Engineering Project Management

Total Page:16

File Type:pdf, Size:1020Kb

Engineering Project Management ENGINEERING PROJECT MANAGEMENT ENGINEERING PROJECT MANAGEMENT Second Edition Edited by Nigel J. Smith Professor of Construction Project Management University of Leeds # 2002 by Blackwell Science Ltd, Second edition published 2002 by Blackwell Science a Blackwell Publishing Company Ltd Editorial Offices: Osney Mead, Oxford OX2 0EL, UK Library of Congress Tel: +44 (0)1865 206206 Cataloging-in-Publication Data Blackwell Science, Inc., 350 Main Street, Engineering project management/edited by Nigel J. Malden, MA 02148-5018, USA Smith.Ð2nd ed. Tel: +1 781 388 8250 p. cm. Iowa State Press, a Blackwell Publishing Company, Includes bibliographical references and index. 2121 State Avenue, Ames, Iowa 50014-8300, USA ISBN 0-632-05737-8 (alk. paper) Tel: +1 515 292 0140 1. EngineeringÐManagement. 2. Construction Blackwell Publishing Asia Pty Ltd, 550 Swanston industryÐManagement. I. Smith, Nigel J. Street, Carlton South, Melbourne, Victoria 3053, TA190 .E547 2002 Australia 658.4'04Ðdc21 Tel: +61 (0)3 9347 0300 2002074568 Blackwell Wissenschafts Verlag, KurfuÈ rstendamm 57, 10707 Berlin, Germany ISBN-0-632-05737-8 Tel: +49 (0)30 32 79 060 A catalogue record for this title is available from the The right of the Author to be identified as the Author British Library of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. Set in 10/13pt Times by DP Photosetting, Aylesbury, Bucks All rights reserved. No part of this publication may be Printed and bound in Great Britain by reproduced, stored in a retrieval system, or transmitted, TJ International, Padstow, Cornwall in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as For further information on permitted by the UK Copyright, Designs and Patents Blackwell Science, visit our website Act 1988, without the prior permission of the publisher. www.blackwell-science.com First edition published 1995 by Blackwell Science Ltd Reprinted 1996, 1998 Contents Preface xi List of Contributors xiii Acknowledgements xv List of Abbreviations xvi 1 Projects and Project Management 1 Denise Bower 1.1 The function of project management 1 1.2 Projects 2 1.3 Project management 3 1.4 Project initiation 5 1.5 Projects risks 7 1.6 Project objectives 9 1.7 Project success 11 2Value Management 16 Tony Merna 2.1 Introduction 16 2.2 Definitions 16 2.3 Why and when to apply VM 20 2.4 How to apply VM 22 2.5 Reviews 23 2.6 Procedures and techniques 27 2.7 Benefits of value management 28 2.8 Summary 28 3 Project Appraisal and Risk Management 30 Nigel Smith 3.1 Initiation 30 3.2 Sanction 32 3.3 Project appraisal and selection 33 v vi Contents 3.4 Project evaluation 37 3.5 Engineering risk 39 3.6 Risk management 39 3.7 Risk and uncertainty management 43 4Project Management and Quality 44 Tony Merna 4.1 Definitions 44 4.2 Quality systems 46 4.3 Implementation 49 4.4 Quality-related costs 50 4.5 Quality circles 52 4.6 Quality plans 53 4.7 Total quality management (TQM) 53 4.8 Business process re-engineering (BPR) and TQM 55 5 Environmental Management 58 Ian Vickridge 5.1 Environmental impact 58 5.2 Environmental impact assessment (EIA) 60 5.3 Screening 62 5.4 Environmental legislation 63 5.5 Scoping 65 5.6 Base-line study 66 5.7 Impact prediction 67 5.8 Environmental impact statement 68 5.9 Presenting EIA information 69 5.10 Monitoring and auditing of environmental impacts 73 5.11 Environmental economics 75 5.12 Environmental management 80 6Project Finance 86 Tony Merna 6.1 Funding for projects 86 6.2 Sources of finance 87 6.3 Project finance 88 6.4 Financial instruments 89 6.5 Financial engineering 91 6.6 Debt financing contract 92 6.7 Types of loans 93 6.8 Appraisal and validity of financing projects 98 6.9 Risks 100 Contents vii 7 Cost Estimating in Contracts and Projects 105 Nigel Smith 7.1 Cost estimating 105 7.2 Cost and price 107 7.3 Importance of the early estimates 109 7.4 Estimating techniques 112 7.5 Suitability of estimating techniques to project stages 119 7.6 Estimating for process plants 121 7.7 Information technology in estimating 123 7.8 Realism of estimates 124 8 Project Stakeholders 127 Kris Moodley 8.1 Stakeholders 127 8.2 Primary project stakeholders 127 8.3 Secondary project stakeholders 128 8.4 Understanding the interests and influences 129 8.5 Stakeholder management 131 8.6 Stakeholders and communication 134 8.7 Summary 135 9 Planning 137 Nigel Smith 9.1 Planning 137 9.2 Programming 138 9.3 Network analysis 139 9.4 Updating the network 145 9.5 Resource scheduling 146 9.6 Planning with uncertainty 146 9.7 Software and modelling 147 10 Project Control Using Earned Value Techniques 156 Denise Bower 10.1 Project control 156 10.2 Earned value definitions 157 10.3 The theory and development of earned value analysis 159 10.4 Relationship of project functions and earned value 161 10.5 Value of work done control 163 10.6 Earned value analysis techniques 164 10.7 Application of EVA 166 10.8 Examples of EVA 167 10.9 Summary 172 viii Contents 11 Contract Strategy and the Contractor Selection Process 174 David Wright 11.1 Context 174 11.2 Factors affecting strategy 175 11.3 Contractual considerations 177 11.4 Contractor choice 179 11.5 Project objectives 180 11.6 Contract selection 182 11.7 Project organisation 186 11.8 Risk allocation 193 11.9 Terms of payment 194 11.10 Model or standard conditions of contract 201 11.11 Sub-contracts 204 12 Contract Policy and Documents 206 David Wright 12.1 Tendering procedures 206 12.2 Contracting policy 207 12.3 Contract planning 208 12.4 Contractor pre-qualification 211 12.5 Contract documents 212 12.6 Tender review 213 12.7 Tender evaluation 214 12.8 Typical promoter procedure 215 13 Project Organisation Design/Structure 222 Kris Moodley 13.1 Organisations 222 13.2 Building blocks of organisations 223 13.3 Organisation types 225 13.4 Internal and external projects 231 13.5 The human side of structure 232 13.6 Structure of collaborative relationships 233 13.7 Structure in the international context 234 13.8 Summary 236 14 Design Management 238 Peter Harpum 14.1 Role of designs 238 14.2 Understanding design 239 14.3 What design has to do 241 14.4 The role of design management 243 Contents ix 14.5 Managing the project triple constraints 247 14.6 Design liability 255 14.7 Briefing 257 14.8 Interface control 259 14.9 Design for manufacturing 261 15 Supply Chain Management 264 Steven Male 15.1 Background 264 15.2 Perspectives on terminology 265 15.3 Supply chain strategy 266 15.4 The nature of the organisation 269 15.5 World-class organisation in manufacturing 270 15.6 The project value chain 275 15.7 Procurement and the project value chain 277 15.8 Prime contracting 281 15.9 The operation of future construction supply chains 285 15.10 Summary 287 16 Team-Based Supply Chains and Partnering 290 Denise Bower 16.1 Background 290 16.2 Team working 291 16.3 Partnering 292 16.4 Establishing the relationship 298 16.5 Making the relationship work 300 16.6 Benefits of partnering 300 16.7 Constraints to partnering 303 16.8 Summary 305 17 Private Finance Initiative and Public±Private Partnerships 307 Tony Merna 17.1 Concession contracts 307 17.2 Definition of concession projects 308 17.3 Organisational and contractual structure 309 17.4 Concession agreements 311 17.5 Procurement of concession project strategies 311 17.6 Concession periods 313 17.7 Existing facilities 314 17.8 Classification of concession projects 315 17.9 Projects suitable for concession strategies 317 17.10 Risks fundamental to concession projects 317 x Contents 17.11 Concession package structure 319 17.12 Advantages and disadvantages of concession projects 321 17.13 The origins of PFI 323 17.14 The arguments for privately financed public services 323 17.15 PFI in the UK 325 17.16 Bidding and competition 326 17.17 Output specification 328 17.18 Financing public±private partnerships 329 18 Aspects of Implementing Industrial Projects 333 Nigel Smith 18.1 Multi-disciplinary projects 333 18.2 Industrial projects 335 18.3 Large engineering projects 336 18.4 UK off-shore projects 337 18.5 Legal systems in the EU countries 338 18.6 Innovation 339 19 Project Management in Developing Countries 341 Ian Vickridge 19.1 What makes developing countries different? 341 19.2 The construction industry in developing countries 345 19.3 Finance and funding 346 19.4 Appropriate technology 347 19.5 Labour-intensive construction 349 19.6 Community participation 351 19.7 Technology transfer 352 19.8 Corruption 353 19.9 Summary 355 20 The Future for Engineering Project Management 357 Nigel Smith 20.1 The role of the parties 358 20.2 Guidelines for project management 359 20.3 Project management ± the way ahead 362 Suggested Answers to Exercises in Chapter 9 364 Index 372 Preface In many sectors of industry the significance of good project management in delivering projects in accordance with predetermined objectives has been established. Industrialists and engineering institutions have called for the inclusion of a significant proportion of project management in higher-level degrees, something realised by Finniston in his review of the future of engineering in 1980 (Engineering our Future. Report of the Committee of Inquiry into the Engineering Profession, Chairman Sir Montague Finniston, HMSO, 1980).
Recommended publications
  • Mechatronics Education at the Johannes Kepler University: Engineering Education in Its Totality*
    Int. J. Engng Ed. Vol. 19, No. 4, pp. 532±536, 2003 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2003 TEMPUS Publications. Mechatronics Education at the Johannes Kepler University: Engineering Education in its Totality* RUDOLF SCHEIDL, HARTMUT BREMER and KURT SCHLACHER Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria. E-mail: [email protected] A fully academic mechatronics engineering course was established at Linz University in 1990 in response to the expressed needs of industry for this new type of engineer. Mechatronics is taught here in a balanced way, emphasizing mechanical and electrical engineering as well as computer sciences, equally. More than six years working experience of graduates in industry confirm the validity of this concept. A study with such a broad scope combined with a sound scientific depth can only be achieved by an articulated well-balanced curriculum. INTRODUCTION . Basic sciences (such as mathematics, the relevant disciplines in physics), nowadays computer THE SPECIFIC CONCEPT of mechatronics sciences, technical knowledge and even some education at the Johannes Kepler University in practical skills (manufacturing or technical Linz is the result of the leading industrial position drawing) have to be attributed appropriate of the province of Upper Austria, its strong shares. Discussions about the appropriate orientation towards mechanical engineering (as share of the different categories of knowledge shown in Fig. 1), and its tradition in higher already date back to the origin of higher engin- education. The explicit request of industry for eering education at Universities in Europe in the academic engineering courses in mechanical and 19th century.
    [Show full text]
  • Engineering Management and Cost Control of Petrochemical Projects
    493 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 71, 2018 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Xiantang Zhang, Songrong Qian, Jianmin Xu Copyright © 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-68-6; ISSN 2283-9216 DOI: 10.3303/CET1871083 Engineering Management and Cost Control of Petrochemical Projects Jingjing Song, Zhiwei Helian* School of Economics and Management, Yanshan University, Qinhuangdao 066004, China [email protected] With the increasing developing of petrochemical engineering construction market, China has accumulated rich experience in project engineering management and cost control, but has not yet established a complete cost control performance evaluation system, and the traditional project cost control method has been unable to meet the cost requirements under the new project management environment. For this, this paper studies the engineering management and cost control system theory of petrochemical projects, and builds one petrochemical project cost control system. The analysis results show that mature project management mode has been increasingly applied in petrochemical projects. The construction of the engineering cost control early warning system can achieve the objective of cost control. The related cost control performance evaluation system can greatly improve the actual engineering cost control level and realize the quantification and standardization of cost control performance evaluation. 1. Introduction Petrochemical projects involve various fields in the country such as import and export, labour, capital, and economic politics (Liu et al., 2018; Bovsunovskaya, 2016). In terms of project management, due to different climatic conditions, technical standards and backgrounds of different countries, the management of engineering projects is faced with great challenges (Willems and Vanhoucke, 2015).
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Abate T. Wolde-Kirkos, Ph.D., P.E. 17403 S
    Abate T. Wolde-Kirkos, Ph.D., P.E. 17403 S. Sienna Cove LN, Houston, Texas 77083 ♦ [email protected] ♦ cell: 832-731-7298 OBJECTIVE Seeking a position to contribute and add value to the department’s programs in a consistently professional manner. SUMMARY OF QUALIFICATIONS I am a professional engineer based in the State of Texas and have more than 20 years of engineering consulting experience in the general area of civil engineering and research, both in the United States and international settings. My technical qualifications include: civil engineering design and supervision; specifications; cost estimating; engineering reports; construction engineering; program and project management; contract administration; permit acquisition. Positions held during this period include program manager, project manager, project engineer, Research Assistant (water resources) and Water Resources Consultant and Project Controls Manager in the design and preparation of plans and specifications, schematic design, preliminary design and estimates for roadways, storm sewer, drainage, water distribution, wastewater collection, etc. As a water resources development consultant, I provided professional services for water resources projects sponsored by UNICEF and other international agencies in various eco-systems (mountain, desert, urban areas) in the Indian sub-continent through international non-government organization. I have several years of college/university-level teaching experience, including as Adjunct Faculty in Construction Engineering at the University of Houston. Technical publications include the following: 1. Seepage from Canal to Asymmetric Drainages, Journal of Irrigation and Drainage Engineering, ASCE, Vol. 120, No. 5, September/October 1994, pp. 949-956. 2. Ph.D. Thesis, 1993: “Seepage from Canal With Asymmetric Drainages” (analytical solution using Conformal Mapping – includes shape of canal).
    [Show full text]
  • Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A
    NOT MEASUREMENT SENSITIVE DOE G 413.3-1 9-23-08 Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A [This Guide describes suggested nonmandatory approaches for meeting requirements. Guides are not requirements documents and are not construed as requirements in any audit or appraisal for compliance with the parent Policy, Order, Notice, or Manual.] U.S. Department of Energy Washington, D.C. 20585 AVAILABLE ONLINE AT: INITIATED BY: www.directives.doe.gov National Nuclear Security Administration DOE G 413.3-1 i 9-23-08 TABLE OF CONTENTS 1.0 INTRODUCTION ........................................................................................................... 1 1.1. Goal .................................................................................................................................. 1 1.2. Applicability. .................................................................................................................... 2 1.3. What is Systems Engineering? ......................................................................................... 2 1.4. Links with Other Directives ............................................................................................. 2 1.5. Overlapping Systems Engineering and Safety Principles and Practices .......................... 4 1.6. Differences in Terminology ............................................................................................. 5 1.7. How this Guide is Structured ..........................................................................................
    [Show full text]
  • Geotechnical Engineering Report Country Ridge Subdivision Strawberry Lane Richland, Washington
    Geotechnical Engineering Report Country Ridge Subdivision Strawberry Lane Richland, Washington Prepared for: Pahlisch Homes, Inc. 210 SW Wilson Avenue, Suite 100 Bend, Oregon 97702 November 17, 2020 PBS Project 66265.000 4412 S CORBETT AVENUE PORTLAND, OR 97239 503.248.1939 MAIN 866.727.0140 FAX PBSUSA.COM Geotechnical Engineering Report Country Ridge Subdivision Strawberry Lane Richland, Washington Prepared for: Pahlisch Homes, Inc. 210 SW Wilson Avenue, Suite 100 Bend, Oregon 97702 November 17, 2020 PBS Project 66265.000 Prepared by: 11/17/2020 11/17/2020 Clint Nealey, PE Shaun Cordes, LG, LEG Geotechnical Staff Engineer Project Engineering geologist Reviewed by: Ryan White, PE, GE (OR) Principal/Geotechnical Engineering Group Manager © 2020 PBS Engineering and Environmental Inc. 4412 S CORBETT AVENUE, PORTLAND, OR 97239 . 503.248.1939 MAIN . 866.727.0140 FAX . PBSUSA.COM Geotechnical Engineering Report Country Ridge Subdivision Pahlisch Homes, Inc. Richland, Washington Table of Contents 1 INTRODUCTION ........................................................................................................................................... 1 1.1 General ........................................................................................................................................................................................... 1 1.2 Purpose and Scope ................................................................................................................................................................... 1 1.2.1 Literature
    [Show full text]
  • Project Management Applied to Student Design Projects
    Session 2642 Project Management Applied to Student Design Projects Andrew N. Vavreck Penn State University, Altoona College Abstract Student design projects are very useful for practically bringing student knowledge areas to bear, for giving students open ended, creative experiences, in developing team skills and for enhancing communication abilities. Management of these projects through sound project management principles can help expand the range of experiences, as well as simply help keep projects on track. Project management is performed to some extent on many projects in many schools, as a survey in this paper of publications indicates, with mixed results being experienced. The paper then focuses on an extensive application of project management techniques to capstone design courses involving engineering technology students and to other student design projects (e.g. SAE Mini Baja) at Penn State Altoona, through involvement by business school faculty and students. Future plans, lessons learned and student perceptions are discussed and recommendations made. Introduction The importance of group design projects to today’s engineering and engineering technology programs is indisputable,1 and multidisciplinary teams on such projects are of growing significance, to give students exposure to other ways of addressing problems and to other fields’ content.2 Project management techniques can help enable multidisciplinary group projects, in an organized way, to enhance the learning experience for students3 Consequently, many faculty have decided to incorporate project management or multidisciplinary teams to augment design in their engineering or engineering technology programs. Project Management Courses It has been found4 that project managers need to have the following skills, in decreasing order of importance: communications, organization, team building, leadership, coping and technological expertise.
    [Show full text]
  • B. Tech. Degree in CHEMICAL ENGINEERING
    B. Tech. Degree in CHEMICAL ENGINEERING SYLLABUS FOR CREDIT BASED CURRICULUM (For students admitted in 2013-14) DEPARTMENT OF CHEMICAL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI - 620 015 TAMIL NADU, INDIA CURRICULUM The total minimum credits required for completing the B. Tech. Programme in Chemical Engineering is 182 (45+137) SEMESTER III CODE COURSE OF STUDY L T P C MA201 Transforms, Special Functions and Partial 2 1 0 3 Differential Equations CH201 Organic Chemistry 3 0 0 3 EE227 Electrical and Electronics Engg 3 0 0 3 CL203 Chemical Technology 3 0 0 3 CL205 Momentum Transfer 3 0 0 3 CL207 Process Calculations 3 1 0 4 CL209 Technical Analysis Lab 0 0 3 2 EE221 Applied Electrical & Electronics 0 0 3 2 Engineering laboratory Total 17 2 6 23 SEMESTER IV CODE COURSE OF STUDY L T P C MA202 Numerical Techniques 2 1 0 3 CL202 Advanced Programming Languages, C++ 3 0 0 3 CL204 Physical Chemistry 3 0 0 3 CL206 Chemical Engineering Thermodynamics 3 1 0 4 CL208 Particulate Science and Technology 2 1 0 3 CL210 Environmental Engineering 3 0 0 3 CL212 Momentum Transfer Lab 0 0 3 2 CL214 Physical Chemistry Lab 0 0 3 2 Total 16 3 6 23 SEMESTER V CODE COURSE OF STUDY L T P C CL301 Chemical Reaction Engineering – I 2 1 0 3 CL303 Material Science and Technology 3 0 0 3 CL305 Mass Transfer 3 0 0 3 CL307 Heat Transfer 2 1 0 3 CL309 Biochemical Engineering 3 0 0 3 Elective 1 3 0 0 3 CL311 Particulate Science and Technology Lab 0 0 3 2 CL313 Thermodynamics Lab 0 0 3 2 Total 16 2 6 22 B.Tech.
    [Show full text]
  • Wisdot Roster of Eligible Engineering Consultants -- September 29, 2021
    WisDOT Roster of Eligible Engineering Consultants -- September 29, 2021 Advanced Engineering And Environmental Services, Inc (d/b/a AE2S)Trns*prt Number: 2424 Rimrock Road Suite 200 Phone: (608) 695-5589 Madison, WI 53713-0000 Fax: 4050 Garden View Drive Suite 200 Phone: (701) 746-8087 Grand Forks, ND 58201-0000 Fax: 6901 E Fish Lake Road Suite 184 Phone: (763) 463-5036 Maple Grove, MN 55369-0000 Fax: 997 Main Street W Phone: (218) 766-4139 Baudette, MN 56623-0000 Fax: AECOM Technical Services, Inc. Trns*prt Number: 1020 1350 Deming Way Suite 100 Phone: (608) 836-9800 Middleton, WI 53562-0000 Fax: (608) 836-9767 1555 North Riverside Center Suite 214 Phone: (414) 944-6080 Milwaukee, WI 53212-0000 Fax: (414) 944-6081 200 Indiana Avenue Phone: (715) 341-8110 Stevens Point, WI 54481-0000 Fax: (715) 341-7390 2985 South Ridge Road Suite B Phone: (920) 468-1978 Green Bay, WI 54304-0000 Fax: (920) 426-3312 558 North Main Street Phone: (920) 235-0270 Oshkosh, WI 54901-4925 Fax: (920) 235-0321 AECOM Technical Services, Inc. delivers a full range of services covering all aspects of transportation, geotechnical, structural, environmental, water and wastewater, and construction engineering. Our firm has experience with all sizes of projects, ranging from municipal studies and designs through high-complexity urban mega projects. AECOM's staff is capable of planning, design, engineering, and construction services for highway, bridge, aviation, and transit/rail projects with expertise in construction project and program management, roadway/bridge design, planning, roundabouts, value engineering, GIS, storm water management, sanitary sewer systems, environmental planning and management services, architectural, urban planning, surveying and platting, construction staking, geologic and hydrologic evaluation, soil boring and testing, materials testing, in-plant inspection, QA/QC, geotechnical engineering services, non-destructive testing (infrared and radar), and pavement management planning.
    [Show full text]
  • Department of Chemical Engineering Module Descriptions
    DEPARTMENT OF CHEMICAL ENGINEERING MODULE DESCRIPTIONS MSc Chemical Process Engineering 2018-19 1 Chemical Engineering Module Descriptions 2018-191 Module Registration Students can view the modules they are registered for on Portico (http://www.ucl.ac.uk/portico) and choose the optional modules they wish to take during their programme. Full details of all modules offered by the Department can be found in this document. Details on modules offered by other Departments is included where this is available. When choosing options, please ensure you check for timetable clashes using the Online Timetable (https://timetable.ucl.ac.uk/tt/). Queries relating to module choices should be directed to the appropriate tutor, Deputy Head (Education) or the Teaching & Learning Team: Your Personal Tutor Teaching & Learning Administrators – [email protected] Departmental Tutor – Dr Vivek Dua ([email protected]) MSc Chemical Process Engineering Tutor – Dr Luca Mazzei MSc Global Management of Natural Resources Tutor – Prof Alberto Striolo Deputy Head (Education) – Prof Eva Sorensen Safety Many of the activities in the Department have potential dangers unless sensible precautions are taken at all times. The Department's safety regulations are contained in the departmental booklet "Arrangements for Safety and Security" which is available on the Student Intranet as well as in the Programme Handbooks. UCL has a duty of care to safeguard, so far as is reasonably practicable, the health, safety and welfare of their employees, students and general public who may be affected by its activities. Similarly, students have a duty to take reasonable care to avoid injury to themselves or to others who may be affected by their work activities.
    [Show full text]
  • Beng Metallurgical Engineering (12130005)
    University of Pretoria Yearbook 2017 BEng Metallurgical Engineering (12130005) Duration of study 4 years Total credits 584 Programme information All fields of study of the BEng degree have been accredited by the Engineering Council of South Africa (ECSA), and comply with the academic requirements for registration as a professional engineer. The programmes are designed in accordance with the outcomes-based model as required by the South African Qualifications Authority (SAQA). The learning outcomes and contents of the programmes have been compiled in accordance with the latest accreditation standards (PE-60 and PE-61) of ECSA, which also comply with the SAQA requirements, and which are summarised as follows: Learning outcomes of the BEng degree: A graduate in engineering should be able to apply the following skills on an advanced level: a. Engineering problem solving. b. Application of specialist and fundamental knowledge, with specific reference to mathematics, basic sciences and engineering sciences. c. Engineering design and synthesis. d. Investigation, experimentation and data analysis. e. Engineering methods, skills, tools and information technology. f. Professional and general communication. g. Awareness and knowledge of the impact of engineering activity on society and the physical environment. h. Work in teams and in multidisciplinary environments. i. An awareness and ability for lifelong learning. j. An awareness and knowledge of principles of professional ethics and practice. Learning contents of the BEng programmes: Six essential knowledge areas are included in the syllabi of the programmes. The typical representation of each knowledge area as a percentage of the total contents of an undergraduate programme is given in brackets ( ) in the list below.
    [Show full text]
  • On-Site Engineering Information Systems (EIS) for Building and Construction Projects
    Civil Engineering and Architecture 4(1): 8-13, 2016 http://www.hrpub.org DOI: 10.13189/cea.2016.040102 On-site Engineering Information Systems (EIS) for Building and Construction Projects Koorosh Gharehbaghi School of Property, Construction and Project Management, RMIT University, Australia Copyright © 2016 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract The expectation of economic and cannot be attacked manually, with a consequent increase in performance-related benefits has led to the rapid penetration job satisfaction at the relevant levels. Thus the utilization of of computer-based Information Systems such as on-site on-site Engineering Information Systems (EIS) is becoming Engineering Information Systems (EIS) into all facets of a more and more common. The most important issues in an Building and Construction projects and their activities. on-site Engineering Information Systems (EIS) are the While the benefits range from increased productivity to general aims and the output of the system. Furthermore, the reduced working-capital needs; key advantages also includes Engineering Information Systems (EIS) derives to a series of the capability to increase production and services. These key outcomes including improved operational process and explicit key advantages are in contrast to the benefits of increased project productivity. These key outcomes are different systems such as Building Information Modeling fundamental aspects of on-site Engineering Information (BIM). While Building Information Modeling (BIM) Systems (EIS). Moreover, the most important aim of any investigates general and broad aspects of information, the on-site Engineering Information Systems (EIS) would be the proposed Engineering Information Systems (EIS) superior project strategy through improved project specifically deals with the complex data and its related productivity [1, 2].
    [Show full text]