Conformation and Polymorphism in PNA-DNA and PNA-RNA Hybrids (Chimera/Duplex/Triple Helix/Molecular Mechanics)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Peptide Nucleic Acids, Morpholinos and Related Antisense Biomolecules
MEDICAL INTELLIGENCE UNIT Peptide Nucleic Acids, Morpholinos and Related Antisense Biomolecules Christopher G. Janson, M.D. Departments of Neurosurgery, Neurology and Molecular Genetics Cell and Gene Therapy Center UMDNJ-Robert Wood Johnson Medical School Camden, New Jersey, U.S.A. Matthew J. During, M.D., ScD. Department of Molecular Medicine and Pathology University of Auckland Auckland, New Zealand LANDES BIOSCIENCE / EUREKAH.COM KLUWER ACADEMIC / PLENUM PUBLISHERS GEORGETOWN, TEXAS NEW YORK, NEW YORK USA U.SA PEPTIDE NUCLEIC ACIDS, MORPHOLINOS AND RELATED ANTISENSE BIOMOLECULES Medical Intelligence Unit Landes Bioscience / Eurekah.com Kluwer Academic / Plenum Publishers Copyright ©2006 Eurekah.com and Kluwer Academic / Plenum Publishers All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher, vdth the exception of any material supplied specifically for the purpose of being entered and executed on a computer system; for exclusive use by the Purchaser of the work. Printed in the U.S.A. Kluwer Academic / Plenum PubHshers, 233 Spring Street, New York, New York, U.S.A. 10013 http ://www.wkap .nl/ Please address all inquiries to the Publishers: Landes Bioscience / Eurekah.com, 810 South Church Street, Georgetown, Texas, U.S.A. 78626 Phone: 512/ 863 7762; FAX: 512/ 863 0081 http ://v^^ww.eurekah. com http://www.landesbioscience.com Peptide -
1 History for Canonical and Non-Canonical Structures of Nucleic Acids
1 1 History for Canonical and Non-canonical Structures of Nucleic Acids The main points of the learning: Understand canonical and non-canonical structures of nucleic acids and think of historical scientists in the research field of nucleic acids. 1.1 Introduction This book is to interpret the non-canonical structures and their stabilities of nucleic acids from the viewpoint of the chemistry and study their biological significances. There is more than 60 years’ history after the discovery of the double helix DNA structure by James Dewey Watson and Francis Harry Compton Crick in 1953, and chemical biology of nucleic acids is facing a new aspect today. Through this book, I expect that readers understand how the uncommon structure of nucleic acids became one of the common structures that fascinate us now. In this chapter, I introduce the history of nucleic acid structures and the perspective of research for non-canonical nucleic acid structures (see also Chapter 15). 1.2 History of Duplex The opening of the history of genetics was mainly done by three researchers. Charles Robert Darwin, who was a scientist of natural science, pioneered genetics. The proposition of genetic concept is indicated in his book On the Origin of Species published in 1859. He indicated the theory of biological evolution, which is the basic scientific hypothesis of natural diversity. In other words, he proposed biological evolution, which changed among individuals by adapting to the environment and be passed on to the next generation. However, that was still a primitive idea for the genetic concept. After that, Gregor Johann Mendel, who was a priest in Brno, Czech Republic, confirmed the mechanism of gene evolution by using “factor” inherited from parent to children using pea plant in 1865. -
Accurate Energies of Hydrogen Bonded Nucleic Acid Base Pairs and Triplets in Trna Tertiary Interactions Romina Oliva1,2,*, Luigi Cavallo3 and Anna Tramontano2
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Nucleic Acids Research, 2006, Vol. 34, No. 3 865–879 doi:10.1093/nar/gkj491 Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions Romina Oliva1,2,*, Luigi Cavallo3 and Anna Tramontano2 1Centro Linceo Interdisciplinare ‘Beniamino Segre’, Accademia dei Lincei, I-00165 Rome, Italy, 2Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’, Universita` di Roma ‘La Sapienza’, I-00185 Rome, Italy and 3Dipartimento di Chimica, Universita` di Salerno, Via Salvador Allende, Baronissi (SA), I-84081, Italy Received December 4, 2005; Revised and Accepted January 19, 2006 ABSTRACT intercalated A58–G18–A/G57–G19 purine bases. All these interactions are highly conserved in cytosolic tRNAs, indic- Tertiary interactions are crucial in maintaining the ating their importance for the tRNA function. Available tRNA structure and functionality. We used a com- experimental data also support the functional importance of bined sequence analysis and quantum mechanics such a region. Mutants of the Escherichia coli tRNAAla(CUA) approach to calculate accurate energies of the most obtained by random mutagenesis and having at least one of frequent tRNA tertiary base pairing interactions. Our the above-mentioned interactions disrupted were shown to be analysis indicates that six out of the nine classical non-functional (6), and insertion of additional nucleotides into tertiary interactions are held in place mainly by the T-loop or deletion of G19 from the D-loop affected the H-bonds between the bases. In the remaining three accuracy of the codon–anticodon recognition, resulting in a cases other effects have to be considered. -
New Constrained Amino Acids and Peptide Nucleic Acid Building Blocks for the Construction of Bio-Polymers Alexandra Gresika
New constrained amino acids and peptide nucleic acid building blocks for the construction of bio-polymers Alexandra Gresika To cite this version: Alexandra Gresika. New constrained amino acids and peptide nucleic acid building blocks for the construction of bio-polymers. Other. Université Côte d’Azur, 2018. English. NNT : 2018AZUR4104. tel-02073232 HAL Id: tel-02073232 https://tel.archives-ouvertes.fr/tel-02073232 Submitted on 19 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT Nouveaux synthons contraints de type - amino acides et PNA en vue de l´élaboration de bio-foldamères New constrained amino acids and peptide nucleic acid building blocks for the construction of biopolymers Alexandra Gresika Molécules Bioactives Présentée en vue de l’obtention Devant le jury, composé de : du grade de docteur en Chimie Muriel Amblard, Directrice de Recherche d’Université Côte d’Azur CNRS, IBMM UMR 5247, Université de Dirigée par : Nadia Patino Montpellier Karine Alvarez, Chargée de Recherche Soutenue le : 16.11.2018 CNRS, AFBM UMR 7257, Université Aix- Marseille Mohamed Mehiri, Maître de Conférences, ICN UMR 7272, Université Côte d’Azur Nadia Patino, Professeur des Universités, ICN UMR 7272, Université Côte d’Azur 1 New constrained amino acids and peptide nucleic acid building blocks for the construction of bio-polymers. -
Plant G-Quadruplex (G4) Motifs in DNA and RNA; Abundant, Intriguing Sequences of Unknown Function T
Plant Science 269 (2018) 143–147 Contents lists available at ScienceDirect Plant Science journal homepage: www.elsevier.com/locate/plantsci Review article Review: Plant G-quadruplex (G4) motifs in DNA and RNA; abundant, intriguing sequences of unknown function T ⁎ Brianna D. Griffin, Hank W. Bass Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, FL, 32306-4295, USA ARTICLE INFO ABSTRACT Keywords: DNA sequences capable of forming G-quadruplex (G4) structures can be predicted and mapped in plant genomes G-quadruplex using computerized pattern search programs. Non-telomeric G4 motifs have recently been found to number in G4 the thousands across many plant species and enriched around gene promoters, prompting speculation that they Gene regulation may represent a newly uncovered and ubiquitous family of cis-acting elements. Comparative analysis shows that cis-regulatory element monocots exhibit five to ten times higher G4 motif density than eudicots, but the significance of this difference has not been determined. The vast scale and complexity of G4 functions, actual or theoretical, are reviewed in relation to the multiple modes of action and myriad genetic functions for which G4s have been implicated in DNA and RNA. Future experimental strategies and opportunities include identifying plant G4-interactomes, resolving the structures of G4s with and without their binding partners, and defining molecular mechanisms through reporter gene, genetic, or genome editing approaches. Given the global importance of plants for food, clothing, medicine, and energy, together with the potential role of G4 motifs as a widely conserved set of DNA sequences that could coordinate gene regulation, future plant G4 research holds great potential for use in plant improvement strategies. -
Advances in Oligonucleotide Drug Delivery
REVIEWS Advances in oligonucleotide drug delivery Thomas C. Roberts 1,2 ✉ , Robert Langer 3 and Matthew J. A. Wood 1,2 ✉ Abstract | Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches — including chemical modification, bioconjugation and the use of nanocarriers — which aim to address the delivery challenge. Oligonucleotides are nucleic acid polymers with the In addition to their ability to recognize specific tar- potential to treat or manage a wide range of diseases. get sequences via complementary base pairing, nucleic Although the majority of oligonucleotide therapeutics acids can also interact with proteins through the for- have focused on gene silencing, other strategies are being mation of three-dimensional secondary structures — a pursued, including splice modulation and gene activa- property that is also being exploited therapeutically. For tion, expanding the range of possible targets beyond example, nucleic acid aptamers are structured -
Guide for Morpholino Users: Toward Therapeutics
Open Access Journal of Drug Discovery, Development and Delivery Special Article - Antisense Drug Research and Development Guide for Morpholino Users: Toward Therapeutics Moulton JD* Gene Tools, LLC, USA Abstract *Corresponding author: Moulton JD, Gene Tools, Morpholino oligos are uncharged molecules for blocking sites on RNA. They LLC, 1001 Summerton Way, Philomath, Oregon 97370, are specific, soluble, non-toxic, stable, and effective antisense reagents suitable USA for development as therapeutics and currently in clinical trials. They are very versatile, targeting a wide range of RNA targets for outcomes such as blocking Received: January 28, 2016; Accepted: April 29, 2016; translation, modifying splicing of pre-mRNA, inhibiting miRNA maturation and Published: May 03, 2016 activity, as well as less common biological targets and diagnostic applications. Solutions have been developed for delivery into a range of cultured cells, embryos and adult animals; with development of a non-toxic and effective system for systemic delivery, Morpholinos have potential for broad therapeutic development targeting pathogens and genetic disorders. Keywords: Splicing; Duchenne muscular dystrophy; Phosphorodiamidate morpholino oligos; Internal ribosome entry site; Nonsense-mediated decay Morpholinos: Research Applications, the transcript from miRNA regulation; Therapeutic Promise • Block regulatory proteins from binding to RNA, shifting Morpholino oligos bind to complementary sequences of RNA alternative splicing; and get in the way of processes. Morpholino oligos are commonly • Block association of RNAs with cytoskeletal motor protein used to prevent a particular protein from being made in an organism complexes, preventing RNA translocation; or cell culture. Morpholinos are not the only tool used for this: a protein’s synthesis can be inhibited by altering DNA to make a null • Inhibit poly-A tailing of pre-mRNA; mutant (called a gene knockout) or by interrupting processes on RNA • Trigger frame shifts at slippery sequences; (called a gene knockdown). -
De Novo Nucleic Acids: a Review of Synthetic Alternatives to DNA and RNA That Could Act As † Bio-Information Storage Molecules
life Review De Novo Nucleic Acids: A Review of Synthetic Alternatives to DNA and RNA That Could Act as y Bio-Information Storage Molecules Kevin G Devine 1 and Sohan Jheeta 2,* 1 School of Human Sciences, London Metropolitan University, 166-220 Holloway Rd, London N7 8BD, UK; [email protected] 2 Network of Researchers on the Chemical Evolution of Life (NoR CEL), Leeds LS7 3RB, UK * Correspondence: [email protected] This paper is dedicated to Professor Colin B Reese, Daniell Professor of Chemistry, Kings College London, y on the occasion of his 90th Birthday. Received: 17 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: Modern terran life uses several essential biopolymers like nucleic acids, proteins and polysaccharides. The nucleic acids, DNA and RNA are arguably life’s most important, acting as the stores and translators of genetic information contained in their base sequences, which ultimately manifest themselves in the amino acid sequences of proteins. But just what is it about their structures; an aromatic heterocyclic base appended to a (five-atom ring) sugar-phosphate backbone that enables them to carry out these functions with such high fidelity? In the past three decades, leading chemists have created in their laboratories synthetic analogues of nucleic acids which differ from their natural counterparts in three key areas as follows: (a) replacement of the phosphate moiety with an uncharged analogue, (b) replacement of the pentose sugars ribose and deoxyribose with alternative acyclic, pentose and hexose derivatives and, finally, (c) replacement of the two heterocyclic base pairs adenine/thymine and guanine/cytosine with non-standard analogues that obey the Watson–Crick pairing rules. -
Dna Enzymes for Peptide-Nucleic Acid Conjugation and for Lysine Methylation
DNA ENZYMES FOR PEPTIDE-NUCLEIC ACID CONJUGATION AND FOR LYSINE METHYLATION BY CHIH-CHI CHU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2017 Urbana, Illinois Doctoral Committee: Professor Scott K. Silverman, Chair Professor Paul J. Hergenrother Associate Professor Douglas A. Mitchell Professor Steven C. Zimmerman Abstract Proteins and RNA are known to be enzymes in nature. These biopolymers have complex secondary and tertiary structures that can enable substrate binding and catalysis. DNA is primarily double-stranded and is not known to be catalytic in nature. However, given the similarities in chemical structure between DNA and RNA, it is reasonable to think that single- stranded DNA can also form complex structures. In fact, artificial DNA enzymes have been identified in laboratories by in vitro selection. The identification of new enzymes favors the use of nucleic acids over proteins for several reasons. First, nucleic acids can be amplified by natural enzymes whereas proteins cannot be amplified in any way. Second, the number of possible sequences is smaller for nucleic acids (4n, where n is the length of the biopolymer) than for proteins (20n). Therefore, selection experiments for identifying nucleic acid enzymes will cover a larger fraction of total sequence space. Furthermore, of the sequence space that is covered, a large portion of nucleic acid sequences can fold into secondary or tertiary structures, whereas most random sequences of proteins often will not fold and thus will aggregate. Between the two nucleic acid polymers, DNA offers additional advantages over RNA because DNA can be directly amplified by polymerases whereas RNA requires an extra reverse transcription step. -
12.12.2017 1 CHAPTER 1 OLIGONUCLEOTIDES Part 2
12.12.2017 Canonical nucleobase pairing and alternative base pairs CHAPTER 1 OLIGONUCLEOTIDES Part 2 – noncanonical nucleobases Natural and non-natural base pairs that function in polymerase reactions Self-assembly of whole genes and DNA nanostructures The technology tested by assembly of the kanamycin-resistance gene and growing the bacteria in the environment containing kanamycin after assembly and conversion of that gene. S. Benner et al., Beilstein J. Org. Chem. 2014, 10, 2348–2360. doi:10.3762/bjoc.10.245 1 12.12.2017 AEGIS – Artificially Expanded Genetic Information System AEGIS – Artificially Expanded Genetic Information System ZP CG S. Benner et al., Beilstein J. Org. Chem. 2014, 10, 2348–2360. doi:10.3762/bjoc.10.245 S. Benner et al., J. Am. Chem. Soc., 2011 , 133 (38), pp 15105–15112 AEGIS – Permanent orthogonal nucleobases surviving PCR ACGTZP-DNA crystal structures Electron density presented to the minor groove recognition site by polymerases „ minor groove scanning hypothesis” Error rate 0,2% per a PCR cycle – both removal and incorporation of Z and P the artificial genetic system capable to evolve. Pol: Deep Vent – 2 Z/P, Taq/Phu – 3-4 Z/P 18-mers: 2+2 Z:P pairs B-DNA dZTP ( deprotonated ) at higher pH pairs slightly with G 6 consecutive Z:P A-DNA loss of some Z, but also gain of some new Z mutants. 0,1 nm wider, but otherwise alike G:C pairs S. Benner et al., J. Am. Chem. Soc., 2011 , 133 (38), pp 15105–15112 S. Benner et al., J. Am. Chem. Soc., 2015, 137, pp 6947–6955 2 12.12.2017 Unnatural aminoacid incorporation using a noncanonical base pair (A) The coupled transcription–translation system using the nonstandard codon– anticodon interaction for the site-specific incorporation of 3-chlorotyrosine into the Ras protein. -
Synthesis of Phosphorodiamidate Morpholino Oligonucleotides Using Trityl and Fmoc Chemistry-A New Method Amenable to Automated Synthesizer
Synthesis of Phosphorodiamidate Morpholino Oligonucleotides Using Trityl and Fmoc Chemistry-A New Method Amenable to Automated Synthesizer Ujjwal Ghosh†a, Jayanta Kundu†a, Atanu Ghosh†, Arnab Das†, Dhriti Nagar¶, Aurnab Ghose¶ and Surajit Sinha†* †School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India ¶Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India aAuthors have equal contribution *Corresponding author: [email protected] KEYWORDS: Morpholino oligonucleotides, Trityl and Fmoc chemistry, DNA Synthesizer, Activators ETT and Iodine, Antisense reagents. Abstract: Phosphorodiamidatemorpholino oligo- nucleotides (PMO) are routinely used for gene silencing and the recently developed PMO-based drug “Exondys51” has highlighted the importance of PMO as excellent antisense reagents. Howev- er, the synthesis of PMO has remained challeng- ing. Here a method for the synthesis of PMO us- ing either trityl or Fmoc-protected active morpho- lino monomers using chlorophosphoramidate chemistry in the presence of a suitable coupling agent on a solid support has been reported. After screening several coupling agents (tetrazole, 1,2,4-triazole, ETT, iodine, LiBr and dicyanoimidazole), ETT and iodine were found to be suitable for efficient coupling. Fmoc chemistry was not known for PMO synthesis because the preparation of Fmoc-protected chloro- phosphoramidate monomers was not trivial. Synthesis of Fmoc-protected activated monomers and their use in PMO synthesis is reported for the first time. 25-mer PMO has been synthesized using both the methods and vali- dated in vivo in the zebrafish model by targeting the no tail gene. -
Binary Complex Crystal Structure of DNA Polymerase Β Reveals Multiple Conformations of the Templating 8-Oxoguanine Lesion
Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion Vinod K. Batraa, David D. Shocka, William A. Bearda, Charles E. McKennab, and Samuel H. Wilsona,1 aLaboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-2233; and bDepartment of Chemistry, University of Southern California, Los Angeles, CA 90089-0744 Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved October 31, 2011 (received for review July 27, 2011) Oxidation of genomic DNA forms the guanine lesion 7,8-dihydro-8- well-extended by DNA polymerases facilitating G to T mutagen- oxoguanine (8-oxoG). When in the template base position during esis. The structural basis for DNA polymerase preferences in DNA synthesis the 8-oxoG lesion has dual coding potential by vir- mutagenic bypass of the 8-oxoG lesion is emerging across the tue of its anti- and syn-conformations, base pairing with cytosine DNA polymerase families (8–12) and is the subject of the present and adenine, respectively. This impacts mutagenesis, because inser- report. tion of adenine opposite template 8-oxoG can result in a G to T Repair of the 8-oxoG-DNA lesion in mammalian cells pro- transversion. DNA polymerases vary by orders of magnitude in ceeds by several DNA repair pathways (13–15), but the major their preferences for mutagenic vs. error-free 8-oxoG lesion bypass. pathway is considered to be a form of the base excision repair Yet, the structural basis for lesion bypass specificity is not well un- (BER) pathway referred to as the “GO system” (16).