nanomaterials Review Magnetic Nanoparticles: From Design and Synthesis to Real World Applications Jiri Kudr 1,2, Yazan Haddad 1 ID , Lukas Richtera 1,2 ID , Zbynek Heger 1,2, Mirko Cernak 3, Vojtech Adam 1,2 and Ondrej Zitka 1,2,* 1 Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic;
[email protected] (J.K.);
[email protected] (Y.H.);
[email protected] (L.R.);
[email protected] (Z.H.);
[email protected] (V.A.) 2 Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic 3 CEPLANT R&D Centre for Low-Cost Plasma and Nanotechnology Surface Modifications, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic;
[email protected] * Correspondence:
[email protected]; Tel.: +420-545-133-350 Received: 30 June 2017; Accepted: 22 August 2017; Published: 29 August 2017 Abstract: The increasing number of scientific publications focusing on magnetic materials indicates growing interest in the broader scientific community. Substantial progress was made in the synthesis of magnetic materials of desired size, morphology, chemical composition, and surface chemistry. Physical and chemical stability of magnetic materials is acquired by the coating. Moreover, surface layers of polymers, silica, biomolecules, etc. can be designed to obtain affinity to target molecules. The combination of the ability to respond to the external magnetic field and the rich possibilities of coatings makes magnetic materials universal tool for magnetic separations of small molecules, biomolecules and cells. In the biomedical field, magnetic particles and magnetic composites are utilized as the drug carriers, as contrast agents for magnetic resonance imaging (MRI), and in magnetic hyperthermia.