutility employeesemployees andand thethe publicpublic atat large,large, trumpstrumps otherother considerations.considerations. ElectricElectric utilityutility personnelpersonnel performperform bothboth livelive--lineline workwork andand workwork onon ‘‘deaddead’’ facilities.facilities. LiveLive--lineline workwork requiresrequires principlesprinciples ofof ““insulateinsulate andand isolateisolate”” toto keepkeep workersworkers fromfrom dangers;dangers; assuringassuring facilitiesfacilities areare ‘‘deaddead’’ requiresrequires thethe workersworkers toto workwork betweenbetween groundsgrounds appliedapplied toto thethe electricelectric facilitiesfacilities beingbeing handled.handled. 2010 Basic Distribution George Ello Engineering 3 RadialRadial DistributionDistribution
    [Show full text]
  • IEEE 342-Node Low Voltage Networked Test System
    IEEE 342-Node Low Voltage Networked Test System Kevin Schneider, Phillipe Phanivong Jean-Sebastian Lacroix Pacific Northwest National Laboratory CYME International T&D – Cooper Power Systems Seattle, WA, USA St-Bruno, Canada [email protected], [email protected] [email protected] Abstract— The IEEE Distribution Test Feeders provide a work well for the radial test cases that exist, it is often difficult benchmark for new algorithms to the distribution analysis to judge whether new methods will extend to heavily meshed community. The low voltage network test feeder represents a or networked systems. The purpose of the 342-node Low moderate size urban system that is unbalanced and highly Voltage Networked Test System (LVNTS) is to provide a networked. This is the first distribution test feeder developed by benchmark for researchers who want to evaluate if new the IEEE that contains unbalanced networked components. The algorithms generalize to non-radial distribution systems. The 342-node Low Voltage Networked Test System includes many LVNTS has been designed to present challenges to elements that may be found in a networked system: multiple distribution system analysis software in the following areas: 13.2kV primary feeders, network protectors, a 120/208V grid network, and multiple 277/480V spot networks. This paper 1. Heavily meshed and networked systems. presents a brief review of the history of low voltage networks 2. Systems with numerous parallel transformers and how they evolved into the modern systems. This paper will 3. Modeling of parallel low voltage cables then present a description of the 342-Node IEEE Low Voltage Network Test System and power flow results.
    [Show full text]