An Outline of the History of Mathematics in the U

Total Page:16

File Type:pdf, Size:1020Kb

An Outline of the History of Mathematics in the U The Hilbert American Colony This file provides more biographical details on the Hilbert American colony than are given in the Transition_1900 section. Table 1 lists the 13 American students who earned doctorates under the direction of David Hilbert at Göttingen, in chronological order. Only one finished before the turn of the 20th century. One of the next two was Hilbert’s first female student. Rather than describing the lives and careers of the remaining eleven members of Hilbert’s American colony in chronological order, they appear according to their rankings published in the first three editions of American Men of Science (AMoS), which appeared in 1906, 1910 and 1921. In each of the three lists, scientists regarded as the most eminent in their field were asked to rank others in the field, with the top 1000 awarded stars beside their name. Eighty mathematicians were starred, and the numbers in the AMoS column in Table 1 designate the edition in which they were listed (if at all): 1 for 1906, 2 for 1910, and 3 for 1921. Name Year AMoS Legh Wilber Reid 1899 Anne Lucy Bosworth 1900 Edgar Jerome Townsend 1900 3 Earle Raymond Hedrick 1901 1, 2, 3 Charles Albert Noble 1901 Oliver Dimon Kellogg 1902 2, 3 Charles Max Mason 1903 2, 3 Wilhelmus David Westfall 1905 David Clinton Gillespie 1906 William DeWeese Cairns 1907 Arthur Robert Crathorne 1907 Charles Haseman 1907 Wallie Hurwitz 1910 3 Table 1: Hilbert’s American student Legh Wilber Reid (1867-1961) was the only American to complete requirements for a doctorate before 1900. For inexplicable reasons—perhaps due to an unusual first name that does not automatically suggest an American—he is sometimes omitted from listings of Hilbert’s students, but the authoritative biography Hilbert by the late Constance Reid (1918-2010; no relation to Legh) asserts rather plainly, “When Legh Reid, one of his former American students, wrote a book on the subject, Hilbert endorsed it with enthusiasm.”1 Indeed, Reid is an authentic American (born in Alexandria, VA) who obtained a doctorate under Hilbert in 1899. Earlier he had received two bachelor’s degrees, one from Virginia Military Institute in 1887 and another from Johns Hopkins University two years later. He worked 1889-1893 as a human computer for the U.S. Bureau of the Census and the U. S. Coast and Geodetic Survey. Reid was appointed instructor at Princeton University in 1893, a position that allowed him to take graduate courses. He obtained a master’s degree from Princeton in 1896 and then sailed abroad to study in Göttingen. Recall that Princeton faculty members Henry Fine and Henry Thompson had obtained their doctorates under Felix Klein at Leipzig Göttingen in 1885 and 1892, respectively. Reid, however, did his doctoral work under David Hilbert, obtaining his doctorate in 1899 for the dissertation “Tafel der Klassenanzahlen für kubische Zahlkörper.” He published that work in English in 1901 in the American Journal as “A table of class numbers for cubic number fields.” Its major results lean heavily on a technical lemma due to Hilbert’s close friend and later colleague, Hermann Minkowski. Legh Reid spent the rest of his career at Haverford College (all-male until 1980), from his appointment as instructor in 1900 to his retirement as professor emeritus in 1934. His major contribution to mathematics was his book The Elements of the Theory of Algebraic Numbers, published by Macmillan Company in 1910 and containing an introduction by David Hilbert. According to a faculty memorial written about Reid upon his death at age 93, the book “is still used in graduate schools throughout the country although it was published fifty-one years ago.”2 Reid exerted a considerable influence on Haverford students in academics (maintaining the Phi Beta Kappa chapter during his tenure) and athletics (in 1925 he established the Virginia Tennis Cup that was described as “a decided stimulus to tennis interest”3 at the college). Until quite recently, Anne Lucy Bosworth Focke (1868-1907) was a complete stranger. Her omission from most sources on women in American mathematics is somewhat surprising since she was known to be one of Hilbert’s students, but nothing else was known about her family or professional life. The breakthrough occurred only in 2005 when Sarina Wyant, an archivist at the University of Rhode Island (URI), asked a graduate student to search archival material on Bosworth at URI to satisfy a genealogical request. The portrait that follows has been pieced together from that material as well as additional searches. Anne Lucy Bosworth was born in Woonsocket, RI, most likely in 1868. She entered Wellesley College in 1886 and graduated four years later with a B.S. degree. Two other members of that class, Grace Andrews and Clara Bacon, would also earn Ph.D.s in mathematics at Columbia (in 1901) and at Johns Hopkins (1911), respectively. Anne Bosworth then taught in high school for two years. In 1892 she was appointed the first professor of mathematics and physics at the fledgling Rhode Island College of Agriculture and Mechanic Arts (now URI), which had been founded in 1888 under a different name four years earlier with funds from the Morrill Act. Because Bosworth was the sole member of the department and the college offered postsecondary-level courses for the first time, her duties were quite broad, requiring her to develop the curriculum, initiate a book collection, and teach courses in algebra, geometry, calculus, and various physics offerings, including one on electricity, which she called “this still mysterious force.” Bosworth was one of the many college teachers who attended courses during summer quarters at the University of Chicago, enrolling in 1894, 1896, and 1897. In April 1898, she was granted a leave of absence from URI to study abroad. The student yearbook from 1898, The Grist, was dedicated to her and records the students’ warm affection: “To Miss Bosworth, our professor and classmate, we, who honor her ability and value her friendship, respectfully dedicate this volume.” One year later their beloved professor returned home with a doctorate from one of the world’s leading figures. The genesis of the awarding of this degree is rather curious because Bosworth was caught completely unaware. After all, her only intention in going abroad was to attend courses at Göttingen, not to seek a degree. So, in the summer of 1898 she attended a series of lectures on mechanics by Felix Klein in a class that included two Bryn Mawr graduates who had spent the previous year in Göttingen. In the fall, she took courses from Arthur Schoenflies, Issai Schur, and Woldemar Voigt. But it was David Hilbert’s lectures on Euclidean geometry that turned out to be critical. In the spring of 1899 he summoned her to tea and asked when she planned to take her doctoral exams. She replied that she had not even given thought to a dissertation topic and therefore had no such intention. In characteristic Hilbert manner, he blurted out, “But your dissertation is finished!” Apparently, Hilbert judged her solution to a special exercise he had posed in the class to be worthy of a thesis. So much for her plans to travel throughout Europe that summer—instead she devoted her time to writing the dissertation. She took her oral exam that July, a little over one year after arriving in Göttingen. When the degree was formally awarded in 1900 Anne Bosworth became David Hilbert’s first female doctoral student based on the dissertation “Begründung einer vom Parallelenaziome unabhängigen Streckenrechnung.” George Halsted described the thesis as “a beautiful piece of non-Euclidean geometry [that] is, so far as I know, the first feminine contribution to our fascinating subject.”4 We do not know who advised Bosworth to make such a plucky move abroad. We wonder, for instance, if the success of Mary Winston, Isabel Maddison, or Annie MacKinnon with Felix Klein played a role. But we do know that Bosworth joined the AMS in February 1900, the year after she returned from Germany, where she had been escorted by her mother the whole time. More importantly, she had probably met Theodore Moses Focke (1871-1949) on the initial leg of her sojourn to Göttingen. Focke had been a tutor in physics and chemistry at Oberlin College 1893-1896 before traveling abroad to pursue a graduate degree in physics at Göttingen. He received his doctorate in 1898 for a dissertation on the thermal conductivity of various kinds of glass. However, instead of heading back to the U.S. right away, he joined two friends on a 2000- mile bike ride to the Mediterranean coast and back, climbing the Alps on the return trip. Focke and Bosworth most likely met during the time between his return to Göttingen and his departure for the position he had accepted as instructor in mathematics at the Case School of Applied Science in Cleveland (now Case-Western Reserve University). Meanwhile, Bosworth had returned to URI in the fall of 1899. However, she left the college after her marriage to Focke in August 1901. When her resignation became official the next year the school’s president wrote, “It is with regret that the institution loses Miss Bosworth from the faculty. Her conscientious work has been, from the beginning, highly appreciated by every member of the institution.”5 The first six years of marriage reflected the culture of the time and were very productive for both newlyweds, though in quite different ways. Theodore Focke was promoted to assistant professor in 1902, when their first child, Helen, was born. Two sons, Arthur Eldridge Focke and Alfred Bosworth Focke followed in arithmetic progression, in 1904 and 1906, and both would be successful, AE as a metallurgist and AB as a physicist.
Recommended publications
  • Rudi Mathematici
    Rudi Mathematici Y2K Rudi Mathematici Gennaio 2000 52 1 S (1803) Guglielmo LIBRI Carucci dalla Somaja Olimpiadi Matematiche (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE P1 (1912) Boris GNEDENKO 2 D (1822) Rudolf Julius Emmanuel CLAUSIUS Due matematici "A" e "B" si sono inventati una (1905) Lev Genrichovich SHNIRELMAN versione particolarmente complessa del "testa o (1938) Anatoly SAMOILENKO croce": viene scritta alla lavagna una matrice 1 3 L (1917) Yuri Alexeievich MITROPOLSHY quadrata con elementi interi casuali; il gioco (1643) Isaac NEWTON consiste poi nel calcolare il determinante: 4 M (1838) Marie Ennemond Camille JORDAN 5 M Se il determinante e` pari, vince "A". (1871) Federigo ENRIQUES (1871) Gino FANO Se il determinante e` dispari, vince "B". (1807) Jozeph Mitza PETZVAL 6 G (1841) Rudolf STURM La probabilita` che un numero sia pari e` 0.5, (1871) Felix Edouard Justin Emile BOREL 7 V ma... Quali sono le probabilita` di vittoria di "A"? (1907) Raymond Edward Alan Christopher PALEY (1888) Richard COURANT P2 8 S (1924) Paul Moritz COHN (1942) Stephen William HAWKING Dimostrare che qualsiasi numero primo (con (1864) Vladimir Adreievich STELKOV l'eccezione di 2 e 5) ha un'infinita` di multipli 9 D nella forma 11....1 2 10 L (1875) Issai SCHUR (1905) Ruth MOUFANG "Die Energie der Welt ist konstant. Die Entroopie 11 M (1545) Guidobaldo DEL MONTE der Welt strebt einem Maximum zu" (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR Rudolph CLAUSIUS 12 M (1906) Kurt August HIRSCH " I know not what I appear to the world,
    [Show full text]
  • RM Calendar 2017
    Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed.
    [Show full text]
  • Hilbert in Missouri Author(S): David Zitarelli Reviewed Work(S): Source: Mathematics Magazine, Vol
    Hilbert in Missouri Author(s): David Zitarelli Reviewed work(s): Source: Mathematics Magazine, Vol. 84, No. 5 (December 2011), pp. 351-364 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/10.4169/math.mag.84.5.351 . Accessed: 22/01/2012 11:15 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to Mathematics Magazine. http://www.jstor.org VOL. 84, NO. 5, DECEMBER 2011 351 Hilbert in Missouri DAVIDZITARELLI Temple University Philadelphia, PA 19122 [email protected] No, David Hilbert never visited Missouri. In fact, he never crossed the Atlantic. Yet doctoral students he produced at Gottingen¨ played important roles in the development of mathematics during the first quarter of the twentieth century in what was then the southwestern part of the United States, particularly in that state. It is well known that Felix Klein exerted a primary influence on the emerging American mathematical research community at the end of the nineteenth century by mentoring students and educating professors in Germany as well as lecturing in the U.S.
    [Show full text]
  • Appendices Due to Concerns Over the Quality of the Data Collected
    APPENDIX A WSU 2014-19 STRATEGIC PLAN Appendix A: WSU Strategic Plan 2014-15 Strategic Plan 2014-2019 President Elson S. Floyd, Ph.D. Strategic Plan 2014-2019 Introduction The 2014-19 strategic plan builds on the previous five-year plan, recognizing the core values and broad mission of Washington State University. Goals and strategies were developed to achieve significant progress toward WSU’s aspiration of becoming one of the nation’s leading land-grant universities, preeminent in research and discovery, teaching, and engagement. The plan emphasizes the institution’s unique role as an accessible, approachable research institution that provides opportunities to an especially broad array of students while serving Washington state’s broad portfolio of social and economic needs. While providing exceptional leadership in traditional land-grant disciplines, Washington State University adds value as an integrative partner for problem solving due to its innovative focus on applications and its breadth of program excellence. The plan explicitly recognizes the dramatic changes in public funding that have occurred over the duration of the previous strategic plan, along with the need for greater institutional nimbleness, openness, and entrepreneurial activity that diversifies the University’s funding portfolio. In addition, the plan reaffirms WSU’s land-grant mission by focusing greater attention system-wide on increasing access to educational opportunity, responding to the needs of Washington state through research, instruction, and outreach, and contributing to economic development and public policy. While the new plan retains the four key themes of the previous plan, its two central foci include offering a truly transformative educational experience to undergraduate and graduate students and accelerating the development of a preeminent research portfolio.
    [Show full text]
  • Introduction
    Notes Introduction 1 Marie Corelli, or Mary Mackay (1855–1924) was a successful romantic novelist. The quotation is from her pamphlet, Woman or – Suffragette? A Question of National Choice (London: C. Arthur Pearson, 1907). 2 Sally Ledger and Roger Luckhurst, eds, The Fin de Siècle: A Reader in Cultural History c.1880–1900 (Oxford: Oxford University Press, 2000), p. xii. 3 A central text is Steven Shapin and Simon Schaffer, Leviathan and the Air- pump: Hobbes, Boyle and the Experimental Life (Princeton: Princeton University Press, 1985). 4 Otto Mayr, ‘The science-technology relationship’, in Science in Context: Readings in the Sociology of Science, ed. by Barry Barnes and David Edge (Milton Keynes: Open University Press, 1982), pp. 155–163. 5 Nature, November 8 1900, News, p. 28. 6 For example Alison Winter, ‘A calculus of suffering: Ada Lovelace and the bodily constraints on women’s knowledge in early Victorian England’, in Science Incarnate: Historical Embodiments of Natural Knowledge, ed. by Christopher Lawrence and Steven Shapin (Chicago: University of Chicago Press, 1998), pp. 202–239 and Margaret Wertheim, Pythagoras’ Trousers: God, Physics and the Gender Wars (London: Fourth Estate, 1997). 7 Carl B. Boyer, A History of Mathematics (New York: Wiley, 1968), pp. 649–650. 8 For the social construction of mathematics see David Bloor, ‘Formal and informal thought’, in Science in Context: Readings in the Sociology of Science, ed. by Barry Barnes and David Edge (Milton Keynes: Open University Press, 1982), pp. 117–124; Math Worlds: Philosophical and Social Studies of Mathematics and Mathematics Education, ed. by Sal Restivo, Jean Paul Bendegem and Roland Fisher (Albany: State University of New York Press, 1993).
    [Show full text]
  • S O C Z'atl'o N .Fo R Ome N I. Matics
    s o c z'atl'on .fo r ome n i. matics Volume 13, Number 5 NEWSLETTE~ September-October 1983 **********--******************--*********** DU~| DUES! DUESI DUES! DUES| DUES| DuESI DDES| DUESI DUESI DuESI Du~| Dues are due October lo Please send them in along with your reminder postcard. Encourage your institution to become an institutiorml member (see the president Os report for more information). Consider becoming a contributing member yourself. MaRE ADDF~S CHANGESI AWMOs address is now A~, P.O. Box 178, Wellesley College, Wellesley, MA 02161. You may have noticed last issue that our president's address has also changed. See the end of the president's report for the new one. ******************************************* PRESIDENT iS REPORT Chan ~ institutional membershi So This year A~ is offering institutions the oppo ty spo~nsormemberships for students through a new category of membership called "Sponsoring Institutional Membership". For an extra $20 per year~ an institu- tion may name up to five (or for ~O, up to ten) students to become members of A~ and to receive this Newsletter. Current institutional members should have already received information about our new programj and prospective institutional members will hear from us soon. The purpose of the program is to introduce interested students to ANM through their departments. Boston Area grant. This stammer A~4 has been sponsoring a program which pays tuition for eligible women high school mathematics teachers who want to take courses in the computer language Pascal. The program has been made possible by a grant of $5000 from Raytheon. Eleanor Palais is chair of the A~ ~Ymdraising Committee.
    [Show full text]
  • The Newsmagazine of the Mathematical Association of America Feb/March 2010 | Volume 30 Number 1
    MAA FOCUS The Newsmagazine of the Mathematical Association of America Feb/March 2010 | Volume 30 Number 1 WHAT’S INSIDE 14 ...........Prizes and Awards at the 2010 Joint Mathematics Meetings 24 ........... The Shape of Collaboration: Mathematics, Architecture, and Art 27 ........... Meeting the Challenge of High School Calculus 32 ...........How I Use Comics to Teach Elementary Statistics 4(( -6*<: is published by the Mathematical Association of America in January, February/March, 4(( -6*<: April/May, August/September, October/ November, and December/January. (GLWRU Fernando Gouvêa, Colby College =VS\TL c 0ZZ\L [email protected] 0DQDJLQJ (GLWRU Carol Baxter, MAA 4H[OLTH[PJZ (^HYLULZZ 4VU[O · ¹4H[OLTH[PJZ HUK :WVY[Z¹ [email protected] (TLYPJHU 4H[OLTH[PJHS 4VU[OS` ,KP[VY :LHYJO 6HQLRU :ULWHU Harry Waldman, MAA ;OL 1VPU[ 4H[OLTH[PJZ 4LL[PUNZ [email protected] )` -LYUHUKV 8 .V\]vH 3OHDVH DGGUHVV DGYHUWLVLQJ LQTXLULHV WR 144 :OVY[ ;HRLZ [email protected] )` -LYUHUKV 8 .V\]vH 3UHVLGHQW David Bressoud 1VPU[ 4H[OLTH[PJZ 4LL[PUNZ PU 7OV[VZ )LUVW 9LFH 3UHVLGHQW Elizabeth Mayfi eld 9LWVY[ VM [OL -VYTLY :LJYL[HY` 6HFRQG 9LFH 3UHVLGHQW Daniel J. Teague )` 4HY[OH :PLNLS 6HFUHWDU\ Barbara T. Faires 4HY[OH :PLNLS :H`Z -HYL^LSS )` 3H\YH 4J/\NO $VVRFLDWH 6HFUHWDU\ Gerard Venema ,_WLYPLUJPUN [OL 1VPU[ 4H[OLTH[PJZ 4LL[PUNZ 7UHDVXUHU John W. Kenelly )` )YPL -PULNVSK ([HFXWLYH 'LUHFWRU Tina H. Straley 4H[OLTH[PJZ HUK (Y[ H[ 144 'LUHFWRU RI 3XEOLFDWLRQV IRU -RXUQDOV DQG )` 3H\YH 4J/\NO &RPPXQLFDWLRQV Ivars Peterson (U <UKLYNYHK\H[L»Z ,_WLYPLUJL H[ [OL 1VPU[ 4H[OLTH[PJZ 4LL[PUNZ 0$$ )2&86 (GLWRULDO %RDUG Donald )` 5PJOVSHZ 5L\THUU*O\U J.
    [Show full text]
  • Notices of the American Mathematical Society
    Society c :s ~ CALENDAR OF AMS MEETINGS THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meet­ ings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meeting. Abstracts should be submitted on special forms which are available in many depart­ ments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for abstracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meet· ing announcement and the Jist of organizers of special sessions. MEETING ABSTRACT NUMBER DATE PLACE DEADLINE ISSUE 779 August 18-22, 1980 Ann Arbor,
    [Show full text]
  • Meetings of the MAA Ken Ross and Jim Tattersall
    Meetings of the MAA Ken Ross and Jim Tattersall MEETINGS 1915-1928 “A Call for a Meeting to Organize a New National Mathematical Association” was DisseminateD to subscribers of the American Mathematical Monthly and other interesteD parties. A subsequent petition to the BoarD of EDitors of the Monthly containeD the names of 446 proponents of forming the association. The first meeting of the Association consisteD of organizational Discussions helD on December 30 and December 31, 1915, on the Ohio State University campus. 104 future members attendeD. A three-hour meeting of the “committee of the whole” on December 30 consiDereD tentative Drafts of the MAA constitution which was aDopteD the morning of December 31, with Details left to a committee. The constitution was publisheD in the January 1916 issue of The American Mathematical Monthly, official journal of The Mathematical Association of America. Following the business meeting, L. C. Karpinski gave an hour aDDress on “The Story of Algebra.” The Charter membership included 52 institutions and 1045 inDiviDuals, incluDing six members from China, two from EnglanD, anD one each from InDia, Italy, South Africa, anD Turkey. Except for the very first summer meeting in September 1916, at the Massachusetts Institute of Technology (M.I.T.) in CambriDge, Massachusetts, all national summer anD winter meetings discussed in this article were helD jointly with the AMS anD many were joint with the AAAS (American Association for the Advancement of Science) as well. That year the school haD been relocateD from the Back Bay area of Boston to a mile-long strip along the CambriDge siDe of the Charles River.
    [Show full text]
  • January 2001 Prizes and Awards
    January 2001 Prizes and Awards 4:25 p.m., Thursday, January 11, 2001 PROGRAM OPENING REMARKS Thomas F. Banchoff, President Mathematical Association of America LEROY P. S TEELE PRIZE FOR MATHEMATICAL EXPOSITION American Mathematical Society DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY TEACHING OF MATHEMATICS Mathematical Association of America RUTH LYTTLE SATTER PRIZE American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY AN UNDERGRADUATE STUDENT American Mathematical Society Mathematical Association of America Society for Industrial and Applied Mathematics CHAUVENET PRIZE Mathematical Association of America LEVI L. CONANT PRIZE American Mathematical Society ALICE T. S CHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN Association for Women in Mathematics LEROY P. S TEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH American Mathematical Society LEONARD M. AND ELEANOR B. BLUMENTHAL AWARD FOR THE ADVANCEMENT OF RESEARCH IN PURE MATHEMATICS Leonard M. and Eleanor B. Blumenthal Trust for the Advancement of Mathematics COMMUNICATIONS AWARD Joint Policy Board for Mathematics ALBERT LEON WHITEMAN MEMORIAL PRIZE American Mathematical Society CERTIFICATES OF MERITORIOUS SERVICE Mathematical Association of America LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION Association for Women in Mathematics OSWALD VEBLEN PRIZE IN GEOMETRY American Mathematical Society YUEH-GIN GUNG AND DR. CHARLES Y. H U AWARD FOR DISTINGUISHED SERVICE TO MATHEMATICS Mathematical Association of America LEROY P. S TEELE PRIZE FOR LIFETIME ACHIEVEMENT American Mathematical Society CLOSING REMARKS Felix E. Browder, President American Mathematical Society M THE ATI A CA M L ΤΡΗΤΟΣ ΜΗ N ΕΙΣΙΤΩ S A O C C I I R E E T ΑΓΕΩΜΕ Y M A F O 8 U 88 AMERICAN MATHEMATICAL SOCIETY NDED 1 LEROY P.
    [Show full text]
  • RM Calendar 2015
    Rudi Mathematici x4–8228 x3+25585534 x2–34806653332 x+17895175197705=0 www.rudimathematici.com 1 G (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 V (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 S (1917) Yuri Alexeievich Mitropolsky Gennaio 4 D (1643) Isaac Newton RM071 2 5 L (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2000, A1 (1871) Federigo Enriques RM084 Sia A un numero reale positivo. Quali sono i possibili (1871) Gino Fano ∞ 6 M (1807) Jozeph Mitza Petzval valori di x , se x0, x1, … sono numeri positivi per cui ∑ i2 (1841) Rudolf Sturm =i 0 7 M (1871) Felix Edouard Justin Emile Borel ∞ ? (1907) Raymond Edward Alan Christopher Paley ∑ i A=x 8 G (1888) Richard Courant RM156 =i 0 (1924) Paul Moritz Cohn (1942) Stephen William Hawking Barzellette per élite 9 V (1864) Vladimir Adreievich Steklov È difficile fare giochi di parole con i cleptomani. (1915) Mollie Orshansky Prendono tutto alla lettera . 10 S (1875) Issai Schur (1905) Ruth Moufang 11 D (1545) Guidobaldo del Monte RM120 Titoli da un mondo matematico (1707) Vincenzo Riccati Con il passaggio ai nuovi test, le valutazioni crollano. (1734) Achille Pierre Dionis du Sejour Mondo matematico: Con il passaggio ai nuovi test, i 3 12 L (1906) Kurt August Hirsch risultati non sono più confrontabili. (1915) Herbert Ellis Robbins RM156 13 M (1864) Wilhelm Karl Werner Otto Fritz Franz Wien (1876) Luther Pfahler Eisenhart Alice rise: “È inutile che ci provi”, disse; “non si può (1876) Erhard Schmidt credere a una cosa impossibile”.
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici x4-8188x3+25139294x2-34301407052x+17549638999785=0 Rudi Mathematici January 53 1 S (1803) Guglielmo LIBRI Carucci dalla Sommaja Putnam 1999 - A1 (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Find polynomials f(x), g(x), and h(x) _, if they exist, (1912) Boris GNEDENKO such that for all x 2 S (1822) Rudolf Julius Emmanuel CLAUSIUS f (x) − g(x) + h(x) = (1905) Lev Genrichovich SHNIRELMAN (1938) Anatoly SAMOILENKO −1 if x < −1 1 3 M (1917) Yuri Alexeievich MITROPOLSHY 4 T (1643) Isaac NEWTON = 3x + 2 if −1 ≤ x ≤ 0 5 W (1838) Marie Ennemond Camille JORDAN − + > (1871) Federigo ENRIQUES 2x 2 if x 0 (1871) Gino FANO (1807) Jozeph Mitza PETZVAL 6 T Publish or Perish (1841) Rudolf STURM "Gustatory responses of pigs to various natural (1871) Felix Edouard Justin Emile BOREL 7 F (1907) Raymond Edward Alan Christopher PALEY and artificial compounds known to be sweet in (1888) Richard COURANT man," D. Glaser, M. Wanner, J.M. Tinti, and 8 S (1924) Paul Moritz COHN C. Nofre, Food Chemistry, vol. 68, no. 4, (1942) Stephen William HAWKING January 10, 2000, pp. 375-85. (1864) Vladimir Adreievich STELKOV 9 S Murphy's Laws of Math 2 10 M (1875) Issai SCHUR (1905) Ruth MOUFANG When you solve a problem, it always helps to (1545) Guidobaldo DEL MONTE 11 T know the answer. (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR The latest authors, like the most ancient, strove to subordinate the phenomena of nature to the laws of (1906) Kurt August HIRSCH 12 W mathematics.
    [Show full text]