Page 1 of 54 RSC Advances
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Labeling Mesenchymal Cells with DMSA-Coated Gold
Silva et al. J Nanobiotechnol (2016) 14:59 DOI 10.1186/s12951-016-0213-x Journal of Nanobiotechnology RESEARCH Open Access Labeling mesenchymal cells with DMSA‑coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications Luisa H. A. Silva1, Jaqueline R. da Silva1, Guilherme A. Ferreira2, Renata C. Silva3, Emilia C. D. Lima2, Ricardo B. Azevedo1 and Daniela M. Oliveira1* Abstract Background: Nanoparticles’ unique features have been highly explored in cellular therapies. However, nanoparti- cles can be cytotoxic. The cytotoxicity can be overcome by coating the nanoparticles with an appropriated surface modification. Nanoparticle coating influences biocompatibility between nanoparticles and cells and may affect some cell properties. Here, we evaluated the biocompatibility of gold and maghemite nanoparticles functionalized with 2,3-dimercaptosuccinic acid (DMSA), Au-DMSA and γ-Fe2O3-DMSA respectively, with human mesenchymal stem cells. Also, we tested these nanoparticles as tracers for mesenchymal stem cells in vivo tracking by computed tomography and as agents for mesenchymal stem cells magnetic targeting. Results: Significant cell death was not observed in MTT, Trypan Blue and light microscopy analyses. However, ultra- structural alterations as swollen and degenerated mitochondria, high amounts of myelin figures and structures similar to apoptotic bodies were detected in some mesenchymal stem cells. Au-DMSA and γ-Fe2O3-DMSA labeling did not affect mesenchymal stem cells adipogenesis and osteogenesis differentiation, proliferation rates or lymphocyte suppression capability. The uptake measurements indicated that both inorganic nanoparticles were well uptaken by mesenchymal stem cells. However, Au-DMSA could not be detected in microtomograph after being incorporated by mesenchymal stem cells. -
Synthesis and Environmental Chemistry of Silver and Iron Oxide Nanoparticles
SYNTHESIS AND ENVIRONMENTAL CHEMISTRY OF SILVER AND IRON OXIDE NANOPARTICLES By SUSAN ALISON CUMBERLAND A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY School of Earth and Environmental Sciences College of Life and Environmental Sciences The University of Birmingham March 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Engineered nanoparticles are defined as having a dimension that is between one and one hundred nanometres. With toxicology studies reporting various degrees of toxicity the need to investigate nanoparticle fate and behaviour is vital. Monodispersed engineered nanoparticles were synthesised in-house to produce suitable materials to examine such processes. Iron oxide nanoparticles (5 nm) and citrate coated silver nanoparticles (20 nm) were subjected to different conditions of pH, ionic strength and different types of commercially available natural organic matter. Changes in particle size and aggregation were examined using a multi-method approach. Results showed that the natural organic matter was able to adsorb onto nanoparticle surfaces and improve their stability when subjected to changes in pH and ionic strength, where they would normally aggregate. -
Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging
University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering 1-1-2006 Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging Daniel L. J Thorek University of Pennsylvania, [email protected] Antony K. Chen University of Pennsylvania, [email protected] Julie Czupryna University of Pennsylvania, [email protected] Andrew Tsourkas University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/be_papers Part of the Molecular, Cellular, and Tissue Engineering Commons Recommended Citation Thorek, D. L., Chen, A. K., Czupryna, J., & Tsourkas, A. (2006). Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging. Retrieved from https://repository.upenn.edu/be_papers/77 Postprint version. Published in Annals of Biomedical Engineering, Volume 34, Issue 1, January 2006, pages 23-38. Publisher URL: http://dx.doi.org/10.1007/s10439-005-9002-7 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/be_papers/77 For more information, please contact [email protected]. Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging Abstract The field of molecular imaging has ecentlyr seen rapid advances in the development of novel contrast agents and the implementation of insightful approaches to monitor biological processes non-invasively. In particular, superparamagnetic iron oxide nanoparticles (SPIO) have demonstrated their utility as an important tool for enhancing magnetic resonance contrast, allowing -
Chemo-Electrical Gas Sensors Based on Conducting Polymer Hybrids
polymers Review Chemo-Electrical Gas Sensors Based on Conducting Polymer Hybrids Seon Joo Park 1, Chul Soon Park 1,2 and Hyeonseok Yoon 2,3,* 1 Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Korea; [email protected] (S.J.P.); [email protected] (C.S.P.) 2 Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Korea 3 School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Korea * Correspondence: [email protected]; Tel.: +82-62-530-1778 Academic Editor: Po-Chih Yang Received: 10 March 2017; Accepted: 24 April 2017; Published: 26 April 2017 Abstract: Conducting polymer (CP) hybrids, which combine CPs with heterogeneous species, have shown strong potential as electrical transducers in chemosensors. The charge transport properties of CPs are based on chemical redox reactions and provide various chemo-electrical signal transduction mechanisms. Combining CPs with other functional materials has provided opportunities to tailor their major morphological and physicochemical properties, often resulting in enhanced sensing performance. The hybrids can provide an enlarged effective surface area for enhanced interaction and chemical specificity to target analytes via a new signal transduction mechanism. Here, we review a selection of important CPs, including polyaniline, polypyrrole, polythiophene and their derivatives, to fabricate versatile organic and inorganic hybrid materials and their chemo-electrical sensing performance. We focus on what benefits can be achieved through material hybridization in the sensing application. Moreover, state-of-the-art trends in technologies of CP hybrid sensors are discussed, as are limitations and challenges. -
What of Their Fate and Impact in Stem Cells? J.E
Magnetic nanoparticles in regenerative medicine: what of their fate and impact in stem cells? J.E. Perez, Aurore van de Walle, Jose Perez, Ali Abou-Hassan, Miryana Hémadi, Nathalie Luciani, Claire Wilhelm To cite this version: J.E. Perez, Aurore van de Walle, Jose Perez, Ali Abou-Hassan, Miryana Hémadi, et al.. Magnetic nanoparticles in regenerative medicine: what of their fate and impact in stem cells?. Materials Today Nano, Elsevier, 2020, 11, pp.100084. 10.1016/j.mtnano.2020.100084. hal-03136031 HAL Id: hal-03136031 https://hal.archives-ouvertes.fr/hal-03136031 Submitted on 9 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Magnetic nanoparticles in regenerative medicine: what of their fate and impact in stem cells? Aurore Van de Wallea,*, Jose Efrain Pereza, Ali Abou-Hassanb, Miryana Hemadic, Nathalie Luciania, Claire Wilhelma,* a Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University of Paris, 75205, Paris Cedex 13, France b Sorbonne Université, CNRS UMR 8234, Physicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), 4 place Jussieu, 75005 Paris, France. c Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université de Paris, CNRS-UMR 7086, 75205 Paris Cedex 13, France * Corresponding authors, [email protected] ; [email protected] 1 Abstract With advancing developments over the use of magnetic nanoparticles in biomedical engineering, and more specifically cell-based therapies, the question of their fate and impact once internalized within (stem) cells remains crucial. -
Magnetization Enhancement in Magnetite Nanoparticles Capped with Alginic Acid
Magnetization Enhancement in Magnetite Nanoparticles capped with Alginic Acid B. Andrzejewski a* , W. Bednarski a, M. Ka źmierczak a,b , K. Pogorzelec-Glaser a, B. Hilczer a, S. Jurga b, M. Matczak a, B. Ł ęska c, R. Pankiewicz c, L. K ępi ński d aInstitute of Molecular Physics, Polish Academy of Sciences Smoluchowskiego 17, PL-60179 Pozna ń, Poland * corresponding author: [email protected] bNanoBioMedical Centre, Adam Mickiewicz University Umultowska 85, PL-61614 Pozna ń, Poland cFaculty of Chemistry, Adam Mickiewicz University Umultowska 89b, PL-61614 Pozna ń, Poland dInstitute of Low Temperature and Structure Research, Polish Academy of Sciences Okólna 2, PL-50422 Wrocław, Poland Abstract — We report on the effect of organic acid capping on the Magnetite exhibits the inverse spinel AB 2O4 behavior of magnetite nanoparticles. The nanoparticles of crystallographic structure with two different kinds of voids in magnetite were obtained using microwave activated process, and the fcc lattice of the O2- ions which are occupied by Fe atoms. the magnetic properties as well as the electron magnetic Tetrahedral A voids contain Fe 2+ ions, whereas octahedral resonance behavior were studied for the Fe O nanoparticles 3 4 B voids are occupied by mixed valency Fe 2+ and Fe 3+ ions. capped with alginic acid. The capped nanoparticles exhibit improved crystalline structure of the surface which leads to an Coupling between magnetic sublattices formed by the Fe moments located at sites A and B results in ferrimagnetic enhanced magnetization. The saturation magnetization Ms increases to ~75% of the bulk magnetization. The improved ordering. Mixed valence of the Fe ions and fast electron structure also facilitates quantization of spin-wave spectrum in hopping between the B sites are responsible for a relatively the finite size nanoparticles and this in turn is responsible for high electric conductivity of Fe 3O4 at high and moderate unconventional behavior at low temperatures. -
Superparamagnetic Graphene Oxide–Fe3o4 Nanoparticles Hybrid for Controlled Targeted Drug Carriers
PAPER www.rsc.org/materials | Journal of Materials Chemistry Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers Xiaoying Yang,*a Xiaoyan Zhang,b Yanfeng Ma,b Yi Huang,b Yinsong Wanga and Yongsheng Chen*b Received 1st December 2008, Accepted 3rd February 2009 First published as an Advance Article on the web 5th March 2009 DOI: 10.1039/b821416f A superparamagnetic graphene oxide –Fe3O4 nanoparticles hybrid (GO–Fe3O4) was prepared via a simple and effective chemical precipitation method. The amount of loading of Fe3O4 on GO was estimated as 18.6 wt% by atomic absorption spectrometry. The hybrid was then loaded with doxorubicin hydrochloride (DXR) and the loading capacity was as high as 1.08 mg mgÀ1. Both of the GO–Fe3O4 hybrids before and after loading with DXR can be dispersed well in aqueous solution. They can congregate under acidic conditions and move regularly under the force of an external magnet. Furthermore, the aggregated hybrid can be redispersed to form a stable suspension under basic conditions. These properties make it a potential candidate for controlled targeted drug delivery and release. 1 Introduction biology and biomedicine including targeted drug delivery,10–12 immunoassays,13 hyperthermia,14 magnetic resonance imaging Graphene has attracted tremendous attention because of its contrast enhancements,15 and the separation, purification or 1,2 3 4 5 unique electronic, thermal, mechanical, optical properties detection of proteins, DNA, viruses, cell, etc.16–19 For biological and many potential applications in nanomaterials and nano- applications, many researchers have prepared Fe3O4 magnetic technology. Its one-atom thickness and two-dimensional plane nanoparticles with various structures or loaded them with provide it with a large specific surface area for the immobilization silica,20 polymer,21 lipid vesicles,22 etc. -
Magnetic Nanoparticles As Targeted Delivery Systems in Oncology
1 review Magnetic nanoparticles as targeted delivery systems in oncology Sara Prijic1 and Gregor Sersa2 1 Nanotesla Institute, Ljubljana, Slovenia 2 Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia Received 10 November 2010 Accepted 5 January 2011 Correspondence to: Prof. Gregor Serša, Institute of Oncology Ljubljana, Zaloška 2, SI-1000 Ljubljana, Slovenia. E-mail: [email protected] Disclosure: No potential conflicts of interest were disclosed. Background. Many different types of nanoparticles, magnetic nanoparticles being just a category among them, of- fer exciting opportunities for technologies at the interfaces between chemistry, physics and biology. Some magnetic nanoparticles have already been utilized in clinical practice as contrast enhancing agents for magnetic resonance imaging (MRI). However, their physicochemical properties are constantly being improved upon also for other biologi- cal applications, such as magnetically-guided delivery systems for different therapeutics. By exposure of magnetic na- noparticles with attached therapeutics to an external magnetic field with appropriate characteristics, they are con- centrated and retained at the preferred site which enables the targeted delivery of therapeutics to the desired spot. Conclusions. The idea of binding chemotherapeutics to magnetic nanoparticles has been around for 30 years, how- ever, no magnetic nanoparticles as delivery systems have yet been approved for clinical practice. Recently, binding of nucleic acids to magnetic nanoparticles -
Heating Mechanisms of Magnetic Nanoparticles in Hyperthermia Treatment
Wright State University CORE Scholar Special Session 5: Carbon and Oxide Based Nanostructured Materials (2013) Special Session 5 6-2013 Heating Mechanisms of Magnetic Nanoparticles in Hyperthermia Treatment Anna Lukawska Gregory Kozlowski Wright State University - Main Campus, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/ss5_2013 Part of the Physics Commons Repository Citation Lukawska, A., & Kozlowski, G. (2013). Heating Mechanisms of Magnetic Nanoparticles in Hyperthermia Treatment. https://corescholar.libraries.wright.edu/ss5_2013/1 This Presentation is brought to you for free and open access by the Special Session 5 at CORE Scholar. It has been accepted for inclusion in Special Session 5: Carbon and Oxide Based Nanostructured Materials (2013) by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Heating mechanisms of magnetic nanoparticles in hyperthermia treatment Anna Lukawska and Gregory Kozlowski Wright State University, Physics Department 3640 Col. Glenn Hwy., Dayton, OH 45435, USA Group Members Bachelor Student: Seun Master Students: Deema Xing Vartika Jessica Jason Anna PhD Student: Starting this Fall Postdoc: Erik New Lab Space Labs: PLD system lab Nano lab with Hyperthermia system, AFM, Silver Nano Particles project and Testing films and fluids real and imaginary parts of permeability and permittivity project Hyperthermia • Magnetic hyperthermia is a new non-surgical treatment of cancerous tumors. http://www.tutuz.com/world-conference-interventional-oncology-ferromagnetic-theory-cancer-oncogenesis/ Magnetism http://www.nitt.edu/home/academics/departments/physics/faculty/lecturers/justin/students/magnetic/origin/ • Quantum Mechanical Phenomenon • Originates from orbital motion and spin-1/2 rotational motion of an electron • Governed by Maxwell’s equations • Magnetic Variables are: B, H and M Magnetization Magnetization is the measure of the strength of magnetism in a material. -
THE OPTIMIZATION of GOLD COATED IRON NANOPARTICLE SYNTHESIS METHODS by Mark Riggs, B.S., B.S. a Thesis Submitted to the Gradua
THE OPTIMIZATION OF GOLD COATED IRON NANOPARTICLE SYNTHESIS METHODS by Mark Riggs, B.S., B.S. A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Science with a Major in Chemistry August 2014 Committee Members: Gary Beall Shannon Weigum Clois Powell COPYRIGHT by Mark Riggs 2014 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, Mark Riggs, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. DEDICATION I dedicate this to my wife, Melissa. Her constant support and encouragement were nothing short of heroic. Careful and delicate allocation of my focus became ever- increasing in importance throughout the progression of this research, primarily due to the birth of my beautiful daughter, Olivia Marie, on February 4th of 2014. My daughter’s arrival impacted my perception in ways I couldn’t have fully understood prior to that wonderful moment. I will be forever indebted to Melissa for showing me how blessed I am, enabling me to live a better life than I could have conceived, and providing never- ending assistance with caring for our daughter. -
Pectin Coated Iron Oxide Nanocomposite - a Vehicle for Controlled Release of Curcumin Mausumi Ganguly and Deepika Pramanik
INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017 Pectin coated iron oxide nanocomposite - a vehicle for controlled release of curcumin Mausumi Ganguly and Deepika Pramanik delivery of toxic therapeutic drugs and protection of non target tissues and cells from severe side effects. Treatment with nano Abstract--We report a nanocomposite system capable of efficient particle system increases bio-availability, reduces drug loading and drug release. The water-soluble iron oxide administration frequency and promotes drug targeting. nanoparticles (IONPs) with particle sizes up to 27 nm were obtained via co-precipitation method. These nanoparticles were coated with Maghemite (-Fe2O3) and magnetite (Fe3O4) are the two pectin to avoid their chances of agglomeration and also to increase most widely used iron oxide nanoparticles with diverse the biocompatibility. The nanocomposites obtained were applications. Bare magnetite nanoparticles on account of their characterized using transmission electron microscopy (TEM), Fourier large surface area /volume ratio tend to agglomerate. To transform infrared spectroscopy (FT-IR), scanning electron prevent agglomeration, a variety of polymeric coatings have microscopy (SEM), X-ray powder diffraction (XRD) and zeta- been applied to nanoparticles. Among the polymeric capping potential measurements. The nanocomposite was used to load curcumin, an anticancer compound. The drug loading efficiency of agents, biopolymers are of special interest due to their the nanocomposite preparation was evaluated. The drug release from biocompatibility and biodegradability. Coating is essential the nanocomposite matrix was studied at four different pH values. because it reduces aggregation of nanoparticles thereby The results indicated that the release of drug was not significant in improving their dispersibility, colloidal stability and protects acidic pH but occurred at a uniform and desired rate in alkaline pH. -
Article Type
Article Title: The potential anti-infective applications of metal oxide nanoparticles: A systematic review Article Type: Authors: [List each person’s full name, ORCID iD, affiliation, email address, and any conflicts of interest. Copy rows as necessary for additional authors. Please use an asterisk (*) to indicate the corresponding author.] First author Yasmin Abo-zeid* https://orchid.org/000-0002-1651-7421, School of Pharmacy, Helwan University, Cairo, Egypt UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK [email protected] No conflict of interest Second author Gareth R. Williams* https://orcid.org/0000-0002-3066-2860 UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK [email protected] No conflict of interest ABSTRACT Microbial infections present a major global healthcare challenge, in large part because of the development of microbial resistance to the currently approved antimicrobial agents. This demands the development of new antimicrobial agents. Metal oxide nanoparticles (MONPs) are a class of materials that have been widely explored for diagnostic and therapeutic purposes. They are reported to have wide-ranging antimicrobial activities and to be potent against bacteria, viruses, and protozoans. The use of MONPs reduces the 1 possibility of resistance developing because they have multiple mechanisms of action (including via reactive oxygen species generation), simultaneously attacking many sites in the micro-organism. However, despite this there are to date no clinically approved MONPs for antimicrobial therapy. This review explores the recent literature in this area, discusses the mechansims of MONP action against micro-organisms, and considers the barriers faced to the use of MONPs in humans.