Synthesis and Environmental Chemistry of Silver and Iron Oxide Nanoparticles

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Environmental Chemistry of Silver and Iron Oxide Nanoparticles SYNTHESIS AND ENVIRONMENTAL CHEMISTRY OF SILVER AND IRON OXIDE NANOPARTICLES By SUSAN ALISON CUMBERLAND A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY School of Earth and Environmental Sciences College of Life and Environmental Sciences The University of Birmingham March 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Engineered nanoparticles are defined as having a dimension that is between one and one hundred nanometres. With toxicology studies reporting various degrees of toxicity the need to investigate nanoparticle fate and behaviour is vital. Monodispersed engineered nanoparticles were synthesised in-house to produce suitable materials to examine such processes. Iron oxide nanoparticles (5 nm) and citrate coated silver nanoparticles (20 nm) were subjected to different conditions of pH, ionic strength and different types of commercially available natural organic matter. Changes in particle size and aggregation were examined using a multi-method approach. Results showed that the natural organic matter was able to adsorb onto nanoparticle surfaces and improve their stability when subjected to changes in pH and ionic strength, where they would normally aggregate. The presence of higher concentrations of NOM in some cases promoted aggregation due to bridging. This work also concluded that silver nanoparticles could be produced in the presence of NOM without additional stabilisers and that they themselves were stable. This work has demonstrated that engineered nanoparticles could remain stable within a range of environmental conditions, and thus raise future pollution concerns. Acknowledgements Firstly, I would like to acknowledge my sponsors, NERC for funding this work. I would also like to thank all the people that made this thesis possible. To my supervisor, Professor Jamie Lead, who took me on to do this project and gave much support, direction and opportunity. The team at Exeter, Professor Charles Tyler, Dr Blair Johnson and Tessa Scown for the collaborative work that went into chapter 4 and supplying the tank water samples for analysis and Blair for supplying the fish mucus. There are many people that provided training and laboratory support, to which I would like to thank Ming Chu and Paul Stanley for help and support with the TEM and ESEM, Prof Colin Greaves for the XRD analysis. I would like to thank Mohammed Baalousha for his help and expertise with FFF and my first introduction to working with nanoparticles. Peter Bomford and Yon Ju-Nam for help and discussion about the nanoparticle synthesis, particularly Yon, whose early discussions led to developing the synthesis of the silver nanoparticles. I would also like to thank Paula, Eva, Nadia, Breda and the rest of r325 for being such excellent team mates and providing moral support and Gillian Kingston for extra lab support and chats about horses! John Bridgeman for his patience and help And lastly, to my partner, Steve, - for all the unlimited support he gave throughout for which I am eternally grateful- thank you! Contents 1 ....................................................................................................................... - 1 - Introduction ................................................................................................... - 1 - 1.1 Nanoparticles and their relevance ........................................................................................... - 2 - 1.1.1 History ................................................................................................................................. - 4 - 1.2 Need behind the research ......................................................................................................... - 5 - 1.3 Aims and objectives ................................................................................................................... - 7 - 1.4 Guide to the thesis ..................................................................................................................... - 7 - 2 ...................................................................................................................... - 9 - Background .................................................................................................... - 9 - 2.1 Definitions, classifications and history of NPs.................................................................... - 10 - 2.1.1 Natural NPs ...................................................................................................................... - 11 - 2.1.2 Incidentally produced NPs ............................................................................................. - 15 - 2.1.3 Intentionally produced NPs (manufactured NPs) ....................................................... - 17 - 2.1.4 Special properties of nanoparticles ................................................................................ - 21 - 2.1.5 Particle stability and aggregation .................................................................................... - 24 - 2.2 Types and applications of manufactured NPs ..................................................................... - 28 - 2.2.1 Applications ...................................................................................................................... - 29 - 2.2.2 International economics of manufactured NPs ........................................................... - 32 - 2.3 Nanoparticles and the environment ...................................................................................... - 34 - 2.3.1 Exposure ............................................................................................................................ - 35 - 2.3.2 Hazard and toxicity of ENPs ......................................................................................... - 40 - 2.3.3 Environmental risk of manufactured nanoparticles .................................................... - 46 - 2.4 Conclusion ................................................................................................................................ - 48 - 3 .................................................................................................................... - 50 - Methodology ................................................................................................ - 50 - 3.1 Introduction .............................................................................................................................. - 51 - 3.2 Nanoparticle characterisation techniques ............................................................................. - 54 - 3.2.1 Filtration and ultrafiltration ............................................................................................ - 54 - 3.2.2 Flow field-flow fractionation (FlFFF) ........................................................................... - 57 - 3.2.3 Dynamic light scattering (DLS) ...................................................................................... - 66 - i 3.2.4 Electron microscopy (EM) ............................................................................................. - 68 - 3.2.5 Brunauer, Emmett and Teller (BET) surface area analyser ....................................... - 71 - 3.2.6 X-ray diffraction (XRD) .................................................................................................. - 71 - 3.2.7 Electrophoretic mobility (EPM) and zeta potential .................................................... - 72 - 3.2.8 Surface plasmon resonance (SPR) ................................................................................. - 73 - 3.2.9 Fluorescence ..................................................................................................................... - 74 - 3.2.10 Total organic carbon (TOC) ......................................................................................... - 75 - 3.2.11 Graphite furnace atomic absorption spectrometry (GFAAS) ................................. - 75 - 3.3 Laboratory techniques ............................................................................................................. - 76 - 3.3.1 Sample preparation .......................................................................................................... - 76 - 3.3.2 Glassware preparation ..................................................................................................... - 77 - 3.3.3 Preparation of commercial NOM.................................................................................. - 77 - 3.3.4 Measurement of dissolved iron ...................................................................................... - 78 - 3.4 Statistical methods ................................................................................................................... - 79 - 3.4.1 Descriptive statistics ........................................................................................................ - 79 - 3.4.2 Parametric
Recommended publications
  • Silver Nanoparticles: Synthesis and Application for Nanomedicine
    International Journal of Molecular Sciences Review Silver Nanoparticles: Synthesis and Application for Nanomedicine Sang Hun Lee 1 and Bong-Hyun Jun 2,* 1 Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA; [email protected] 2 Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwanjin-gu, Seoul 143-701, Korea * Correspondence: [email protected]; Tel.: +82-2-450-0521 Received: 30 January 2019; Accepted: 15 February 2019; Published: 17 February 2019 Abstract: Over the past few decades, metal nanoparticles less than 100 nm in diameter have made a substantial impact across diverse biomedical applications, such as diagnostic and medical devices, for personalized healthcare practice. In particular, silver nanoparticles (AgNPs) have great potential in a broad range of applications as antimicrobial agents, biomedical device coatings, drug-delivery carriers, imaging probes, and diagnostic and optoelectronic platforms, since they have discrete physical and optical properties and biochemical functionality tailored by diverse size- and shape-controlled AgNPs. In this review, we aimed to present major routes of synthesis of AgNPs, including physical, chemical, and biological synthesis processes, along with discrete physiochemical characteristics of AgNPs. We also discuss the underlying intricate molecular mechanisms behind their plasmonic properties on mono/bimetallic structures, potential cellular/microbial cytotoxicity, and optoelectronic property. Lastly, we conclude this review
    [Show full text]
  • Labeling Mesenchymal Cells with DMSA-Coated Gold
    Silva et al. J Nanobiotechnol (2016) 14:59 DOI 10.1186/s12951-016-0213-x Journal of Nanobiotechnology RESEARCH Open Access Labeling mesenchymal cells with DMSA‑coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications Luisa H. A. Silva1, Jaqueline R. da Silva1, Guilherme A. Ferreira2, Renata C. Silva3, Emilia C. D. Lima2, Ricardo B. Azevedo1 and Daniela M. Oliveira1* Abstract Background: Nanoparticles’ unique features have been highly explored in cellular therapies. However, nanoparti- cles can be cytotoxic. The cytotoxicity can be overcome by coating the nanoparticles with an appropriated surface modification. Nanoparticle coating influences biocompatibility between nanoparticles and cells and may affect some cell properties. Here, we evaluated the biocompatibility of gold and maghemite nanoparticles functionalized with 2,3-dimercaptosuccinic acid (DMSA), Au-DMSA and γ-Fe2O3-DMSA respectively, with human mesenchymal stem cells. Also, we tested these nanoparticles as tracers for mesenchymal stem cells in vivo tracking by computed tomography and as agents for mesenchymal stem cells magnetic targeting. Results: Significant cell death was not observed in MTT, Trypan Blue and light microscopy analyses. However, ultra- structural alterations as swollen and degenerated mitochondria, high amounts of myelin figures and structures similar to apoptotic bodies were detected in some mesenchymal stem cells. Au-DMSA and γ-Fe2O3-DMSA labeling did not affect mesenchymal stem cells adipogenesis and osteogenesis differentiation, proliferation rates or lymphocyte suppression capability. The uptake measurements indicated that both inorganic nanoparticles were well uptaken by mesenchymal stem cells. However, Au-DMSA could not be detected in microtomograph after being incorporated by mesenchymal stem cells.
    [Show full text]
  • A Review on Silver Nanoparticles: Classification, Various Methods Of
    water Review A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment Muhammad Zahoor 1,* , Nausheen Nazir 1 , Muhammad Iftikhar 1, Sumaira Naz 1, Ivar Zekker 2,*, Juris Burlakovs 3 , Faheem Uddin 4, Abdul Waheed Kamran 5, Anna Kallistova 6, Nikolai Pimenov 6 and Farhat Ali Khan 7 1 Department of Biochemistry, University of Malakand, Chakdara 18800, Pakistan; [email protected] (N.N.); [email protected] (M.I.); [email protected] (S.N.) 2 Faculty of Science, Institute of Chemistry, University of Tartu, 51014 Tartu, Estonia 3 Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia; [email protected] 4 Department of Electrical Engineering, University of Engineering & Technology, Mardan 23200, Pakistan; [email protected] 5 Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan; [email protected] 6 Research Centre of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, 119071 Moscow, Russia; [email protected] (A.K.); [email protected] (N.P.) 7 Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan; [email protected] Citation: Zahoor, M.; Nazir, N.; * Correspondence: [email protected] (M.Z.); [email protected] (I.Z.) Iftikhar, M.; Naz, S.; Zekker, I.; Burlakovs, J.; Uddin, F.; Kamran, A.W.; Kallistova, A.; Pimenov, N.; Abstract: Recent developments in nanoscience have appreciably modified how diseases are pre- et al. A Review on Silver vented, diagnosed, and treated. Metal nanoparticles, specifically silver nanoparticles (AgNPs), are Nanoparticles: Classification, Various widely used in bioscience. From time to time, various synthetic methods for the synthesis of AgNPs Methods of Synthesis, and Their are reported, i.e., physical, chemical, and photochemical ones.
    [Show full text]
  • An in Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-Dimercaptosuccinic Ac
    Turk J Pharm Sci 2019;16(3):282-291 DOI: 10.4274/tjps.galenos.2018.85619 ORIGINAL ARTICLE An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid Mezo-2,3-dimerkaptosüksinik Asitle Kaplanmış Gümüş Sülfit Kuantum Noktalarının Sitotoksisitesi ve Genotoksisitesi Üzerine Bir In Vitro Çalışma Deniz ÖZKAN VARDAR1, Sevtap AYDIN2, İbrahim HOCAOĞLU3, Havva YAĞCI ACAR4, Nursen BAŞARAN2* 1Hitit University, Sungurlu Vocational High School, Health Programs, Çorum, Turkey 2Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey 3Koç University, Graduate School of Materials Science and Engineering, İstanbul, Turkey 4Koç University, College of Sciences, Department of Chemistry, İstanbul, Turkey ABSTRACT Objectives: Silver sulfide (Ag2S) quantum dots (QDs) are highly promising nanomaterials in bioimaging systems due to their high activities for both imaging and drug/gene delivery. There is insufficient research on the toxicity of Ag2S QDs coated with meso-2,3-dimercaptosuccinic acid (DMSA). In this study, we aimed to determine the cytotoxicity of Ag2S QDs coated with DMSA in Chinese hamster lung fibroblast (V79) cells over a wide range of concentrations (5-2000 µg/mL). Materials and Methods: Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red uptake (NRU) assays. The genotoxic and apoptotic effects of DMSA/Ag2S QDs were also assessed by comet assay and real-time polymerase chain reaction technique, respectively. Results: Cell viability was 54.0±4.8% and 65.7±4.1% at the highest dose (2000 µg/mL) of Ag2S QDs using the MTT and NRU assays, respectively.
    [Show full text]
  • Accessible Silver-Iron Oxide Nanoparticles As a Nanomaterial for Supported Liquid Membranes
    nanomaterials Article Accessible Silver-Iron Oxide Nanoparticles as a Nanomaterial for Supported Liquid Membranes Ioana Alina Dimulescu (Nica) 1, Aurelia Cristina Nechifor 1,*, Cristina Bardacˇ aˇ (Urducea) 1, Ovidiu Oprea 2 , Dumitru Pa¸scu 1, Eugenia Eftimie Totu 1,* , Paul Constantin Albu 3 , Gheorghe Nechifor 1 and Simona Gabriela Bungău 4 1 Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; [email protected] (I.A.D.); [email protected] (C.B.); [email protected] (D.P.); [email protected] (G.N.) 2 Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; [email protected] 3 Radioisotopes & Radiation Metrology Department (DRMR), Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 023465 Magurele, Romania; [email protected] 4 Faculty of Medicine and Pharmacy, University of Oradea, Universită¸tiiStreet No.1, 410087 Oradea, Romania; [email protected] * Correspondence: [email protected] (A.C.N.); [email protected] (E.E.T.) Abstract: The present study introduces the process performances of nitrophenols pertraction using new liquid supported membranes under the action of a magnetic field. The membrane system is based on the dispersion of silver–iron oxide nanoparticles in n-alcohols supported on hollow microp- Citation: Dimulescu (Nica), I.A.; orous polypropylene fibers. The iron oxide–silver nanoparticles are obtained directly through cyclic Nechifor, A.C.; Bardacˇ aˇ (Urducea), C.; − 3− voltammetry electrolysis run in the presence of soluble silver complexes ([AgCl2] ; [Ag(S2O3)2] ; Oprea, O.; Pa¸scu,D.; Totu, E.E.; Albu, [Ag(NH ) ]+) and using pure iron electrodes.
    [Show full text]
  • Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging
    University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering 1-1-2006 Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging Daniel L. J Thorek University of Pennsylvania, [email protected] Antony K. Chen University of Pennsylvania, [email protected] Julie Czupryna University of Pennsylvania, [email protected] Andrew Tsourkas University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/be_papers Part of the Molecular, Cellular, and Tissue Engineering Commons Recommended Citation Thorek, D. L., Chen, A. K., Czupryna, J., & Tsourkas, A. (2006). Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging. Retrieved from https://repository.upenn.edu/be_papers/77 Postprint version. Published in Annals of Biomedical Engineering, Volume 34, Issue 1, January 2006, pages 23-38. Publisher URL: http://dx.doi.org/10.1007/s10439-005-9002-7 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/be_papers/77 For more information, please contact [email protected]. Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging Abstract The field of molecular imaging has ecentlyr seen rapid advances in the development of novel contrast agents and the implementation of insightful approaches to monitor biological processes non-invasively. In particular, superparamagnetic iron oxide nanoparticles (SPIO) have demonstrated their utility as an important tool for enhancing magnetic resonance contrast, allowing
    [Show full text]
  • Uncovering Loss Mechanisms in Silver Nanoparticle-Blended Plasmonic Organic Solar Cells
    ARTICLE Received 20 Feb 2013 | Accepted 9 May 2013 | Published 13 Jun 2013 DOI: 10.1038/ncomms3004 Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells Bo Wu1, Xiangyang Wu2, Cao Guan1, Kong Fai Tai1, Edwin Kok Lee Yeow2, Hong Jin Fan1,4,5, Nripan Mathews3,4,5 & Tze Chien Sum1,4,5 There has been much controversy over the incorporation of organic-ligand-encapsulated plasmonic nanoparticles in the active layer of bulk heterojunction organic solar cells, where both enhancement and detraction in performance have been reported. Here through comprehensive transient optical spectroscopy and electrical characterization, we demonstrate evidence of traps responsible for performance degradation in plasmonic organic solar cells fabricated with oleylamine-capped silver nanoparticles blended in the poly (3-hexylthiophene):[6,6]-phenyl-C 61-butyric acid methyl ester active layer. Despite an initial increase in exciton generation promoted by the presence of silver nanoparticles, transient absorption spectroscopy reveals no increase in the later free polaron population—attributed to fast trapping of polarons by nearby nanoparticles. The increased trap-assisted recombi- nation is also reconfirmed by light intensity-dependent electrical measurements. These new insights into the photophysics and charge dynamics of plasmonic organic solar cells would resolve the existing controversy and provide clear guidelines for device design and fabrication. 1 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore. 2 Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore. 3 Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798, Singapore.
    [Show full text]
  • Silver-Nanoparticle Supported on Nanocrystalline Cellulose Using Cetyltrimethylammonium Bromide: Synthesis and Catalytic Performance for Decolorization of Dyes
    J Nanostruct 11(1): 48-56, Winter 2021 RESEARCH PAPER Silver-nanoparticle Supported on Nanocrystalline Cellulose using Cetyltrimethylammonium Bromide: Synthesis and Catalytic Performance for Decolorization of Dyes Hannaneh Heidari*, Melika Karbalaee Department of Chemistry, Faculty of Physics and Chemsitry, Alzahra University, Tehran, Iran ARTICLE INFO ABSTRACT In this work, we reported that the ultrasonically synthesized Article History: nanocrystalline cellulose (NCC) from microcrystalline cellulose has the Received 16 September 2020 Accepted 28 December 2020 capacity for use as natural and green matrices for the synthesis of silver Published 01 January 2021 nanoparticles. Cationic surfactant cetyltrimethylammonium bromide (CTAB) was employed as a modifier and stabilizer for NCC. The structure Keywords: of as-synthesized composite (Ag/CTAB/NCC) was characterized by Cetyltrimethylammonium Fourier transform infrared spectroscopy (FT-IR); field emission scanning bromide electron microscopy (FE-SEM); Transmission electron microscopy (TEM); Dye Energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The Nanocomposite XRD pattern confirmed the single cubic phase of Ag nanoparticles with crystallite size about 30 nm. TEM study also verified that the average Nanocrystalline cellulose particle size of the spherical-shaped Ag NPs. catalytic activity of Ag/CTAB/ Silver nanoparticles NCC has been analyzed by performing the reduction of certain toxic azo methyl orange dye (MO) (by two methods) and aromatic nitro compound of 4- nitrophenol (4-NP) in shorter time. The reduction of MO to hydrazine derivatives and 4-NP to 4-aminophenol takes place with a pseudo-first- order rate constants. The reduction time regularly decreased and the rate of reduction (k) increases (3 fold) with increasing catalyst amount in method (2) (mmol NaBH4/mmol MO = 250 and 42 mg catalyst) compared to method (1) (mmol NaBH4/mmol MO = 400 and 5 mg catalyst).
    [Show full text]
  • Chemo-Electrical Gas Sensors Based on Conducting Polymer Hybrids
    polymers Review Chemo-Electrical Gas Sensors Based on Conducting Polymer Hybrids Seon Joo Park 1, Chul Soon Park 1,2 and Hyeonseok Yoon 2,3,* 1 Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Korea; [email protected] (S.J.P.); [email protected] (C.S.P.) 2 Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Korea 3 School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Korea * Correspondence: [email protected]; Tel.: +82-62-530-1778 Academic Editor: Po-Chih Yang Received: 10 March 2017; Accepted: 24 April 2017; Published: 26 April 2017 Abstract: Conducting polymer (CP) hybrids, which combine CPs with heterogeneous species, have shown strong potential as electrical transducers in chemosensors. The charge transport properties of CPs are based on chemical redox reactions and provide various chemo-electrical signal transduction mechanisms. Combining CPs with other functional materials has provided opportunities to tailor their major morphological and physicochemical properties, often resulting in enhanced sensing performance. The hybrids can provide an enlarged effective surface area for enhanced interaction and chemical specificity to target analytes via a new signal transduction mechanism. Here, we review a selection of important CPs, including polyaniline, polypyrrole, polythiophene and their derivatives, to fabricate versatile organic and inorganic hybrid materials and their chemo-electrical sensing performance. We focus on what benefits can be achieved through material hybridization in the sensing application. Moreover, state-of-the-art trends in technologies of CP hybrid sensors are discussed, as are limitations and challenges.
    [Show full text]
  • The Antibacterial Effects of Silver, Titanium Dioxide and Silica Dioxide Nanoparticles Compared to the Dental Disinfectant Chlor
    Nanotoxicology, February 2014; 8(1):1–16 © 2014 Informa UK, Ltd. ISSN: 1743-5390 print / 1743-5404 online DOI: 10.3109/17435390.2012.742935 The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays Alexandros Besinis1, Tracy De Peralta2,3, & Richard D Handy1 1School of Biomedical and Biological Sciences, The University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK, 2Peninsula College of Medicine and Dentistry, The University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK and 3School of Dentistry, University of Michigan, Ann Arbor, MI, USA Abstract including solid nanoparticles (NPs) of metal or metal Metal-containing nanomaterials have the potential to be used in oxides (e.g., Ag NPs, TiO2 NPs),aswellascomposite dentistry for infection control, but little is known about their materials with layers of different metals (e.g., Cd-Se quan- antibacterial properties. This study investigated the toxicity of tum dots, Han et al. 2010). The potential of engineered silver (Ag), titanium dioxide and silica nanoparticles (NPs) nanomaterials (ENMs) as antibacterial agents has been against the oral pathogenic species of Streptococcus mutans, recognised (Li et al. 2008), and there is now interest in compared to the routine disinfectant, chlorhexidine. The using ENMs for infection control in dentistry and the bacteria were assessed using the minimum inhibitory management of the oral biofilm (Allaker 2010). concentration assay for growth, fluorescent staining for live/ The precise mechanism(s) for bacterial toxicity of nano- dead cells, and measurements of lactate. All the assays showed metals is still being elucidated, but the possibilities include that Ag NPs had the strongest antibacterial activity of the NPs free metal ion toxicity arising from the dissolution of metals tested, with bacterial growth also being 25-fold lower than that from the surface of the NPs (e.g., Ag+ from Ag NPs, Kim et al.
    [Show full text]
  • A Review on Preparation and Applications of Silver-Containing Nanofibers Shu Zhang, Yongan Tang* and Branislav Vlahovic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Zhang et al. Nanoscale Research Letters (2016) 11:80 DOI 10.1186/s11671-016-1286-z NANO REVIEW Open Access A Review on Preparation and Applications of Silver-Containing Nanofibers Shu Zhang, Yongan Tang* and Branislav Vlahovic Abstract Silver-containing nanofibers are of great interest recently because of the dual benefits from silver particles and nanofibers. Silver nanoparticles are extensively used for biomedical applications due to the antibacterial and antiviral properties. In addition, silver nanoparticles can excite resonance effect of light trapping when pairing with dielectric materials, such as polymer. Comparing to the traditional fabrics, polymer nanofibers can provide larger number of reaction sites and higher permeability contributed to their high surface-to-volume ratio and high porosity. By embedding the silver nanoparticles into polymer nanofiber matrix, the composite is promising candidates for biomaterials, photovoltaic materials, and catalysts. This work demonstrates and evaluates the methods employed to synthesize silver nanoparticle-containing nanofibers and their potential applications. Keywords: Silver nanoparticle, Biomaterial, Polymer nanofiber, Electrospinning Review With the merits of both advantages of antibacterial Due to their antibacterial [1–3], fungicidal [4–6], and and optical enhancing properties of silver nanoparticles, antiviral [7–10] properties, silver particles have drawn and high surface area and surface energy of nanofibers, tremendous academic and industrial interests. Besides of silver-containing nanofibers can be directly used as the benefits of their biomedical applications, when the size films, coatings, and fibers in electronics, sensors, multi- of silver particles decreases to nanoscale, the high surface spectral filters, catalytic materials, water treatment, and area and surface energy make silver nanoparticles one of nanopaints.
    [Show full text]
  • Nano-Silver Products Inventory
    Petition Appendix A: Nano-Silver Products Inventory Compiled by Center for Food Safety Country of PRODUCT TYPE OF PRODUCT COMPANY WEBSITE Marketing Claim Origin http://www.sourcenaturals.com/products/GP1 Wellness Colloidal Silver™ is produced using a unique electrical process Wellness Colloidal Silver™ Nasal 490 which creates homogeneity, minute particle size, and stability of the Spray Personal Care Source Naturals USA silver particles. http://ciko8.en.ec21.com/Vegetable_Fruits_Cle Removing pesticide residues completely from the fruit and vegetables. aner--1059718_1059768.html Powered by four electric oscillators. Nano-silver/Ozone-Extermination Germs. Washing and sterilizing dishes. No more bacteria such as colon bacillus, salmonella and O-157. Defrosting frozen meat or fish in 5 Vegetable & Fruits Cleaner Cooking 3EVER Co. Ltd Korea minutes. http://www.e- NINK®-Ag series, conductive silver ink series of ABC NANOTECH, are djtrade.com/co/abcnano/GC01567926/CA0156 devised for convenient use of piezoelectricinkjet printing on the various 8109/NINK_Ag_(Silver_Conductive_Ink substrates. NINK®-Ag series aremade up of surface modified nano-silver which is developedby a unique technology of ABC NANOTECH. Fine-pitch conductive lines can be demonstrated on the various plates, such as olycarbonate, polyester, polyimide, and ceramics, by using NINK®-Ag series. Nano-sized silver particles can be sintered at lower temperatures, around 150°C, than microsized silver particles can. NINK®-Ag series are applied to conductive line formation in the shorter process than existing conductive line formation methods." .html) NINK®-Ag Silver Conductive Ink Computer Hardware ABC NanoTech Co, Ltd. Korea http://www.evelinecharles.com/product_detail Nano Silver Cleanser is not a soap, it's a revolution.
    [Show full text]