Magnetic Nanoparticles: from Design and Synthesis to Real World Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A-10 Optical and Magnetic Tweezers
A-10 Optical and Magnetic Tweezers From Physics 191r Optical Tweezer Word version File:A10tweezer 10.doc Optical Tweezer PDF version File:A10tweezer 10.pdf ELECTROMAGNETIC TRAPPING: Optical and Magnetic Tweezers author: Mara Prentiss, 2004 first experiment: yes Optical tweezer video (http://www.fas.harvard.edu/~phys191r/Bench_Notes/op_tweez.mov) Magnetic tweezer video (http://www.fas.harvard.edu/~phys191r/Bench_Notes/mag_tweez.mov) Contents 1 LEARNING GOALS 2 INTRODUCTION 3 APPARATUS 3.1 Laser 3.2 Laser controller 3.3 Laser power monitor 3.4 Laser beam profiler 3.5 Sample Preparation 3.5.1 Optical Tweezer 3.5.2 Magnetic Tweezer 3.6 Copper sample stage with temperature control 3.7 Translation stage and controller 3.8 Function generator/circle box/oscilloscope 3.9 White light source 3.10 Camera 3.11 Microspheres 3.12 Quadrant photodiode with I/V converter 3.13 Magnetic Tweezer 4 EXPERIMENTAL PROCEDURE 4.1 Investigations of the Optical Trap 4.2 Investigations of Thermal Motion 4.3 Optional Optical Tweezer Experiments 4.4 Interparticle Interaction 4.5 Magnetic Tweezer 5 NOTES 6 REFERENCES 6.1 Optical Traps 6.2 Brownian Motion 6.3 Magnetic Field Gradient Traps 6.4 2D Polymer Sphere Crystals 6.5 2D Melting 6.6 Ordered Trapped Particles 6.7 Electromagnetic Traps 7 BENCH NOTES 8 APPENDIX A: Optical Tweezer Alignment Procedure 8.1 Safety 8.2 Beam alignment 8.3 Camera alignment 8.4 Trapping a particle 9 APPENDIX B: Particle Tracking using IDL 10 APPENDIX C: Particle Tracking using MATLAB 10.1 Purpose 10.2 Outline 10.3 Details 10.3.1 1) Make videos 10.3.2 2) Import video and convert to grayscale 10.3.3 3) Analyze the videos 10.3.4 4) Analyze the data files LEARNING GOALS Trap uncharged dielectric microbeads in aqueous solution with a focused laser beam. -
What of Their Fate and Impact in Stem Cells? J.E
Magnetic nanoparticles in regenerative medicine: what of their fate and impact in stem cells? J.E. Perez, Aurore van de Walle, Jose Perez, Ali Abou-Hassan, Miryana Hémadi, Nathalie Luciani, Claire Wilhelm To cite this version: J.E. Perez, Aurore van de Walle, Jose Perez, Ali Abou-Hassan, Miryana Hémadi, et al.. Magnetic nanoparticles in regenerative medicine: what of their fate and impact in stem cells?. Materials Today Nano, Elsevier, 2020, 11, pp.100084. 10.1016/j.mtnano.2020.100084. hal-03136031 HAL Id: hal-03136031 https://hal.archives-ouvertes.fr/hal-03136031 Submitted on 9 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Magnetic nanoparticles in regenerative medicine: what of their fate and impact in stem cells? Aurore Van de Wallea,*, Jose Efrain Pereza, Ali Abou-Hassanb, Miryana Hemadic, Nathalie Luciania, Claire Wilhelma,* a Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University of Paris, 75205, Paris Cedex 13, France b Sorbonne Université, CNRS UMR 8234, Physicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), 4 place Jussieu, 75005 Paris, France. c Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université de Paris, CNRS-UMR 7086, 75205 Paris Cedex 13, France * Corresponding authors, [email protected] ; [email protected] 1 Abstract With advancing developments over the use of magnetic nanoparticles in biomedical engineering, and more specifically cell-based therapies, the question of their fate and impact once internalized within (stem) cells remains crucial. -
Invincible DNA Tethers: Covalent DNA Anchoring for Enhanced Temporal and Force Stability in Magnetic Tweezers Experiments Richard Janissen, Bojk A
Nucleic Acids Research Advance Access published August 19, 2014 Nucleic Acids Research, 2014 1 doi: 10.1093/nar/gku677 Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments Richard Janissen, Bojk A. Berghuis, David Dulin, Max Wink, Theo van Laar and Nynke H. Dekker* Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands Received May 30, 2014; Revised July 11, 2014; Accepted July 14, 2014 ABSTRACT mental role in a variety of biological processes ranging from cellular motility to the replication, repair and segregation of Downloaded from Magnetic tweezers are a powerful single-molecule DNA (1,2). Examples of single-molecule methods capable technique that allows real-time quantitative inves- of applying force to biological systems include atomic force tigation of biomolecular processes under applied spectroscopy (AFM), optical tweezers and magnetic tweez- force. High pulling forces exceeding tens of picoNew- ers (2,3). The magnetic and optical tweezers methods have tons may be required, e.g. to probe the force range garnered particular attention as they provide high tempo- http://nar.oxfordjournals.org/ of proteins that actively transcribe or package the ral, spatial and force sensitivity in a range from hundreds of genome. Frequently, however, the application of such femtoNewtons to tens of picoNewtons (pN), and, in con- forces decreases the sample lifetime, hindering data trast to AFM, they are also capable of measuring and ap- acquisition. To provide experimentally viable sam- plying torque (4–7). More recent developments in magnetic ple lifetimes in the face of high pulling forces, we tweezers also include the possibility of measuring multiple samples simultaneously (multiplexing) (8–10), allowing for have designed a novel anchoring strategy for DNA a broad, statistically sound characterization of biomolecu- in magnetic tweezers. -
Magnetization Enhancement in Magnetite Nanoparticles Capped with Alginic Acid
Magnetization Enhancement in Magnetite Nanoparticles capped with Alginic Acid B. Andrzejewski a* , W. Bednarski a, M. Ka źmierczak a,b , K. Pogorzelec-Glaser a, B. Hilczer a, S. Jurga b, M. Matczak a, B. Ł ęska c, R. Pankiewicz c, L. K ępi ński d aInstitute of Molecular Physics, Polish Academy of Sciences Smoluchowskiego 17, PL-60179 Pozna ń, Poland * corresponding author: [email protected] bNanoBioMedical Centre, Adam Mickiewicz University Umultowska 85, PL-61614 Pozna ń, Poland cFaculty of Chemistry, Adam Mickiewicz University Umultowska 89b, PL-61614 Pozna ń, Poland dInstitute of Low Temperature and Structure Research, Polish Academy of Sciences Okólna 2, PL-50422 Wrocław, Poland Abstract — We report on the effect of organic acid capping on the Magnetite exhibits the inverse spinel AB 2O4 behavior of magnetite nanoparticles. The nanoparticles of crystallographic structure with two different kinds of voids in magnetite were obtained using microwave activated process, and the fcc lattice of the O2- ions which are occupied by Fe atoms. the magnetic properties as well as the electron magnetic Tetrahedral A voids contain Fe 2+ ions, whereas octahedral resonance behavior were studied for the Fe O nanoparticles 3 4 B voids are occupied by mixed valency Fe 2+ and Fe 3+ ions. capped with alginic acid. The capped nanoparticles exhibit improved crystalline structure of the surface which leads to an Coupling between magnetic sublattices formed by the Fe moments located at sites A and B results in ferrimagnetic enhanced magnetization. The saturation magnetization Ms increases to ~75% of the bulk magnetization. The improved ordering. Mixed valence of the Fe ions and fast electron structure also facilitates quantization of spin-wave spectrum in hopping between the B sites are responsible for a relatively the finite size nanoparticles and this in turn is responsible for high electric conductivity of Fe 3O4 at high and moderate unconventional behavior at low temperatures. -
Building Bridges Within the Bacterial Chromosome
Review Building bridges within the bacterial chromosome 1,2 2 Dan Song and Joseph J. Loparo 1 Harvard Biophysics Program, Harvard Medical School, Boston, MA, USA 2 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA All organisms must dramatically compact their genomes called macrodomains (Box 1) with a size of approximately to accommodate DNA within the cell. Bacteria use a set 1 Mb [2,3]. of DNA-binding proteins with low sequence specificity For the past two decades, studies on bacterial chromo- called nucleoid-associated proteins (NAPs) to assist in some condensation and organization have focused on NAPs chromosome condensation and organization. By bend- that can be classified as DNA benders or DNA bridgers ing or bridging DNA, NAPs also facilitate chromosome (Figure 1). Examples of well-studied DNA benders include segregation and regulate gene expression. Over the past HU (a histone-like protein from Escherichia coli strain U93) decade, emerging single-molecule and chromosome and integration host factor (IHF). These proteins can non- conformation capture techniques have investigated specifically bind to DNA by inserting two arms into the minor the molecular mechanisms by which NAPs remodel groove, inducing curvature of more than 908 [4]. DNA and organize the bacterial chromosome. In this review bridgers form dynamic connections between DNA duplexes we describe how such approaches reveal the biochemi- resulting in large DNA loops that can span several kilobases. cal mechanisms of three NAPs that are believed to Besides condensing chromosomes, DNA bridgers also func- facilitate DNA bridging: histone-like nucleoid structuring tion in chromosome segregation and transcription silencing. -
Tissue Manipulation Using Nano-Particles Ferrofluids for Minimal Access Surgical Applications
Tissue Manipulation Using Nano-Particles Ferrofluids for Minimal Access Surgical Applications YU-SHENG LIN Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Mechanical Engineering September, 2014 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. - ii - Acknowledgements I would like to express my deepest gratitude to my Ph.D. supervisor, Professor Anne Neville for her constant support and guidance through my Ph.D. study. Her enthusiasm, the effort she put into the research and her patient all together make this thesis possible. I am grateful to thank two second supervisors, Dr Rupesh Roshan and Dr Tomasz Liskiewicz, who had supported me in daily research and discussions. I also would like to thank all who had helped this work develop well: the great clinical support from Professor David Jayne, Adrian Hood and Jenifer Barrie on the in-vivo study; the great technical support from Dr Peter Culmer and Dr Ali Alazmani in designing the ex-vivo experimental setup using LabVIEW; the technical support from Dr Nagitha Wijayathunga in characterising the particle migration using micro- CT scanner; the great support from Dr Yi-Fan Chou in processing images using Matlab. In addition, I would like to thank my two examiners, Professor Peter Brett and Dr Mark Wilson for the advices to make this thesis become better. -
Tuning Sizes, Morphologies, and Magnetic Properties of Monocore
Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis Gauvin Hémery, Anthony C. Keyes Jr, Eneko Garaio, Irati Rodrigo, Jose Angel Garcia, Fernando Plazaola, Elisabeth Garanger, Olivier Sandre To cite this version: Gauvin Hémery, Anthony C. Keyes Jr, Eneko Garaio, Irati Rodrigo, Jose Angel Garcia, et al.. Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis. Inorganic Chemistry, American Chemical Society, 2017, 56 (14), pp.8232-8243. 10.1021/acs.inorgchem.7b00956. hal-01567664v3 HAL Id: hal-01567664 https://hal.archives-ouvertes.fr/hal-01567664v3 Submitted on 17 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License This document is the author manuscript version of published paper Inorganic Chemistry, 2017, 56(14), 8232−8243, after peer review and technical editing by the publisher. Final version visible on DOI:10.1021/acs.inorgchem.7b00956 Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis Gauvin Hemerya, Anthony C. -
Superparamagnetic Graphene Oxide–Fe3o4 Nanoparticles Hybrid for Controlled Targeted Drug Carriers
PAPER www.rsc.org/materials | Journal of Materials Chemistry Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers Xiaoying Yang,*a Xiaoyan Zhang,b Yanfeng Ma,b Yi Huang,b Yinsong Wanga and Yongsheng Chen*b Received 1st December 2008, Accepted 3rd February 2009 First published as an Advance Article on the web 5th March 2009 DOI: 10.1039/b821416f A superparamagnetic graphene oxide –Fe3O4 nanoparticles hybrid (GO–Fe3O4) was prepared via a simple and effective chemical precipitation method. The amount of loading of Fe3O4 on GO was estimated as 18.6 wt% by atomic absorption spectrometry. The hybrid was then loaded with doxorubicin hydrochloride (DXR) and the loading capacity was as high as 1.08 mg mgÀ1. Both of the GO–Fe3O4 hybrids before and after loading with DXR can be dispersed well in aqueous solution. They can congregate under acidic conditions and move regularly under the force of an external magnet. Furthermore, the aggregated hybrid can be redispersed to form a stable suspension under basic conditions. These properties make it a potential candidate for controlled targeted drug delivery and release. 1 Introduction biology and biomedicine including targeted drug delivery,10–12 immunoassays,13 hyperthermia,14 magnetic resonance imaging Graphene has attracted tremendous attention because of its contrast enhancements,15 and the separation, purification or 1,2 3 4 5 unique electronic, thermal, mechanical, optical properties detection of proteins, DNA, viruses, cell, etc.16–19 For biological and many potential applications in nanomaterials and nano- applications, many researchers have prepared Fe3O4 magnetic technology. Its one-atom thickness and two-dimensional plane nanoparticles with various structures or loaded them with provide it with a large specific surface area for the immobilization silica,20 polymer,21 lipid vesicles,22 etc. -
Magnetic Nanoparticles As Targeted Delivery Systems in Oncology
1 review Magnetic nanoparticles as targeted delivery systems in oncology Sara Prijic1 and Gregor Sersa2 1 Nanotesla Institute, Ljubljana, Slovenia 2 Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia Received 10 November 2010 Accepted 5 January 2011 Correspondence to: Prof. Gregor Serša, Institute of Oncology Ljubljana, Zaloška 2, SI-1000 Ljubljana, Slovenia. E-mail: [email protected] Disclosure: No potential conflicts of interest were disclosed. Background. Many different types of nanoparticles, magnetic nanoparticles being just a category among them, of- fer exciting opportunities for technologies at the interfaces between chemistry, physics and biology. Some magnetic nanoparticles have already been utilized in clinical practice as contrast enhancing agents for magnetic resonance imaging (MRI). However, their physicochemical properties are constantly being improved upon also for other biologi- cal applications, such as magnetically-guided delivery systems for different therapeutics. By exposure of magnetic na- noparticles with attached therapeutics to an external magnetic field with appropriate characteristics, they are con- centrated and retained at the preferred site which enables the targeted delivery of therapeutics to the desired spot. Conclusions. The idea of binding chemotherapeutics to magnetic nanoparticles has been around for 30 years, how- ever, no magnetic nanoparticles as delivery systems have yet been approved for clinical practice. Recently, binding of nucleic acids to magnetic nanoparticles -
Heating Mechanisms of Magnetic Nanoparticles in Hyperthermia Treatment
Wright State University CORE Scholar Special Session 5: Carbon and Oxide Based Nanostructured Materials (2013) Special Session 5 6-2013 Heating Mechanisms of Magnetic Nanoparticles in Hyperthermia Treatment Anna Lukawska Gregory Kozlowski Wright State University - Main Campus, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/ss5_2013 Part of the Physics Commons Repository Citation Lukawska, A., & Kozlowski, G. (2013). Heating Mechanisms of Magnetic Nanoparticles in Hyperthermia Treatment. https://corescholar.libraries.wright.edu/ss5_2013/1 This Presentation is brought to you for free and open access by the Special Session 5 at CORE Scholar. It has been accepted for inclusion in Special Session 5: Carbon and Oxide Based Nanostructured Materials (2013) by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Heating mechanisms of magnetic nanoparticles in hyperthermia treatment Anna Lukawska and Gregory Kozlowski Wright State University, Physics Department 3640 Col. Glenn Hwy., Dayton, OH 45435, USA Group Members Bachelor Student: Seun Master Students: Deema Xing Vartika Jessica Jason Anna PhD Student: Starting this Fall Postdoc: Erik New Lab Space Labs: PLD system lab Nano lab with Hyperthermia system, AFM, Silver Nano Particles project and Testing films and fluids real and imaginary parts of permeability and permittivity project Hyperthermia • Magnetic hyperthermia is a new non-surgical treatment of cancerous tumors. http://www.tutuz.com/world-conference-interventional-oncology-ferromagnetic-theory-cancer-oncogenesis/ Magnetism http://www.nitt.edu/home/academics/departments/physics/faculty/lecturers/justin/students/magnetic/origin/ • Quantum Mechanical Phenomenon • Originates from orbital motion and spin-1/2 rotational motion of an electron • Governed by Maxwell’s equations • Magnetic Variables are: B, H and M Magnetization Magnetization is the measure of the strength of magnetism in a material. -
The Catholic University of America
THE CATHOLIC UNIVERSITY OF AMERICA Development and Use of Novel Transverse Magnetic Tweezers for Single-Molecule Studies of DNA-Protein Interactions A DISSERTATION Submitted to the Faculty of the Department of Biomedical Engineering School of Engineering Of The Catholic University of America In Partial Fulfillment of the Requirements For the Degree Doctor of Philosophy By Christopher D. Tyson Washington, D.C. 2016 Development and Use of Novel Transverse Magnetic Tweezers for Single-Molecule Studies of DNA-Protein Interactions Christopher D. Tyson, Ph.D. Director: Abhijit Sarkar, Ph.D. I describe several contributions to single molecule experiments. A transverse magnetic tweezers is presented that enables in-plane micromechanical manipulation of a single DNA molecule. This includes a new method for tethering DNA utilizing two labeled beads and a functionalized glass micro-rod. The attachment chemistry reported here enables rapid capture of multiple DNA tethers in parallel, overcomes the difficulties associated with bead aspiration, and preserves the ability to perform differential extension measurements from the bead centroids. Combined with micro- injection pipettes, a new sample cell design, and a buffer exchange system, the components increase the ease-of-use and experimental throughput of the magnetic tweezers device. On the software side, several unique computational methods for interrogating single molecule data are described. First, a technique that uses the diffraction pattern of beads to perform sub-pixel, ~10 nm-level localization of the bead centroids is explained. Second, a novel method for automatically detecting steps in DNA extension data is presented. This algorithm is well-suited for analyzing experiments involving binding and force-induced unbinding of DNA-protein complexes, which produce flat extension regions – steps – corresponding to the times between individual protein association or dissociation events. -
Advances in Magnetic Tweezers for Single Molecule and Cell Biophysics
FRONTIER REVIEW Advances in Magnetic Tweezers for Single Molecule and Cell Biophysics Devrim Kilinc a and Gil U. Lee* a Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x 5 Magnetic tweezers (MTW) enable highly accurate forces to be transduced to molecules to study mechanotransduction at the molecular or cellular level. We review recent MTW studies in single molecule and cell biophysics that demonstrate the flexibility of this technique. We also discuss technical advances in the method on several fronts, i.e., from novel approaches for the measurement of torque to multiplexed biophysical assays. Finally, we describe multi-component nanorods with enhanced optical 10 and magnetic properties and discuss their potential as future MTW probes. Mechanical manipulation of biological material, from proteins to tissue, is receiving growing interest in biomedical research since it provides quantitative information on how mechanical stimuli regulate a multitude of biological processes from enzyme activity to organ development 1. Among the techniques developed to apply force to biological entities, magnetic tweezers (MTW) has claimed particular attention as it is capable of applying torque, it can be fully integrated with a range of powerful light microscopy imaging modes, and it 2 15 offers high force, spatial, and temporal sensitivity . In this review, we present a brief summary of recent measurements made with MTW and highlight several technical advances that are taking place in MTW instrumentation. The MTW technique is based on the non-invasive manipulation of magnetic particles, and thereby the biological entity they are attached to, via an externally-imposed magnetic field and/or field gradient.