Silver Based Nanoparticles Synthesis and Characterization of Silver

Total Page:16

File Type:pdf, Size:1020Kb

Silver Based Nanoparticles Synthesis and Characterization of Silver Silver-based nanoparticles Synthesis and characterization of bimetallic silver- platinum and silver-gold nanoparticles Dissertation Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften Dr. rer. nat. vorgelegt von Viktoria Grasmik Fakultät für Chemie Institut für Anorganische Chemie Universität Duisburg-Essen 2018 II Die vorliegende Arbeit wurde im Zeitraum von April 2015 bis Mai 2018 im Arbeitskreis von Prof. Dr. Matthias Epple am Institut der Anorganischen Chemie der Universität Duisburg-Essen angefertigt. Gutachter: Prof. Dr. Matthias Epple Prof. Dr. Malte Behrens Vorsitzender: PD Dr. Holger Somnitz Tag der Disputation: 04.09.2018 III IV List of contents List of contents Index of abbreviations ................................................................................... VIII Abstract ............................................................................................................... X Deutscher Abstract ............................................................................................ XI 1. Introduction ..................................................................................................... 1 2. Theoretical background .................................................................................. 4 2.1 Colloids, nanoclusters, and nanoparticles – a definition .................................................. 4 2.2 Stabilization of nanoparticles ............................................................................................ 5 2.3 Synthesis routes and crystallization processes .................................................................. 8 2.4 Optical properties of metallic nanoparticles ................................................................... 11 2.5 Employed metals and their properties ............................................................................ 13 2.5.1 The binary silver-gold system .................................................................................. 16 2.5.2 The binary silver-platinum system ........................................................................... 18 3. Methods .......................................................................................................... 20 3.1 Dynamic Light Scattering and Zeta Potential ................................................................. 20 3.2 Differential Centrifugal Sedimentation .......................................................................... 20 3.3 UV/vis spectroscopy ....................................................................................................... 21 3.4 Fluorescence spectroscopy.............................................................................................. 22 3.5 Atomic Absorption Spectrometry ................................................................................... 22 3.6 Energy Dispersive X-ray Spectroscopy .......................................................................... 23 3.7 Scanning Electron Microscopy ....................................................................................... 23 3.8 Transmission Electron Microscopy ................................................................................ 24 3.9 Powder X-ray Diffraction ............................................................................................... 24 3.10 Electrochemistry – Cyclic Voltammetry and Underpotential Deposition .................... 26 4. Experimental .................................................................................................. 27 4.1 Programs/databases used ................................................................................................ 27 V List of contents 4.2 Chemicals used ............................................................................................................... 28 4.3 Devices used ................................................................................................................... 29 4.4 Synthesis of silver-platinum nanoparticles..................................................................... 30 4.4.1 Reduction by trisodium citrate and tannic acid ....................................................... 30 4.4.2 Reduction by sodium borohydride at pH 3 .............................................................. 32 4.4.3 Reduction by sodium borohydride at pH 10 ............................................................ 32 4.5 Synthesis of silver-platinum nanoclusters ...................................................................... 33 4.6 Synthesis of silver-gold nanoparticles ............................................................................ 33 4.6.1 Reduction by trisodium citrate and tannic acid ....................................................... 34 4.6.2 Reduction by trisodium citrate ................................................................................. 35 4.7 Dissolution experiments ................................................................................................. 36 4.7.1 Dissolution of silver-gold nanoparticles .................................................................. 36 4.7.2 Dissolution of silver-platinum nanoparticles ........................................................... 36 4.8 Synthesis of monometallic nanoclusters and nanoparticles ........................................... 37 4.8.1 Synthesis of autofluorescent palladium nanoclusters .............................................. 37 4.8.2 Synthesis of silver nanoparticles and ligand exchange from trisodium citrate to poly(ethylene glycol) methyl ether thiol ................................................................. 38 5. Results and discussion ................................................................................... 39 5.1 Characterization of silver-platinum nanoparticles ......................................................... 39 5.1.1 Synthesis by trisodium citrate and tannic acid reduction ........................................ 39 5.1.2 Synthesis by sodium borohydride reduction at pH 3 ............................................... 46 5.1.3 Synthesis by sodium borohydride reduction at pH 10 ............................................. 67 5.1.4 Conclusion on silver-platinum nanoparticles .......................................................... 74 5.2 Characterization of silver-platinum nanoclusters ........................................................... 75 5.2.1 Conclusion on silver-platinum nanoclusters ............................................................ 82 5.3 Characterization of silver-gold nanoparticles................................................................. 83 5.3.1 Synthesis by trisodium citrate and tannic acid reduction ........................................ 83 5.3.2 Synthesis by trisodium citrate reduction ................................................................ 116 VI List of contents 5.3.3 Conclusion on silver-gold nanoparticles ................................................................ 132 5.4 Evaluation of dissolution experiments .......................................................................... 133 5.4.1 Dissolution of silver-gold nanoparticles ................................................................ 133 5.4.2 Dissolution evaluation of silver-platinum nanoparticles ........................................ 139 5.4.3 Conclusion on the dissolution experiments ............................................................ 142 5.5 Characterization of monometallic nanoclusters and nanoparticles ............................... 143 5.5.1 Characterization of autofluorescent palladium nanoclusters ................................. 143 5.5.2 Characterization of silver nanoparticles after refunctionalization with poly(ethylene glycol) methyl ether thiol ................................................................ 145 5.5.3 Conclusion on the monometallic nanoclusters and nanoparticles .......................... 147 6. Conclusion .................................................................................................... 148 7. References .................................................................................................... 150 8. Appendix ...................................................................................................... 161 8.1 High-temperature X-ray diffraction .............................................................................. 161 8.2 Dissolution experiments ............................................................................................... 165 8.2.1 Silver-gold nanoparticles........................................................................................ 165 8.2.2 Silver-platinum nanoparticles ................................................................................ 169 8.3 List of publications ....................................................................................................... 171 8.4 Posters and presentations .............................................................................................. 172 8.5 Curriculum Vitae .......................................................................................................... 173 8.6 Acknowledgements ....................................................................................................... 174 8.7 Eidesstaatliche Erklärung.............................................................................................. 175 VII Index of abbreviations Index of abbreviations Abbreviation Meaning AAS Atomic absorption
Recommended publications
  • Silver Nanoparticles: Synthesis and Application for Nanomedicine
    International Journal of Molecular Sciences Review Silver Nanoparticles: Synthesis and Application for Nanomedicine Sang Hun Lee 1 and Bong-Hyun Jun 2,* 1 Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA; [email protected] 2 Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwanjin-gu, Seoul 143-701, Korea * Correspondence: [email protected]; Tel.: +82-2-450-0521 Received: 30 January 2019; Accepted: 15 February 2019; Published: 17 February 2019 Abstract: Over the past few decades, metal nanoparticles less than 100 nm in diameter have made a substantial impact across diverse biomedical applications, such as diagnostic and medical devices, for personalized healthcare practice. In particular, silver nanoparticles (AgNPs) have great potential in a broad range of applications as antimicrobial agents, biomedical device coatings, drug-delivery carriers, imaging probes, and diagnostic and optoelectronic platforms, since they have discrete physical and optical properties and biochemical functionality tailored by diverse size- and shape-controlled AgNPs. In this review, we aimed to present major routes of synthesis of AgNPs, including physical, chemical, and biological synthesis processes, along with discrete physiochemical characteristics of AgNPs. We also discuss the underlying intricate molecular mechanisms behind their plasmonic properties on mono/bimetallic structures, potential cellular/microbial cytotoxicity, and optoelectronic property. Lastly, we conclude this review
    [Show full text]
  • A Review on Silver Nanoparticles: Classification, Various Methods Of
    water Review A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment Muhammad Zahoor 1,* , Nausheen Nazir 1 , Muhammad Iftikhar 1, Sumaira Naz 1, Ivar Zekker 2,*, Juris Burlakovs 3 , Faheem Uddin 4, Abdul Waheed Kamran 5, Anna Kallistova 6, Nikolai Pimenov 6 and Farhat Ali Khan 7 1 Department of Biochemistry, University of Malakand, Chakdara 18800, Pakistan; [email protected] (N.N.); [email protected] (M.I.); [email protected] (S.N.) 2 Faculty of Science, Institute of Chemistry, University of Tartu, 51014 Tartu, Estonia 3 Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia; [email protected] 4 Department of Electrical Engineering, University of Engineering & Technology, Mardan 23200, Pakistan; [email protected] 5 Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan; [email protected] 6 Research Centre of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, 119071 Moscow, Russia; [email protected] (A.K.); [email protected] (N.P.) 7 Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan; [email protected] Citation: Zahoor, M.; Nazir, N.; * Correspondence: [email protected] (M.Z.); [email protected] (I.Z.) Iftikhar, M.; Naz, S.; Zekker, I.; Burlakovs, J.; Uddin, F.; Kamran, A.W.; Kallistova, A.; Pimenov, N.; Abstract: Recent developments in nanoscience have appreciably modified how diseases are pre- et al. A Review on Silver vented, diagnosed, and treated. Metal nanoparticles, specifically silver nanoparticles (AgNPs), are Nanoparticles: Classification, Various widely used in bioscience. From time to time, various synthetic methods for the synthesis of AgNPs Methods of Synthesis, and Their are reported, i.e., physical, chemical, and photochemical ones.
    [Show full text]
  • An in Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-Dimercaptosuccinic Ac
    Turk J Pharm Sci 2019;16(3):282-291 DOI: 10.4274/tjps.galenos.2018.85619 ORIGINAL ARTICLE An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid Mezo-2,3-dimerkaptosüksinik Asitle Kaplanmış Gümüş Sülfit Kuantum Noktalarının Sitotoksisitesi ve Genotoksisitesi Üzerine Bir In Vitro Çalışma Deniz ÖZKAN VARDAR1, Sevtap AYDIN2, İbrahim HOCAOĞLU3, Havva YAĞCI ACAR4, Nursen BAŞARAN2* 1Hitit University, Sungurlu Vocational High School, Health Programs, Çorum, Turkey 2Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey 3Koç University, Graduate School of Materials Science and Engineering, İstanbul, Turkey 4Koç University, College of Sciences, Department of Chemistry, İstanbul, Turkey ABSTRACT Objectives: Silver sulfide (Ag2S) quantum dots (QDs) are highly promising nanomaterials in bioimaging systems due to their high activities for both imaging and drug/gene delivery. There is insufficient research on the toxicity of Ag2S QDs coated with meso-2,3-dimercaptosuccinic acid (DMSA). In this study, we aimed to determine the cytotoxicity of Ag2S QDs coated with DMSA in Chinese hamster lung fibroblast (V79) cells over a wide range of concentrations (5-2000 µg/mL). Materials and Methods: Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red uptake (NRU) assays. The genotoxic and apoptotic effects of DMSA/Ag2S QDs were also assessed by comet assay and real-time polymerase chain reaction technique, respectively. Results: Cell viability was 54.0±4.8% and 65.7±4.1% at the highest dose (2000 µg/mL) of Ag2S QDs using the MTT and NRU assays, respectively.
    [Show full text]
  • Synthesis and Environmental Chemistry of Silver and Iron Oxide Nanoparticles
    SYNTHESIS AND ENVIRONMENTAL CHEMISTRY OF SILVER AND IRON OXIDE NANOPARTICLES By SUSAN ALISON CUMBERLAND A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY School of Earth and Environmental Sciences College of Life and Environmental Sciences The University of Birmingham March 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Engineered nanoparticles are defined as having a dimension that is between one and one hundred nanometres. With toxicology studies reporting various degrees of toxicity the need to investigate nanoparticle fate and behaviour is vital. Monodispersed engineered nanoparticles were synthesised in-house to produce suitable materials to examine such processes. Iron oxide nanoparticles (5 nm) and citrate coated silver nanoparticles (20 nm) were subjected to different conditions of pH, ionic strength and different types of commercially available natural organic matter. Changes in particle size and aggregation were examined using a multi-method approach. Results showed that the natural organic matter was able to adsorb onto nanoparticle surfaces and improve their stability when subjected to changes in pH and ionic strength, where they would normally aggregate.
    [Show full text]
  • Accessible Silver-Iron Oxide Nanoparticles As a Nanomaterial for Supported Liquid Membranes
    nanomaterials Article Accessible Silver-Iron Oxide Nanoparticles as a Nanomaterial for Supported Liquid Membranes Ioana Alina Dimulescu (Nica) 1, Aurelia Cristina Nechifor 1,*, Cristina Bardacˇ aˇ (Urducea) 1, Ovidiu Oprea 2 , Dumitru Pa¸scu 1, Eugenia Eftimie Totu 1,* , Paul Constantin Albu 3 , Gheorghe Nechifor 1 and Simona Gabriela Bungău 4 1 Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; [email protected] (I.A.D.); [email protected] (C.B.); [email protected] (D.P.); [email protected] (G.N.) 2 Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; [email protected] 3 Radioisotopes & Radiation Metrology Department (DRMR), Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 023465 Magurele, Romania; [email protected] 4 Faculty of Medicine and Pharmacy, University of Oradea, Universită¸tiiStreet No.1, 410087 Oradea, Romania; [email protected] * Correspondence: [email protected] (A.C.N.); [email protected] (E.E.T.) Abstract: The present study introduces the process performances of nitrophenols pertraction using new liquid supported membranes under the action of a magnetic field. The membrane system is based on the dispersion of silver–iron oxide nanoparticles in n-alcohols supported on hollow microp- Citation: Dimulescu (Nica), I.A.; orous polypropylene fibers. The iron oxide–silver nanoparticles are obtained directly through cyclic Nechifor, A.C.; Bardacˇ aˇ (Urducea), C.; − 3− voltammetry electrolysis run in the presence of soluble silver complexes ([AgCl2] ; [Ag(S2O3)2] ; Oprea, O.; Pa¸scu,D.; Totu, E.E.; Albu, [Ag(NH ) ]+) and using pure iron electrodes.
    [Show full text]
  • Uncovering Loss Mechanisms in Silver Nanoparticle-Blended Plasmonic Organic Solar Cells
    ARTICLE Received 20 Feb 2013 | Accepted 9 May 2013 | Published 13 Jun 2013 DOI: 10.1038/ncomms3004 Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells Bo Wu1, Xiangyang Wu2, Cao Guan1, Kong Fai Tai1, Edwin Kok Lee Yeow2, Hong Jin Fan1,4,5, Nripan Mathews3,4,5 & Tze Chien Sum1,4,5 There has been much controversy over the incorporation of organic-ligand-encapsulated plasmonic nanoparticles in the active layer of bulk heterojunction organic solar cells, where both enhancement and detraction in performance have been reported. Here through comprehensive transient optical spectroscopy and electrical characterization, we demonstrate evidence of traps responsible for performance degradation in plasmonic organic solar cells fabricated with oleylamine-capped silver nanoparticles blended in the poly (3-hexylthiophene):[6,6]-phenyl-C 61-butyric acid methyl ester active layer. Despite an initial increase in exciton generation promoted by the presence of silver nanoparticles, transient absorption spectroscopy reveals no increase in the later free polaron population—attributed to fast trapping of polarons by nearby nanoparticles. The increased trap-assisted recombi- nation is also reconfirmed by light intensity-dependent electrical measurements. These new insights into the photophysics and charge dynamics of plasmonic organic solar cells would resolve the existing controversy and provide clear guidelines for device design and fabrication. 1 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore. 2 Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore. 3 Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798, Singapore.
    [Show full text]
  • Silver-Nanoparticle Supported on Nanocrystalline Cellulose Using Cetyltrimethylammonium Bromide: Synthesis and Catalytic Performance for Decolorization of Dyes
    J Nanostruct 11(1): 48-56, Winter 2021 RESEARCH PAPER Silver-nanoparticle Supported on Nanocrystalline Cellulose using Cetyltrimethylammonium Bromide: Synthesis and Catalytic Performance for Decolorization of Dyes Hannaneh Heidari*, Melika Karbalaee Department of Chemistry, Faculty of Physics and Chemsitry, Alzahra University, Tehran, Iran ARTICLE INFO ABSTRACT In this work, we reported that the ultrasonically synthesized Article History: nanocrystalline cellulose (NCC) from microcrystalline cellulose has the Received 16 September 2020 Accepted 28 December 2020 capacity for use as natural and green matrices for the synthesis of silver Published 01 January 2021 nanoparticles. Cationic surfactant cetyltrimethylammonium bromide (CTAB) was employed as a modifier and stabilizer for NCC. The structure Keywords: of as-synthesized composite (Ag/CTAB/NCC) was characterized by Cetyltrimethylammonium Fourier transform infrared spectroscopy (FT-IR); field emission scanning bromide electron microscopy (FE-SEM); Transmission electron microscopy (TEM); Dye Energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The Nanocomposite XRD pattern confirmed the single cubic phase of Ag nanoparticles with crystallite size about 30 nm. TEM study also verified that the average Nanocrystalline cellulose particle size of the spherical-shaped Ag NPs. catalytic activity of Ag/CTAB/ Silver nanoparticles NCC has been analyzed by performing the reduction of certain toxic azo methyl orange dye (MO) (by two methods) and aromatic nitro compound of 4- nitrophenol (4-NP) in shorter time. The reduction of MO to hydrazine derivatives and 4-NP to 4-aminophenol takes place with a pseudo-first- order rate constants. The reduction time regularly decreased and the rate of reduction (k) increases (3 fold) with increasing catalyst amount in method (2) (mmol NaBH4/mmol MO = 250 and 42 mg catalyst) compared to method (1) (mmol NaBH4/mmol MO = 400 and 5 mg catalyst).
    [Show full text]
  • The Antibacterial Effects of Silver, Titanium Dioxide and Silica Dioxide Nanoparticles Compared to the Dental Disinfectant Chlor
    Nanotoxicology, February 2014; 8(1):1–16 © 2014 Informa UK, Ltd. ISSN: 1743-5390 print / 1743-5404 online DOI: 10.3109/17435390.2012.742935 The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays Alexandros Besinis1, Tracy De Peralta2,3, & Richard D Handy1 1School of Biomedical and Biological Sciences, The University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK, 2Peninsula College of Medicine and Dentistry, The University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK and 3School of Dentistry, University of Michigan, Ann Arbor, MI, USA Abstract including solid nanoparticles (NPs) of metal or metal Metal-containing nanomaterials have the potential to be used in oxides (e.g., Ag NPs, TiO2 NPs),aswellascomposite dentistry for infection control, but little is known about their materials with layers of different metals (e.g., Cd-Se quan- antibacterial properties. This study investigated the toxicity of tum dots, Han et al. 2010). The potential of engineered silver (Ag), titanium dioxide and silica nanoparticles (NPs) nanomaterials (ENMs) as antibacterial agents has been against the oral pathogenic species of Streptococcus mutans, recognised (Li et al. 2008), and there is now interest in compared to the routine disinfectant, chlorhexidine. The using ENMs for infection control in dentistry and the bacteria were assessed using the minimum inhibitory management of the oral biofilm (Allaker 2010). concentration assay for growth, fluorescent staining for live/ The precise mechanism(s) for bacterial toxicity of nano- dead cells, and measurements of lactate. All the assays showed metals is still being elucidated, but the possibilities include that Ag NPs had the strongest antibacterial activity of the NPs free metal ion toxicity arising from the dissolution of metals tested, with bacterial growth also being 25-fold lower than that from the surface of the NPs (e.g., Ag+ from Ag NPs, Kim et al.
    [Show full text]
  • A Review on Preparation and Applications of Silver-Containing Nanofibers Shu Zhang, Yongan Tang* and Branislav Vlahovic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Zhang et al. Nanoscale Research Letters (2016) 11:80 DOI 10.1186/s11671-016-1286-z NANO REVIEW Open Access A Review on Preparation and Applications of Silver-Containing Nanofibers Shu Zhang, Yongan Tang* and Branislav Vlahovic Abstract Silver-containing nanofibers are of great interest recently because of the dual benefits from silver particles and nanofibers. Silver nanoparticles are extensively used for biomedical applications due to the antibacterial and antiviral properties. In addition, silver nanoparticles can excite resonance effect of light trapping when pairing with dielectric materials, such as polymer. Comparing to the traditional fabrics, polymer nanofibers can provide larger number of reaction sites and higher permeability contributed to their high surface-to-volume ratio and high porosity. By embedding the silver nanoparticles into polymer nanofiber matrix, the composite is promising candidates for biomaterials, photovoltaic materials, and catalysts. This work demonstrates and evaluates the methods employed to synthesize silver nanoparticle-containing nanofibers and their potential applications. Keywords: Silver nanoparticle, Biomaterial, Polymer nanofiber, Electrospinning Review With the merits of both advantages of antibacterial Due to their antibacterial [1–3], fungicidal [4–6], and and optical enhancing properties of silver nanoparticles, antiviral [7–10] properties, silver particles have drawn and high surface area and surface energy of nanofibers, tremendous academic and industrial interests. Besides of silver-containing nanofibers can be directly used as the benefits of their biomedical applications, when the size films, coatings, and fibers in electronics, sensors, multi- of silver particles decreases to nanoscale, the high surface spectral filters, catalytic materials, water treatment, and area and surface energy make silver nanoparticles one of nanopaints.
    [Show full text]
  • Nano-Silver Products Inventory
    Petition Appendix A: Nano-Silver Products Inventory Compiled by Center for Food Safety Country of PRODUCT TYPE OF PRODUCT COMPANY WEBSITE Marketing Claim Origin http://www.sourcenaturals.com/products/GP1 Wellness Colloidal Silver™ is produced using a unique electrical process Wellness Colloidal Silver™ Nasal 490 which creates homogeneity, minute particle size, and stability of the Spray Personal Care Source Naturals USA silver particles. http://ciko8.en.ec21.com/Vegetable_Fruits_Cle Removing pesticide residues completely from the fruit and vegetables. aner--1059718_1059768.html Powered by four electric oscillators. Nano-silver/Ozone-Extermination Germs. Washing and sterilizing dishes. No more bacteria such as colon bacillus, salmonella and O-157. Defrosting frozen meat or fish in 5 Vegetable & Fruits Cleaner Cooking 3EVER Co. Ltd Korea minutes. http://www.e- NINK®-Ag series, conductive silver ink series of ABC NANOTECH, are djtrade.com/co/abcnano/GC01567926/CA0156 devised for convenient use of piezoelectricinkjet printing on the various 8109/NINK_Ag_(Silver_Conductive_Ink substrates. NINK®-Ag series aremade up of surface modified nano-silver which is developedby a unique technology of ABC NANOTECH. Fine-pitch conductive lines can be demonstrated on the various plates, such as olycarbonate, polyester, polyimide, and ceramics, by using NINK®-Ag series. Nano-sized silver particles can be sintered at lower temperatures, around 150°C, than microsized silver particles can. NINK®-Ag series are applied to conductive line formation in the shorter process than existing conductive line formation methods." .html) NINK®-Ag Silver Conductive Ink Computer Hardware ABC NanoTech Co, Ltd. Korea http://www.evelinecharles.com/product_detail Nano Silver Cleanser is not a soap, it's a revolution.
    [Show full text]
  • The Laser Generation Threshold Characteristics of a Colloidal Solution of Gold and Platinum Nanoparticles with Rodamine 6G
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Tomsk State University Repository 370 17th INTERNATIONAL CONFERENCE ON MICRO/NANOTECHNOLOGIES AND ELECTRON DEVICES EDM 2016 The Laser Generation Threshold Characteristics of a Colloidal Solution of Gold and Platinum Nanoparticles with Rodamine 6G Valeriy A. Donchenko1,2, Mikhail M. Zinoviev1, Alexey A. Zemlyanov2, Vladimir A. Kharenkov1,2, Anna N. Panamaryova3 1National Research Tomsk State University, Tomsk, Russia 2Siberian Physical Technical Institute, Tomsk, Russia 3 National Research Tomsk Polytechnic University, Tomsk, Russia Abstract – In the work the spectral-energy characteristics of or more orders greater than the density of the incident wave stochastic (non-resonator) laser generation of a thin layer of power. organic dye Rhodamine 6G solution with the addition of gold This increases the number of excited molecules within and platinum nanoparticles in the form of a colloidal solution these regions. Due to the Purcell effect [6-8] it is also in ethanol have been experimentally investigated. It has been experimentally established that the generation thresholds possible to increase the speed of active medium molecules are reduced by two orders when adding nanoparticles to the conversions from the excited level into the primary. As active medium. It is shown that the use of nanoparticles having a result, during the agitation action, a large number of a plasmon absorption band in the region of the agitation stimulated emissions of photons appear. This should lead to radiation does not lead to a significant change of the active a decrease in the generation and intensity of emission of the medium generation thresholds.
    [Show full text]
  • A Review of the Use of Nanoparticle Tracking Analysis (NTA)
    WHITEPAPER Nanoscale Material Characterization: a Review of the use of Nanoparticle Tracking Analysis (NTA) PARTICLE SIZE Summary PARTICLE This white paper describes the central role of high resolution particle size CONCENTRATION and concentration measurement nanoparticle research. The technique of FLUORESCENCE Nanoparticle Tracking Analysis (NTA) is described and compared to other DETECTION - DELETED characterization methodologies, and comparative papers are cited. A wide range of application studies is then summarized with specific reference to the use and value of NTA. For those seeking a full listing of NTA experience to date by application type, the NanoSight publication “Nanoparticle Tracking Analysis - A review of applications and usage 2010 - 2012, (Carr B and Wright M (2013)) and its successors provides a detailed catalogue. This item is available from your local Malvern Instruments representative or email [email protected]. Malvern Instruments Worldwide Sales and service centres in over 65 countries www.malvern.com/contact ©2017 Malvern Instruments Limited WHITEPAPER Introduction Nanoscale materials, in the form of nanoparticles, are playing an important and growing role across a range of different applications and industries which seek to exploit the unique properties exhibited by these materials, such as their very high surface area to volume ratio and high number. The overall properties and stability of many manufactured products often depends upon the ability to produce particle populations within fine tolerances, without contaminants or aggregates. The concentration of particles within a suspension is another factor that may have an effect upon the desired outcome of the product. It is clear then that there is a real need to characterize a variety of different properties when analyzing nanoparticles, in order to understand the relationship between the formulation and the overall bulk characteristics of the materials (Fedotov, 2011).
    [Show full text]