Role of the LPA2 Receptor in Protecting Against Apoptosis Shuyu E University of Tennessee Health Science Center

Total Page:16

File Type:pdf, Size:1020Kb

Role of the LPA2 Receptor in Protecting Against Apoptosis Shuyu E University of Tennessee Health Science Center University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2008 Role of the LPA2 Receptor in Protecting Against Apoptosis Shuyu E University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Physiology Commons Recommended Citation E, Shuyu , "Role of the LPA2 Receptor in Protecting Against Apoptosis" (2008). Theses and Dissertations (ETD). Paper 336. http://dx.doi.org/10.21007/etd.cghs.2008.0079. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Role of the LPA2 Receptor in Protecting Against Apoptosis Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Physiology Research Advisor Gabor Tigyi, M.D., Ph.D. Committee Polly Hofmann, Ph.D. Anjaparavanda P. Naren, Ph.D. Abby L. Parrill, Ph.D. Christopher Waters, Ph.D. DOI 10.21007/etd.cghs.2008.0079 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/336 ROLE OF THE LPA2 RECEPTOR IN PROTECTING AGAINST APOPTOSIS A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Shuyu E December, 2008 Chapter 2 © 2007 by the American Gastroenterological Association Institute. All other material © 2008 by Shuyu E. ii DEDICATION This dissertation is dedicated to my husband Xu Liu for his endless love and support. and to my children Eilene Liu Nolan Liu iii ACKNOWLEDGEMENTS I am greatly indebted to my supervisor, Dr. Gabor Tigyi, who accepted me into his lab while I was relocating two years ago. The training in his lab greatly benefited me in both science and my personal life. Being exposed to his multi-dimensional lab and broad research capability, I was trained to have an open mind. During this time I regained my confidence, which is critical for my success. In retrospect, I cherished the two years spent in his lab. I am also grateful to all the members in his lab: Billy Walentine, Yuko Fujiwara, Tamotsu Tsukahara, Ryoko Tsukahara, Alyssa Bolen, Daniel Osborne, Huazhang Guo and Dianna Liu. In such a united family, I received support anytime I needed it. This environment made it enjoyable to work everyday. Also, I want to thank Dr. Wenlin Deng for invaluable help in apoptosis studies and Dr. Junming Yue for lentiviral transduction and making stable MEFs. In particular, I want to thank Dr. Fannie Lin who was the collaborator of my project. It was an exciting and inspiring experience to work with her. She is the most energetic, enthusiastic, persevering and intelligent scientist I have ever known. I would like to acknowledge that Fig.3.3, Fig.3.4, Fig.3.5, Fig.3.6, Fig3.8, Fig3.9, Fig3.12, Fig3.16, Fig.3.19, and Fig.3.21 were done in collaboration with her. Also thanks go to Yun-Ju Lai, and Chen-Shan Chen from her lab for providing us the constructs and help in some of the CoIP experiments. I acknowledge Dr. Akio Kihara for his work on the palmitoylation study. I would also like to sincerely thank the other committee members: Dr. Hofmann, Dr. Waters, Dr. Naren, and Dr. Parrill for always being understanding and providing valuable and critical suggestions. I would also like to thank Dr. Schneider, Dr. Watsky, Dr. Hofmann, and Dr. Leffler, whose support encouraged me to continue my Ph.D. in spite of my setback that forced me to change mentors after four years and resulted in a lack of confidence. Also, I could not forget the help from Dr. Johnson’s lab members: Dr. Shi Jin and Dr. Ramsey Ray. I also want to express my gratitude to my parents, mother-in-law, and sister-in- law for their support and helping me care for my daughter, which allowed me time to concentrate on my work. I greatly appreciate the support from Gerwin Scholarship. I appreciate the permission of reuse of the illustrations from Radiation Research Society and Nature Publishing Group. iv ABSTRACT Lysophosphatidic acid (LPA) is a naturally occurring lipid mediator. It exists abundantly in biological fluids such as serum, saliva, follicular fluid, seminal fluid and malignant effusions and induces a vast array of biological responses affecting cell growth, survival, differentiation, migration and morphology. We recently identified lysophosphatidic acid (LPA) as a potent antiapoptotic agent for the intestinal epithelium. Based on computational modeling octadecenyl thiophosphate (OTP) was synthesized: a novel rationally designed, metabolically stabilized LPA mimic. OTP was more efficacious than LPA in reducing !-irradiation-, camptothecin-, or TNF- "//cycloheximide-induced apoptosis and caspase 3, 8 and 9 activity in the IEC-6 cell line. The OTP- and LPA-elicited antiapoptotic effects were completely blocked by the MEK inhibitor PD98059 and the PI3K inhibitor LY294002. Pertussis toxin partially abolished OTP-induced ERK1/2 and apoptotic protection. In RH7777 cells lacking LPA receptors, OTP selectively protected LPA2 but not LPA1 and LPA3 transfectants. In C57BL/6 and LPA1 knockout mice exposed to 15 Gy !-irradiation, orally applied OTP reduced the number of apoptotic bodies and activated caspase 3 positive cells but was ineffective in LPA2 knockouts. OTP, with higher efficacy than LPA, enhanced intestinal crypt survival in C57BL/6 mice but had no effect in LPA2 knockouts. Intraperitonealy administered OTP reduced death caused by LD100/30 radiation by 50%. Our data indicate that OTP is a highly effective antiapoptotic agent that engages similar prosurvival pathways to LPA through the LPA2 receptor subtype. Unique sequence motifs in the LPA2 carboxyl-terminal (CT) enable it to form macromolecular complexes with PDZ and LIM domain proteins, which link it to G protein-independent signaling networks. Using deletion and site-specific mutagenesis, we mapped out C311xxC314 motif of LPA2-CT that is required for interaction with LIM domain proteins thyroid hormone receptor interactive protein 6 (TRIP6) and the proapoptotic molecule Siva-1 in vitro and in vivo. Palmitoylation that occurs on these cysteine residues, however, did not affect the association with TRIP6 or Siva-1. The L351A mutation in the PDZ motif weakened but did not abolish interaction with LIM proteins. Alanine mutation of the LIM binding motif or PDZ domain binding motif attenuated LPA-induced activation of the prosurvival ERK1/2 and Akt pathways in mouse embryonic fibroblasts (MEF) derived from LPA1 and LPA2 double knockout mice and reconstituted with mutants of LPA2. Neither of these mutations alone nor in combination had a detectable effect on G-protein-linked activation of Ca2+ mobilization. Triple alanine mutations modifying residues Cys311, Cys314, and Leu351 abolished the antiapoptotic effect of LPA. Together, these findings suggest the macromolecular complex formed between LPA2, TRIP6/Siva-1, and PDZ domain proteins plays an important role in mediating the anti-apoptotic effects of LPA2. v TABLE OF CONTENTS CHAPTER 1. GENERAL INTRODUCTION................................................................1 1.1 LPA RECEPTOR AND SIGNALING .................................................................1 1.1.1 LPA Receptors and Signaling.................................................................1 1.1.2 OTP: A Rationally Designed LPA Mimic...............................................2 1.2 APOPTOSIS IN SMALL INTESTINE EPITHELIUM.......................................3 1.2.1 Intrinsic (Mitochondria-mediated) Apoptotic Pathway .........................3 1.2.2 Extrinsic (Death Receptor-mediated) Apoptotic Pathway .....................6 1.2.3 Physiology of Small Intestinal Stem Cells..............................................6 1.2.4 Radiobiology in Mouse Small Intestinal Stem Cells..............................8 1.3 LIM AND PDZ DOMAIN PROTEINS INTERACTING WITH LPA2 C- TERMINUS..........................................................................................................9 1.3.1 PDZ Domain Proteins ...........................................................................11 1.3.2 LIM Domain Proteins ...........................................................................11 CHAPTER 2. THE LYSOPHOSPHATIDIC ACID TYPE 2 RECEPTOR IS REQUIRED FOR PROTECTING AGAINST RADIATION-INDUCED INTESTINAL INJURY ..................................................................................................15 2.1 INTRODUCTION ..............................................................................................15 2.2 MATERIALS AND METHODS........................................................................17 2.2.1 Reagents.................................................................................................17 2.2.2 Computational Modeling.......................................................................18 2.2.3 Radiolabeling of OTP............................................................................18 2.2.4 Determining OTP Absorption from the Gut.........................................18 2.2.5 Assaying OTP Metabolism by Pancreatic Lipase and Lipid Phosphate Phosphatase 1 (LPP1).........................................................20 2.2.6 Cell Culture and Induction of Apoptosis In Vitro................................20
Recommended publications
  • Lysophosphatidic Acid and Its Receptors: Pharmacology and Therapeutic Potential in Atherosclerosis and Vascular Disease
    JPT-107404; No of Pages 13 Pharmacology & Therapeutics xxx (2019) xxx Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease Ying Zhou a, Peter J. Little a,b, Hang T. Ta a,c, Suowen Xu d, Danielle Kamato a,b,⁎ a School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia b Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China c Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia d Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA article info abstract Available online xxxx Lysophosphatidic acid (LPA) is a collective name for a set of bioactive lipid species. Via six widely distributed G protein-coupled receptors (GPCRs), LPA elicits a plethora of biological responses, contributing to inflammation, Keywords: thrombosis and atherosclerosis. There have recently been considerable advances in GPCR signaling especially Lysophosphatidic acid recognition of the extended role for GPCR transactivation of tyrosine and serine/threonine kinase growth factor G-protein coupled receptors receptors. This review covers LPA signaling pathways in the light of new information. The use of transgenic and Atherosclerosis gene knockout animals, gene manipulated cells, pharmacological LPA receptor agonists and antagonists have Gproteins fi β-arrestins provided many insights into the biological signi cance of LPA and individual LPA receptors in the progression Transactivation of atherosclerosis and vascular diseases.
    [Show full text]
  • The Autotaxin–Lysophosphatidic Acid Axis Modulates Histone Acetylation and Gene Expression During Oligodendrocyte Differentiation
    The Journal of Neuroscience, August 12, 2015 • 35(32):11399–11414 • 11399 Cellular/Molecular The Autotaxin–Lysophosphatidic Acid Axis Modulates Histone Acetylation and Gene Expression during Oligodendrocyte Differentiation Natalie A. Wheeler,1 James A. Lister,2 and Babette Fuss1 Departments of 1Anatomy and Neurobiology and 2Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298 During development, oligodendrocytes (OLGs), the myelinating cells of the CNS, undergo a stepwise progression during which OLG progenitors, specified from neural stem/progenitor cells, differentiate into fully mature myelinating OLGs. This progression along the OLG lineage is characterized by well synchronized changes in morphology and gene expression patterns. The latter have been found to be particularly critical during the early stages of the lineage, and they have been well described to be regulated by epigenetic mechanisms, especially by the activity of the histone deacetylases HDAC1 and HDAC2. The data presented here identify the extracellular factor autotaxin (ATX) as a novel upstream signal modulating HDAC1/2 activity and gene expression in cells of the OLG lineage. Using the zebrafish as an in vivo model system as well as rodent primary OLG cultures, this functional property of ATX was found to be mediated by its lysophospholipase D (lysoPLD) activity, which has been well characterized to generate the lipid signaling molecule lysophosphatidic acid (LPA). More specifically, the lysoPLD activity of ATX was found to modulate HDAC1/2 regulated gene expression during a time window coinciding with the transition from OLG progenitor to early differentiating OLG. In contrast, HDAC1/2 regulated gene expression during the transition from neural stem/progenitor to OLG progenitor appeared unaffected by ATX and its lysoPLD activity.
    [Show full text]
  • Antibody Response Cell Antigen Receptor Signaling And
    Lysophosphatidic Acid Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response This information is current as Jiancheng Hu, Shannon K. Oda, Kristin Shotts, Erin E. of September 24, 2021. Donovan, Pamela Strauch, Lindsey M. Pujanauski, Francisco Victorino, Amin Al-Shami, Yuko Fujiwara, Gabor Tigyi, Tamas Oravecz, Roberta Pelanda and Raul M. Torres J Immunol 2014; 193:85-95; Prepublished online 2 June 2014; Downloaded from doi: 10.4049/jimmunol.1300429 http://www.jimmunol.org/content/193/1/85 Supplementary http://www.jimmunol.org/content/suppl/2014/05/31/jimmunol.130042 http://www.jimmunol.org/ Material 9.DCSupplemental References This article cites 63 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/193/1/85.full#ref-list-1 Why The JI? Submit online. by guest on September 24, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Lysophosphatidic Acid Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response Jiancheng Hu,*,1,2 Shannon K.
    [Show full text]
  • Survival-Associated Metabolic Genes in Colon and Rectal Cancers
    Survival-associated Metabolic Genes in Colon and Rectal Cancers Yanfen Cui ( [email protected] ) Tianjin Cancer Institute: Tianjin Tumor Hospital https://orcid.org/0000-0001-7760-7503 Baoai Han tianjin tumor hospital He Zhang tianjin tumor hospital Zhiyong Wang tianjin tumor hospital Hui Liu tianjin tumor hospital Fei Zhang tianjin tumor hospital Ruifang Niu tianjin tumor hospital Research Keywords: colon cancer, rectal cancer, prognosis, metabolism Posted Date: December 4th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-117478/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/42 Abstract Background Uncontrolled proliferation is the most prominent biological feature of tumors. To rapidly proliferate and maximize the use of available nutrients, tumor cells regulate their metabolic behavior and the expression of metabolism-related genes (MRGs). In this study, we aimed to construct prognosis models for colon and rectal cancers, using MRGs to indicate the prognoses of patients. Methods We rst acquired the gene expression proles of colon and rectal cancers from the TCGA and GEO database, and utilized univariate Cox analysis, lasso regression, and multivariable cox analysis to identify MRGs for risk models. Then GSEA and KEGG functional enrichment analysis were utilized to identify the metabolism pathway of MRGs in the risk models and analyzed these genes comprehensively using GSCALite. Results Eight genes (CPT1C, PLCB2, PLA2G2D, GAMT, ENPP2, PIP4K2B, GPX3, and GSR) in the colon cancer risk model and six genes (TDO2, PKLR, GAMT, EARS2, ACO1, and WAS) in the rectal cancer risk model were identied successfully. Multivariate Cox analysis indicated that the models predicted overall survival accurately and independently for patients with colon or rectal cancer.
    [Show full text]
  • Phosphodiesterase (PDE)
    Phosphodiesterase (PDE) Phosphodiesterase (PDE) is any enzyme that breaks a phosphodiester bond. Usually, people speaking of phosphodiesterase are referring to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases. The cyclic nucleotide phosphodiesterases comprise a group of enzymes that degrade the phosphodiester bond in the second messenger molecules cAMP and cGMP. They regulate the localization, duration, and amplitude of cyclic nucleotide signaling within subcellular domains. PDEs are therefore important regulators ofsignal transduction mediated by these second messenger molecules. www.MedChemExpress.com 1 Phosphodiesterase (PDE) Inhibitors, Activators & Modulators (+)-Medioresinol Di-O-β-D-glucopyranoside (R)-(-)-Rolipram Cat. No.: HY-N8209 ((R)-Rolipram; (-)-Rolipram) Cat. No.: HY-16900A (+)-Medioresinol Di-O-β-D-glucopyranoside is a (R)-(-)-Rolipram is the R-enantiomer of Rolipram. lignan glucoside with strong inhibitory activity Rolipram is a selective inhibitor of of 3', 5'-cyclic monophosphate (cyclic AMP) phosphodiesterases PDE4 with IC50 of 3 nM, 130 nM phosphodiesterase. and 240 nM for PDE4A, PDE4B, and PDE4D, respectively. Purity: >98% Purity: 99.91% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 10 mg, 50 mg (R)-DNMDP (S)-(+)-Rolipram Cat. No.: HY-122751 ((+)-Rolipram; (S)-Rolipram) Cat. No.: HY-B0392 (R)-DNMDP is a potent and selective cancer cell (S)-(+)-Rolipram ((+)-Rolipram) is a cyclic cytotoxic agent. (R)-DNMDP, the R-form of DNMDP, AMP(cAMP)-specific phosphodiesterase (PDE) binds PDE3A directly.
    [Show full text]
  • Macrophages/Microglia in the Glioblastoma Tumor Microenvironment
    International Journal of Molecular Sciences Review Macrophages/Microglia in the Glioblastoma Tumor Microenvironment Jun Ma, Clark C. Chen * and Ming Li * Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] * Correspondence: [email protected] (C.C.C.); [email protected] (M.L.) Abstract: The complex interaction between glioblastoma and its microenvironment has been rec- ognized for decades. Among various immune profiles, the major population is tumor-associated macrophage, with microglia as its localized homolog. The present definition of such myeloid cells is based on a series of cell markers. These good sentinel cells experience significant changes, facilitat- ing glioblastoma development and protecting it from therapeutic treatments. Huge, complicated mechanisms are involved during the overall processes. A lot of effort has been dedicated to crack the mysterious codes in macrophage/microglia recruiting, activating, reprogramming, and functioning. We have made our path. With more and more key factors identified, a lot of new therapeutic methods could be explored to break the ominous loop, to enhance tumor sensitivity to treatments, and to improve the prognosis of glioblastoma patients. However, it might be a synergistic system rather than a series of clear, stepwise events. There are still significant challenges before the light of truth can shine onto the field. Here, we summarize recent advances in this field, reviewing the path we have been on and where we are now. Keywords: glioblastoma; tumor microenvironment; glioblastoma-associated macrophages/microglia; macrophage; microglia Citation: Ma, J.; Chen, C.C.; Li, M. Macrophages/Microglia in the Glioblastoma Tumor Int. J. Mol. Sci. Microenvironment. 1. Glioblastoma Associated Macrophages/Microglia 2021, 22, 5775.
    [Show full text]
  • Phosphoproteomics Identify Arachidonic-Acid-Regulated Signal Transduction Pathways Modulating Macrophage Functions with Implications for Ovarian Cancer
    Phosphoproteomics identify arachidonic-acid-regulated signal transduction pathways modulating macrophage functions with implications for ovarian cancer Raimund Dietze1¶, Mohamad K. Hammoud1¶, María Gómez-Serrano1, Annika Unger1, Tim Bieringer1§, Florian Finkernagel1, Anna M. Sokol2,3, Andrea Nist4, Thorsten Stiewe4, Silke Reinartz1, Viviane Ponath5, Christian Preußer5, Elke Pogge von Strandmann5, Sabine Müller- Brüsselbach1, Johannes Graumann2,3 and Rolf Müller1* 1Tranlational OncologY Group, Center for Tumor BiologY and Immunology, Philipps University, Marburg, GermanY 2Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, GermanY 3The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, Bad Nauheim, GermanY 4Genomics Core Facility, Philipps UniversitY, Marburg, GermanY 5Institute for Tumor Immunology, Philipps University, Marburg, GermanY §Present address: Hochschule Landshut, 84036 Landshut, GermanY ¶Equal contribution *Corresponding author: Rolf Müller, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, GermanY. Email: [email protected]. Phone: +49 6421 2866236. Running title: Signaling pathways of arachidonic acid in macrophages 1 Abstract Arachidonic acid (AA) is a polYunsaturated fatty acid present at high concentrations in the ovarian cancer (OC) microenvironment and associated with a poor clinical outcome. In the present studY, we have unraveled a potential link between AA and macrophage functions. Methods: AA-triggered signal transduction was studied in primary monocyte-derived macrophages (MDMs) by phosphoproteomics, transcriptional profiling, measurement of intracellular Ca2+ accumulation and reactive oxygen species production in conjunction with bioinformatic analyses. Functional effects were investigated by actin filament staining, quantification of macropinocytosis and analysis of extracellular vesicle release.
    [Show full text]
  • Lysophosphatidic Acids, Cyclic Phosphatidic Acids and Autotaxin As Promissing Targets in Therapies of Cancer and Other Diseases
    Vol. 55 No. 2/2008, 227–240 on-line at: www.actabp.pl Review Lysophosphatidic acids, cyclic phosphatidic acids and autotaxin as promissing targets in therapies of cancer and other diseases Edyta Gendaszewska-Darmach Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Łódź, Łódź, Poland Received: 17 March, 2008; revised: 20 May, 2008; accepted: 30 May, 2008 available on-line: 14 June, 2008 Lysophospholipids have long been recognized as membrane phospholipid metabolites, but only recently lysophosphatidic acids (LPA) have been demonstrated to act on specific G protein-cou- pled receptors. The widespread expression of LPA receptors and coupling to several classes of G proteins allow LPA-dependent regulation of numerous processes, such as vascular development, neurogenesis, wound healing, immunity, and cancerogenesis. Lysophosphatidic acids have been found to induce many of the hallmarks of cancer including cellular processes such as prolifera- tion, survival, migration, invasion, and neovascularization. Furthermore, autotaxin (ATX), the main enzyme converting lysophosphatidylcholine into LPA was identified as a tumor cell auto- crine motility factor. On the other hand, cyclic phosphatidic acids (naturally occurring analogs of LPA generated by ATX) have anti-proliferative activity and inhibit tumor cell invasion and metastasis. Research achievements of the past decade suggest implementation of preclinical and clinical evaluation of LPA and its analogs, LPA receptors, as well as autotaxin as potential thera- peutic targets. Keywords: autotaxin/NPP2, lysophosphatidic acid, cyclic phosphatidic acid, G protein-coupled receptors INTRODUCTION small amounts of LPA associated with membrane biosynthesis, some cellular sources (such as activat- Lysophosphatidic acids (LPA; 1-acyl-2-hy- ed platelets) can produce significant amounts of ex- droxy-sn-glycero-3-phosphates) (Fig.
    [Show full text]
  • Inhibition of Autotaxin with GLPG1690 Increases the Efficacy of Radiotherapy and Chemotherapy in a Mouse Model of Breast Cancer
    Published OnlineFirst September 23, 2019; DOI: 10.1158/1535-7163.MCT-19-0386 MOLECULAR CANCER THERAPEUTICS | SMALL MOLECULE THERAPEUTICS Inhibition of Autotaxin with GLPG1690 Increases the Efficacy of Radiotherapy and Chemotherapy in a Mouse Model of Breast Cancer Xiaoyun Tang1,2, Melinda Wuest2,3, Matthew G.K. Benesch1,2,4, Jennifer Dufour3, YuanYuan Zhao5, Jonathan M. Curtis5, Alain Monjardet6, Bertrand Heckmann6, David Murray2,7, Frank Wuest2,3, and David N. Brindley1,2 ABSTRACT ◥ Autotaxin catalyzes the formation of lysophosphatidic acid, However, GLPG1690 decreased the uptake of 30-deoxy-30-[18F]- whichstimulatestumorgrowthandmetastasisanddecreasesthe fluorothymidinebytumorsandthepercentageofKi67-positive effectiveness of cancer therapies. In breast cancer, autotaxin is cells. This was also associated with increased cleaved caspase-3 secreted mainly by breast adipocytes, especially when stimulated and decreased Bcl-2 levels in these tumors. GLPG1690 decreased by inflammatory cytokines produced by tumors. In this work, we irradiation-induced C-C motif chemokine ligand-11 in tumors studied the effects of an ATX inhibitor, GLPG1690, which is in and levels of IL9, IL12p40, macrophage colony-stimulating phase III clinical trials for idiopathic pulmonary fibrosis, on factor, and IFNg in adipose tissue adjacent to the tumor. In responses to radiotherapy and chemotherapy in a syngeneic other experiments, mice were treated with doxorubicin every orthotopic mouse model of breast cancer. Tumors were treated 2 days after the tumors developed. GLPG1690 acted synergisti- with fractionated external beam irradiation, which was opti- cally with doxorubicin to decrease tumor growth and the per- mizedtodecreasetumorweightby approximately 80%. Mice centage of Ki67-positive cells. GLPG1690 also increased were also dosed twice daily with GLPG1690 or vehicle beginning 4-hydroxynonenal-protein adducts in these tumors.
    [Show full text]
  • The Influence of Adenoviral Infection and the Group VIA Calcium- Independent Phospholipase A2 on Hepatic Lipid Metabolism
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2007 The Influence of Adenoviral Infection and the Group VIA Calcium- Independent Phospholipase A2 on Hepatic Lipid Metabolism William Palmer Wilkins III Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/1369 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © William Palmer Wilkins, III, 2008 All Rights Reserved THE INFLUENCE OF ADENOVIRAL INFECTION AND THE GROUP VIA CALCIUM-INDEPENDENT PHOSPHOLIPASE A2 ON HEPATIC LIPID METABOLISM A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. by WILLIAM PALMER WILKINS, III Bachelor of Science, Hampden-Sydney College, 1996 Director: SUZANNE E. BARBOUR, PHD PROFESSOR, DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY Virginia Commonwealth University Richmond, Virginia MAY 2008 ii Acknowledgement I wish to thank my thesis advisor Dr. Suzanne Barbour for her consistent support, guidance and belief in my abilities as a scientist during my years of graduate study. I wish to acknowledge my mother Brenda Burke McGehee, father William Palmer Wilkins, Jr. and close friends for their support and encouragement throughout my life. I wish to thank the following committee members for their efforts during my training: Dr. Shobha Ghosh, Dr.
    [Show full text]
  • Molecular Analysis of the Genetic Heterogeneity Between Primary and Recurrent Glioblastoma
    Syracuse University SURFACE Syracuse University Honors Program Capstone Syracuse University Honors Program Capstone Projects Projects Spring 5-1-2009 Molecular Analysis of the Genetic Heterogeneity Between Primary and Recurrent Glioblastoma Anushi Shah Follow this and additional works at: https://surface.syr.edu/honors_capstone Part of the Biology Commons, and the Genetics and Genomics Commons Recommended Citation Shah, Anushi, "Molecular Analysis of the Genetic Heterogeneity Between Primary and Recurrent Glioblastoma" (2009). Syracuse University Honors Program Capstone Projects. 449. https://surface.syr.edu/honors_capstone/449 This Honors Capstone Project is brought to you for free and open access by the Syracuse University Honors Program Capstone Projects at SURFACE. It has been accepted for inclusion in Syracuse University Honors Program Capstone Projects by an authorized administrator of SURFACE. For more information, please contact [email protected]. Molecular Analysis of the Genetic Heterogeneity Between Primary and Recurrent Glioblastoma A Capstone Project Submitted in Partial Fulfillment of the Requirements of the Renée Crown University Honors Program at Syracuse University Anushi Shah Candidate for B.S. Biology & Psychology and B.A. Anthropology Degree and Renée Crown University Honors May 2009 Honors Capstone Project in: __________Biology__________ Capstone Project Advisor: ____________________________ (Dr. Frank Middleton) Honors Reader: ____________________________ (Dr. Shannon Novak) Honors Director: __ __________________________ Samuel Gorovitz Date: _____________ April 21 st , 2009 Abstract Introduction: Glioblastoma multiforme (GBM) is one of the deadliest forms of brain cancer, and affects more than 18,000 new cases each year in the United States alone. The current standard of treatment for GBM includes surgical removal of the tumor, along with radiation and chemotherapy.
    [Show full text]
  • The Interplay Between the RNA Decay and Translation Machinery in Eukaryotes
    Downloaded from http://cshperspectives.cshlp.org/ on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press The Interplay between the RNA Decay and Translation Machinery in Eukaryotes Adam M. Heck1,2 and Jeffrey Wilusz1,2 1Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80525 2Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80525 Correspondence: [email protected] RNA decay plays a major role in regulating gene expression and is tightly networked with other aspects of gene expression to effectively coordinate post-transcriptional regulation. The goal of this work is to provide an overview of the major factors and pathways of general messenger RNA (mRNA) decay in eukaryotic cells, and then discuss the effective interplay of this cytoplasmic process with the protein synthesis machinery. Given the transcript-specific and fluid nature of mRNA stability in response to changing cellular conditions, understanding the fundamental networking between RNA decay and translation will provide a foundation for a complete mechanistic understanding of this important aspect of cell biology. NA degradation plays a major role in regu- gene expression is needed to further elucidate Rlating both the quantity and quality of gene the depth of regulation that occurs in cells. expression in the cell. The abundance of an RNA The goal of this work is to provide an up-to- transcript is a reflection of both its rate of syn- date overview of the factors and mechanisms thesis and degradation. There are numerous ex- of general mRNA decay and then focus on the amples in the literature regarding the regulation interplay of this process with the translational of gene expression associated with major cellular machinery.
    [Show full text]