Poster Final

Total Page:16

File Type:pdf, Size:1020Kb

Poster Final Evidence for polyphase deformation in the mylonitic zones bounding the Chester and Athens Domes, in southeastern Vermont, from 40Ar/39Ar geochronology Schnalzer, K., Webb, L., McCarthy, K., University of Vermont Department of Geology, Burlington Vermont, USA CLM 40 39 Sample Mineral Assemblage Metamorphic Facies Abstract Microstructure and Ar/ Ar Geochronology 18CD08A Quartz, Muscovite, Biotite, Feldspar, Epidote Upper Greenschist to Lower Amphibolite The Chester and Athens Domes are a composite mantled gneiss QC Twelve samples were collected during the fall of 2018 from the shear zones bounding the Chester and Athens Domes for 18CD08B Quartz, Biotite, Feldspar, Amphibole Amphibolite Facies 18CD08C Quartz, Muscovite, Biotite, Feldspar, Epidote Upper Greenschist to Lower Amphibolite dome in southeast Vermont. While debate persists regarding Me 40 39 microstructural analysis and Ar/ Ar age dating. These samples were divided between two transects, one in the northeastern 18CD08D Quartz, Muscovite, Biotite, Feldspar, Garnet Upper Greenschist to Lower Amphibolite the mechanisms of dome formation, most workers consider the VT NH section of the Chester dome and the second in the southern section of the Athens dome. These samples were analyzed by X-ray 18CD08E Quartz, Muscovite Greenschist Facies domes to have formed during the Acadian Orogeny. This study diraction in the fall of 2018. Oriented, orthogonal thin sections were also prepared for each of the twelve samples. The thin sec- 18CD09A Quartz, Amphibole Amphib olite Facies 40 CVGT integrates the results of Ar/Ar step-heating of single mineral NY tions named with an “X” were cut parallel to the stretching lineation (X) and normal to the foliation (Z) whereas the thin sections 18CD09B Quartz, Biotite, Feldspar, Amphibole, Muscovite Amphibolite Facies grains, or small multigrain aliquots, with data from microstruc- 18CD09C Quartz, Amphibole, Feldspar Amphibolite Facies named with a “Y” have been cut perpendicular to the ‘X-Z’ thin section. 18CD10A Quartz, Muscovite, Biotite, Feldspar, Garnet Amphibolite Facies tural analyses from samples collected in multiple transects CD North Transect South Transect 18CD10B Quartz, Amphibole, Feldspar Amphibolite Facies across the dome-bounding shear zone(s) in order to understand GMM Post Ordovician Rocks 18CD10C Quartz, Feldspar, Muscovite, Graphite Granulite Facies MGC Mesozoic Rocks This is from the Barnard Gneiss from the shear zone. The thin section 18CD08B box heights are 1V 18CD10D Quartz, Feldspar, Graphite Granulite Facies the relationship between metamorphism and deformation. Re- Late Paleozoic shows an amphibolite porphyroclast with quartz strain shadows. The min- Forced plateau age= 344.4±2.3 Ma Forced plateau age= 406.2±2.2 Ma 08B Bt Qtz Intrusive Rocks 1V incl. J-err. of .3% 1V incl. J-err. of .29% This is from the Missisquoi Formation from the shear zone. The min- 550 MSWD = 0.52, prob. =0.60 MSWD = 0.113, prob. =0.89 08B Bt eralogy suggests amphibolite facies metamorphism. The quartz experi- Late Paleozoic incl. 28.8% of the 39Ar incl. 46% of the 39Ar 18CD10A sults from the sheared units along the north and south transects Plateau Bt o eralogy suggests amphibolite facies metamorphism. The thin sec- 08B Bt 08B Hbl enced GBM, indicating the deformation temperature is ~500 C. The horn- box heights are 1V Sedimentary Rocks 08B Hbl Ms Ma Forced plateau age= 406.3±2.4 Ma BM Connecticut 08B Hbl 10A Bt 10A Bt tion shows a porphyroclast with quartz wings. It also shows two foli- are presented from west to east. In the north, hornblende from blende has a closure temperature of ~500-600ºC, and the temperature of (1V) incl. J-err. of .53%) Bt 440 Plateau Amp MSWD = 1.5, prob. =0.21 Valley Gaspe 450 10A Bt CT incl. 16.5% of the 39Ar ations, S and S. S is the older overprinted foliation that is trapped RI Trough deformation when the shear zone was active was at least 500ºC. This indi- Plateau the Barnard Gneiss yielded a weighted mean age of 406 Ma 10A Wm S 1 in the microlithons that are dened by S which is the younger Age Age (Ma) cates the hornblende likely constrains the timing of the high-T shearing of 400 10A Wm Plateau from a plateau -like segment and biotite yielded a weighted Kilometers S the sample at amphibolite facies conditions. The biotite has a closure Grt more dominant foliation dened by the planar orientation of the 350 2 S 0 50 100 150 2 micas and compositional layering. This indicates that there was two temperature of ~300-400ºC. The biotite contains a complex spectrum 360 mean age of 344 Ma. Muscovite from a second sample of the suggestive of resetting. Microstructural analysis suggests two generations Age (Ma) phases of deformation. The biotites older age might be explained Laurentian Margin Peri-Gondwanan Terranes Qtz 10A Wm Ordovician Foreland Bronson Hill Ganderian Arc 250 of biotite, where the older was reset by later deformation. There is one by the possible older generation of biotite in the sample. The white Barnard gneiss yielded a weighted mean age of 388 Ma for a 0 20 40 60 80 100 320 Plateau age= 365.6±2.0 Ma 39 Cambrian to Ordovician Arc Rocks Cumulative Ar Percent (1V) incl. J-err. of .48%) mica was interpreted to constrain the timing of formation of the foliation found. MSWD = 1.6, prob. =0.072 plateau -like segment and biotite yielded a plateau age of 334 Platform Shelburne Ganderia incl. 68.4% of the 39Ar dominant foliation S. Conversely, the older biotite may place con- This is from the Missisquoi Formation from the shear zone. The thin 280 Rowe Schist Falls Arc 18CD08D box heights are 1V Avalon 450 0 20 40 60 80 100 39 Slope-Rise Moretown Plateau age= 387.8 ± 1.4 Ma Cumulative Ar Percent straints on the minimum age of the formation of S. Ma. One analysis of biotite from the Devonian Waits River For- Plateau age= 334.3 ± 1.3 Ma Ms section shows group 2 muscovite mica sh. The mineralogy sug- (1V incl. J-err. of .28%) (1V incl. J-err. of .27%) 08D Bt Deposits Terrane MSWD = 2.4, prob. = 0.014 MSWD = 1.6, prob. = 0.12 08D Bt Grenvillian Basement incl. 57.3% of the 39Ar Plateau gests upper greenschist to lower amphibolite facies metamor- mation yielded a plateau age of 403 Ma, and muscovite yielded 08D Ms 08D Bt 08D Ms box heights are 1V This is from the Missisquoi Formation from within the shear Figure 1: Tectonic map of New England modied after phism. The quartz experienced GBM, and some SGR, indicating the 18CD10B800 400 08D Ms Hbl #1 Hbl #1 Plateau Qtz Forced Plateau age= 623±51 Ma zone. The mineralogical composition suggests amphibolite a plateau age of 362 Ma, consistent with microstructural evi- Karabinos and others (2017) and Hibbard and others (2006). Abbre- deformation temperature is >500ºC and the sample possibly (95% conf.) incl. J-err. of .55%) Hbl #1 MSWD = 34, prob. =0.000 Plateau viations include: BM – Berkshire Massif, CLM – Chain Lakes Massif, incl. 37.5% of the 39Ar facies metamorphism. The thin section shows only one folia- Ms cooled during deformation from 500-450ºC. The white mica has a 700 Hbl #2 S dence of muscovite growing at the expense of biotite. In this GMM – Green Mountain Massif, MGC – Massabesic Gneiss Complex, Age (Ma) 2 Hbl #2 tion. The temperature of deformation is >500C. Hornblende closure temperature of ~450-550ºC. Since the deformation tem- Plateau CVGT – Connecticut Valley Gaspe Trough and CD – Chester and 350 S #1 was much older than the other samples from both the perature is >500ºC, this indicates the white mica constrains the 600 2 transect, the deformation ages inferred for the samples include Athens Dome. Black box represents Figure 2. minimum age for the timing of formation for the sample. The bio- Hbl #2 Qtz Hbl north and south transects. Hornblende #2 contained younger Forced plateau age= 392±13 Ma 388 Ma in association with upper greenschist to lower amphibolite-facies metamorphism, and 362 Ma Age (Ma) 500 (95% conf.) incl. J-err. of .55%) ages c. 360 Ma. This corresponds to two southern samples tite has a closure temperature of ~300-400ºC, so it constrains the MSWD = 7.7, prob. =0.000 300 incl. 85.2% of the 39Ar 0 20 40 60 80 100 which also contained ages c. 360 Ma. This 392 Ma could be in association with greenschist-facies metamorphism. In the south, muscovite from the basement Cumulative 39Ar Percent cooling history. There is one foliation found. 400 the minimum age for the high-temperature deformation. cover contact yielded a weighted mean age of 365 Ma. Biotite from this sample yielded a weighted 18CD08E box heights are 1V 580 This is from the Waits River Formation outside of the shear 08E Wm 300 0 20 40 60 80 100 mean age of 358 Ma. A hornblende analysis from the Missisquoi Formation yielded a weighted mean 08E Wm Qtz zone. The thin sections shows quartz experiencing GBM. The Cumulative 39Ar Percent 540 Plateau 08E Bt1 08E Bt #1 Forced plateau age= 557±11 Ma mineralogy suggests greenschist facies metamorphism. Bio- age of 392 Ma. Muscovite from another sample of the Missisquoi Formation yielded a weighted mean (95% conf.) incl. J-err. of .27%) 08E Bt #1 500 MSWD = 3.8, prob. =0.000 Plateau tite #1 is 577 Ma and is interpreted to be a detrital grain. Bio- box heights are 1V This is a sample of basement rock from the basement cover con- incl. 71.3% of the 39Ar 18CD10C 380 08E Bt2 08E Bt #2 10C Bt age of 365 Ma and biotite yielded a weighted mean age of 406 Ma.
Recommended publications
  • Sedimentary Record of Cretaceous And
    SEDIMENT AR Y RECORD OF CRETACEOUS AND TER TIAR Y SALT MOVEMENT, EAST TEXAS BASIN: TIMES, RATES, AND LUMES OF SALT FLOW, IMPLICATIONS TO NUCLEAR-WA TE ISOLATION AND PETROLEUM EXPLO ATION by Steven J. Seni and M. P. A. ackson This work was supported by U.S. Depart ent of Energy and funded under Contract No. DE-AC 7-80ET46617 CONTENTS ABSTRACT . • 00 INTRODUCTION. • 00 Data Base. • 00 Early History of Basin Formation and Infilling • 00 Geometry of Salt Structures • 00 EVOLUTIONARY STAGES OF DOME GROWTH. • 00 Pillow Stage . • 00 Geometry of Overlying Strata . • 00 Geometry of Surrounding Strata • 00 Depositional Facies and Lithostratigraph • 00 Diapir Stage • • 00 Geometry of Surrounding Strata • 00 Depositional Facies and Lithostratigraph • 00 Post-Diapir Stage • 00 Geometry of Surrounding Strata • 00 Depositional Facies and Lithostratigraphy • 00 Holocene Analogues. • 00 Discussion • 00 Significance to Subtle Petroleum Traps • 00 PATTERNS OF SALT MOVEMENT IN TIME AND SPAC • 00 Group 1: Pre-Glen Rose Subgroup (pre-112 Ma) - Periphery of Diapir Province • • 00 Group 2: Glen Rose Subgroup to Washita Group 112 to 98 Ma)-­ Basin Axis • 00 Group 3: Post-Austin Group (86 to 56 Ma) -- Per phery of Diapir Province • • 00 Initiation and Acceleration of Salt Flow • • 00 Overview of Dome History • • 00 RATES OF SALT MOVEMENT AND DOME GROWTH • • 00 Assumptions • • 00 Proven Propositions. • 00 Unproven Propositions • 00 Incorrect Propositions • • 00 Distinguishing Between Syndepositional and Post-D positional Thickness Variations. • 00 The Problem • • 00 Structural Evidence • • 00 Sedimentological Evidence • • 00 Methodology • • 00 Distinguishing Between Regional and Salt-Re ated Thickness Variations. • 00 Volume of Salt Mobilized and Estimates of S t Loss • 00 Rates of Dome Growth • • 00 Net Rates of Pillow Growth • 00 Net Rates of Diapir Growth • 00 Gross Rates of Diapir Growth • • 00 Growth Rates and Strain Rates • 00 IMPLICA TIONS TO WASTE ISOLATION • • 00 CONCLUSIONS • • 00 ACKNOWLEDGMENTS • • 00 REFERENCES • 00 APPENDICES • 00 Figures 1.
    [Show full text]
  • Influences of Surface Processes on Fold Growth During 3D Detachment
    PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Influences of surface processes on fold growth during 3-D 10.1002/2014GC005450 detachment folding Key Point: M. Collignon1, B. J. P. Kaus2, D. A. May3, and N. Fernandez2 Influences of surface processes on the fold pattern in fold-and-thrust 1Geological Institute, ETH Zurich, Zurich, Switzerland, 2Institut fur€ Geowissenschaften, Johannes Gutenberg-Universit€at, belts Mainz, Germany, 3Institute of Geophysics, ETH Zurich, Zurich, Switzerland Correspondence to: M. Collignon, Abstract In order to understand the interactions between surface processes and multilayer folding sys- [email protected] tems, we here present fully coupled three-dimensional numerical simulations. The mechanical model repre- sents a sedimentary cover with internal weak layers, detached over a much weaker basal layer representing Citation: salt or evaporites. Applying compression in one direction results in a series of three-dimensional buckle folds, Collignon, M., B. J. P. Kaus, D. A. May, and N. Fernandez (2014), Influences of of which the topographic expression consists of anticlines and synclines. This topography is modified through surface processes on fold growth time by mass redistribution, which is achieved by a combination of fluvial and hillslope erosion, as well as during 3-D detachment folding, deposition, and which can in return influence the subsequent deformation. Model results show that surface Geochem. Geophys. Geosyst., 15, doi:10.1002/2014GC005450. processes do not have a significant influence on folding patterns and aspect ratio of the folds. Nevertheless, erosion reduces the amount of shortening required to initiate folding and increases the exhumation rates. Received 9 JUN 2014 Increased sedimentation in the synclines contributes to this effect by amplifying the fold growth rate by grav- Accepted 29 JUL 2014 ity.
    [Show full text]
  • The Geology of the Lyndonville Area, Vermont
    THE GEOLOGY OF THE LYNDONVILLE AREA, VERMONT By JOHN G. DENNIS VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, Stale Geologist Published by VERMONT DEVELOPMENT COMMISSION MONTPELIER, VERMONT BULLETIN NO. 8 1956 Lake Willoughby, seen from its north shore. TABLE OF CONTENTS ABSTRACT ......................... 7 INTRODUCTION 8 Location 8 Geologic Setting ..................... 8 Previous Work ...................... 8 Purpose of Study ..................... 9 Method of Study 10 Acknowledgments . 11 Physiography ...................... 11 STRATIGRAPHY ....................... 16 Lithologic Descriptions .................. 16 Waits River Formation ................. 16 General Statement .................. 16 Distribution ..................... 16 Age 17 Lithological Detail .................. 17 Gile Mountain Formation ................ 19 General Statement .................. 19 Distribution ..................... 20 Lithologic Detail ................... 20 The Waits River /Gile Mountain Contact ........ 22 Age........................... 23 Preliminary Remarks .................. 23 Early Work ...................... 23 Richardson's Work in Eastern Vermont .......... 25 Recent Detailed Mapping in the Waits River Formation. 26 Detailed Work in Canada ................ 28 Relationships in the Connecticut River Valley, Vermont and New Hampshire ................... 30 Summary of Presently Held Opinions ........... 32 Discussion ....................... 32 Conclusions ...................... 33 STRUCTURE 34 Introduction and Structural Setting 34 Terminology ......................
    [Show full text]
  • Map Showing Geology, Structure, and Geophysics of the Central Black
    U.S. DEPARTMENT OF THE INTERIOR Prepared in cooperation with the SCIENTIFIC INVESTIGATIONS MAP 2777 U.S. GEOLOGICAL SURVEY SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY FOUNDATION SHEET 2 OF 2 Pamphlet accompanies map 104°00' 103°30' 103°00' 104°00' 103°30' 103°00' ° ° EXPLANATION FOR MAPS F TO H 44 30' 44°30' EXPLANATION 44 30' 44°30' EXPLANATION Spearfish Geologic features 53 54 Tertiary igneous rocks (Tertiary and post-Tertiary Spearfish PHANEROZOIC ROCKS 90 1 90 sedimentary rocks not shown) Pringle fault 59 Tertiary igneous rocks (Tertiary and post-Tertiary Pre-Tertiary and Cretaceous (post-Inyan Kara sedimentary rocks not shown) Monocline—BHM, Black Hills monocline; FPM, Fanny Peak monocline 52 85 Group) rocks 85 Sturgis Sturgis Pre-Tertiary and Cretaceous (post-Inyan Kara A Proposed western limit of Early Proterozoic rocks in subsurface 55 Lower Cretaceous (Inyan Kara Group), Jurassic, Group) rocks 57 58 60 14 and Triassic rocks 14 Lower Cretaceous (Inyan Kara Group), Jurassic, B Northern extension (fault?) of Fanny Peak monocline and Triassic rocks Paleozoic rocks C Possible eastern limit of Early Proterozoic rocks in subsurface 50 Paleozoic rocks Precambrian rocks S Possible suture in subsurface separating different tectonic terranes 89 51 89 2 PRECAMBRIAN ROCKS of Sims (1995) 49 Contact St 3 G Harney Peak Granite (unit Xh) Geographic features—BL, Bear Lodge Mountains; BM, Bear Mountain; Fault—Dashed where approximately located G DT DT, Devils Tower 48 B Early Proterozoic rocks, undivided Anticline—Showing trace of axial surface and 1 St Towns and cities—B, Belle Fourche; C, Custer; E, Edgemont; HS, Hot direction of plunge.
    [Show full text]
  • Vermont Geology History Slideshow
    Vermont’s Geologic History May 1st Earth’s Early History GEOLOGIC TIME SCALE The Archean and Proterozoic Eons make up the bulk of Earth’s history Oldest Rocks Found So Far The Formation of Earth: This date comes from rocky meteorites, similar in composition to Earth, that formed ~4.6 Ga (billion years ago). Rocks of Archean Age (3.8–2.5 Ga) occur on every continent. The closest Archean rocks to us are in northern Minnesota. During the Proterozoic Eon (2.5–0.54 Ga) plate tectonic processes similar to those operating today began. Rocks of Proterozoic Age (2.5–0.54 Ga) make up large parts of the continents. In combination with the older Archean rocks, these old rocks make up the core of most continents. Most rocks in New England formed during the Phanerozoic Eon. This is the time when fossils are abundant and pervasive. Stratigraphic Column: Sedimentary rocks occurring in the Champlain Valley are displayed as a vertical stack, oldest at the bottom and youngest at the top. Purple = Shale Blue = Limestone Grey = Dolostone Orange = Sandstone Continuous layers of sedimentary rock consisting of the same type or types of rock are given names, e.g. The “Glens Falls Limestone” or The “Monkton Formation.” You’ve seen some of these rocks on today’s field trip. Vermont Geologic History Dunham dolostone Cheshire Quartz Sandstone: ~530 million years old Gneiss: ~1,100 million years old The oldest rocks in Vermont are gneisses. These rocks are ~1.0–1.3 billion years old. Graph shows the Pressure/Temperature “environments” that different metamorphic rocks form in.
    [Show full text]
  • TIES, MONTANA. by CF BOWEN. Previo
    ANTICLINES IN A PART OF THE MUSSELSHELL VALLEY, MUSSELSHELL, MEAGHER, AND SWEETGRASS COUN­ TIES, MONTANA. By C. F. BOWEN. INTRODUCTION. Previous investigations had shown that the Musselshell Valley, Mont, is an area in which the rocks have undergone considerable folding. On the basis of this information work was begun in June, 1916, to determine the nature and extent of the folds and to make examination as to the possible occurrence of accumulations of oil and gas in them. The work has demonstrated the existence within the area studied of several well-developed anticlines and domes, which seem to offer structurally favorable places for the accumulation of oil and gas. The demonstration of the presence or absence of commercial accumulations of these fluids in the folds has been less conclusive, owing largely to the undeveloped condition of the area. No direct surface indications of oil were observed, but hydrogen sulphide gas escapes from several water seeps in one part of the area. It is also reported that gas was encountered in several wells dug for water. None of these reports could be verified. At the time of the examination drilling operations within the area were confined to two wells. One of these wells, on the Big Elk dome, had reached the Kootenai formation; the other, in the Woman's Pocket anticline, was probably somewhat more than halfway through the Colorado shale. In neither place had oil been discovered. Two other wells, one about 15 miles east of the area and the other about 12 miles south of the central portion of it, had previously been drilled through the Colo­ rado shale without any discovery of oil.
    [Show full text]
  • Structures in the Dog River Fault Zone Between Northfield and Montpelier, Vermont
    University of New Hampshire University of New Hampshire Scholars' Repository New England Intercollegiate Geological NEIGC Trips Excursion Collection 1-1-1987 Structures in the Dog River Fault Zone between Northfield and Montpelier, Vermont Westerman, David S. Follow this and additional works at: https://scholars.unh.edu/neigc_trips Recommended Citation Westerman, David S., "Structures in the Dog River Fault Zone between Northfield and Montpelier, Vermont" (1987). NEIGC Trips. 413. https://scholars.unh.edu/neigc_trips/413 This Text is brought to you for free and open access by the New England Intercollegiate Geological Excursion Collection at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NEIGC Trips by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. A -6 STRUCTURES IN THE DOG RIVER FAULT ZONE BETWEEN NORTHFIELD AND MONTPELIER, VERMONT David S. Westerman Department of Earth Science Norwich University Northfield, Vermont 05663 INTRODUCTION The purposes of this trip are to examine the lithologic and structural character of rocks exposed in the Dog River fault zone (DRFZ) along a traverse between Northfield and Montpelier, Vermont, and in the process to better understand their tectonic significance. The rocks exposed within the DRFZ have long been recognized as significant from a stratigraphic standpoint, but recognition of their structural character is recent. This author has done detailed mapping along only a 10-mile section of the zone, but reconnaissance studies suggest that its structural character is similar north to the Quebec border and south as far as Randolph, Vermont, a distance of about 80 miles.
    [Show full text]
  • The Green Mountain Anticlinorium in the Vicinity of Wilmington and Woodford Vermont
    THE GREEN MOUNTAIN ANTICLINORIUM IN THE VICINITY OF WILMINGTON AND WOODFORD VERMONT By JAMES WILLIAM SKEHAN, S. J. VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, Stale Geologist Published by VERMONT DEVELOPMENT DEPARTMENT MONTPELIER, VERMONT BULLETIN NO. 17 1961 = 0 0. Looking northwest from centra' \Vhitingham, from a point near C in WHITINCHAM IPlate 1 Looking across Sadawga Pond Dome to Haystack Mountain-Searsburg Ridge in the background; Stratton and Glastenburv Mountains in the far distance. Davidson Cemetery in center foreground on Route 8 serves as point of reference. TABLE OF CONTENTS PAGE ABSTRACT 9 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 10 Location ........................ 10 Regional Geologic Setting . . . . . . . . . . . . . . . 13 Previous Geologic Work ................. 15 The Problem ...................... 16 Present Investigation ................... 18 Acknowledgments .................... 19 Topography . . . . . . . . . . . . . . . . . . . . . 19 Rock Exposure ..................... 20 Culture and Accessibility ................. 20 STRATIGRAPHY AND LITHOLOGY ............... 23 General Statement . . . . . . . . . . . . . . . . . . 23 Stratigraphic Nomenclature . . . . . . . . . . . . . . 25 Lithologic Nomenclature ................. 26 Pre-Cambrian Rocks . . . . . . . . . . . . . . . . . 27 General Statement . . . . . . . . . . . . . . . . . 27 Mount Holly Complex ................. 28 Stamford
    [Show full text]
  • Feasibility of Constructing Large Underground Cavities: Volume II
    FEASIBILITY OF CONSTRUCTING LARGE UNDERGROUND CAVITIES THE STABILITY OF DEEP LARGE-SPAN UNDERGROUND OPENINGS TECHNICAL REPORT NO. 3-648 Volume II June 1964 Sponsored by Advanced Research Projects Agency ARPA Order No. 260-62 Amendment No. I U. S. Army Engineer Waterways Experiment Station CORPS OF ENGINEERS Vicksburg, Mississippi FEASIBILITY OF CONSTRUCTING LARGE UNDERGROUND CAVITIES THE STABILITY OF DEEP LARGE-SPAN UNDERGROUND OPENINGS TECHNICAL REPORT NO. 3-648 Volume II June 1964 Sponsored by Advanced Research Projects Agency ARPA Order No. 260-62 Amendment No. I U. S. Army Engineer Waterways Experiment Station CORPS OFENGINEERS Vicksburg, Mississippi ARMY-MRC VICKSBURG, MISS." COLORADO SCHOOL OF MINES RESEARCH FOUNDATION, INC. Golden, Colorado THE STABILITY OF DEEP LARGE SPAN UNDERGROUND OPENINGS Prepared for U. S. Army Engineer Waterways Experiment Station Corps of Engineers Vicksburg, Mississippi Contract No. DA-22-079-eng-334 Approved: CoaU 0,. Free! JaVid Cardard, Jr. / Director of Research Mathematician William H. Jurney Project Mathematician Thomas I. Sharps Geologist Project No. 320327 COLORADO SCHOOL OF MINES RESEARCH FOUNDATION TABLE OF CONTENTS Page Part I. Theoretical Considerations 1 The Spherical Cavity 1 The Elastic Case ...... 1 Introduction . 1 Derivation of Solutions for a Spherical Cavity in Uniform Stress Fields 2 Stresses and Displacements Due to Force Operative at a Point 3 Potential Stresses ...... 9 Field Stresses 11 Notes on Derivation of Solutions B and C . 14 The Plastic Case 20 The Prolate Spheroidal Cavity. ... .38 The Elastic Case 38 Introduction 38 Statement of the Problem 38 Three-Function Approach in Elasticity. ... 39 The Oblate Spheroidal Cavity . 51 The Elastic Case 51 Introduction ^ 51 Openings in Layered Media .
    [Show full text]
  • The Prosper Valley Vignettes
    THE PROSPER VALLEY VIGNETTES - A natural and cultural history of the watershed connecting the Vermont towns of Barnard, Bridgewater, Pomfret and Woodstock – By Corrie Miller, Winter 2006/07 By Corrie Miller, Winter 2006/07 THE PROSPER VALLEY VIGNETTES: At Home in the Valley – An Introduction My love affair with this valley began with a herd of cattle. I had just gotten a job in Woodstock and was driving along Route 12 to look at an apartment in Barnard. At the urging of a flashing yellow light, I slowed my car to a stop in front of a line of cows crossing the road. At the time, I didn’t know that I would take the apartment and travel this corridor every day for a year, eventually becoming familiar with every turn in the river and every slope on the surrounding hills. I also didn’t know that I would return to this valley three years later to do my master’s research, this time leaving my car behind and donning a pair of hiking boots to explore the same stream and hills in greater depth. In that moment as I watched the cows cross the road, I only knew that the valley already felt like home. Gulf Road Cut (left). Barnard, VT. Cut walls of bedrock mark the entrance into the Prosper Valley on Route 12. Photo courtesy of NPS. Gulf Brook Headwaters (right). Barnard, VT. Water drains the surrounding highlands and converges in this cascading stream in the Barnard Gulf, establishing the Gulf Brook. Each morning on my drive south to Woodstock, I crested the hill near the Barnard Gulf and coasted down the steep grade into the basin I now know as the Prosper Valley.
    [Show full text]
  • GY 111 Lecture Notes Folds
    GY 111 Lecture Notes D. Haywick (2008-097) 1 GY 111 Lecture Notes Folds Lecture Goals: A) Types of folds B) Anatomy of a fold (terminology) C) Geological maps 2: folds on maps Reference: Press et al., 2004, Chapter 11; Grotzinger et al., 2007, Chapter 7; p 158-160 GY 111 Lab manual Chapter 6 A) Types of folds As we discussed in class last time, permanent ductile deformation results in folds. There are three basic types of folds (1) anticlines, (2) synclines and (3) monoclines. The adjacent diagram should quickly demonstrate how the basic folds differ from one another, but should you need additional memory stimulation, consider this… …anticlines close up (think vnticline) and synclines open up (think swncline) and monoclines just have one limb. In GY 111, we more or less ignore monoclines, so the rest of this lecture (and all of the Chapter 6 exercises) will be restricted to anticlines and synclines. Once you understand the basic difference between anticlines and synclines, the rest of fold morphology is fairly consistent. Folds can be symmetrical or asymmetrical. The former is when the fold limbs have an equal, but opposite angle of dip. Asymmetrical folds are those where one limb dips at a different amount than the other. Many folds are overturned; both limbs dip in the same direction. Lastly, intensely folded rocks might even be tilted right back to horizontal. These recumbent folds are frequently difficult to recognize in outcrop because the bedding appears horizontal. Close examination will, however, reveal that half of the rocks are upside down (remember the Principle of Superposition!) and that the sedimentary sequence is repeated (see cartoon below).
    [Show full text]
  • Stratigraphie Sequence of the Gile Mountain and Waits River Formations Near Royalton, Vermont
    Stratigraphie sequence of the Gile Mountain and Waits River Formations near Royalton, Vermont GEORGE W. FISHER I jjepartment Qf Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218 PAUL KARABINOS ABSTRACT been controversial. This uncertainty has the Gile Mountain belt near Royalton, The stratigraphie sequence of the Gile given rise to numerous difficulties in inter- Vermont, show that the Gile Mountain Mountain and Waits River Formations, preting the regional structure of eastern Formation is younger than the Waits River two major Silurian-Devonian lithostrati- Vermont. Extensive sequences of compo- Formation, indicating that the belt is a graphic units in eastern Vermont, has long sitionally graded beds at 19 localities across syncline. Canada * • t? * * i * *r ; * T v . Figure 2. Compositionally graded beds of micaceous quartzite rhythmically interbedded with garnet-mica schist in Gile Mountain Formation, 50 m east of contact with Waits River Formation in a Figure 1. Extent of Gile Mountain (Dgm) and Waits River pasture 2.8 km west of Royalton, Vermont (loc. A, Fig. 7). View is (Dwr) Formations in eastern Vermont, adapted from Doll and looking north; grading indicates tops to east, toward Gile others (1961); rectangle indicates area shown in Figure 7, at Royal- Mountain Formation. S! is parallel to bedding; S2 is parallel to pen. ton, Vermont. Pen is 16 cm long. Geological Society of America Bulletin, Part I, v. 91, p. 282-286, 7 figs., May 1980, Doc. no. 00506. 282 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/91/5/282/3418989/i0016-7606-91-5-282.pdf by guest on 27 September 2021 GILÈ MOUNTAIN AND WAITS RIVER FORMATIONS, VERMONT 283 INTRODUCTION vidual graded beds can be traced laterally (see Fig.
    [Show full text]