bioRxiv preprint doi: https://doi.org/10.1101/2020.05.24.113951; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Hoogsteen base pairs increase the susceptibility of double-stranded DNA to cytotoxic damage Yu Xu1#, Akanksha Manghrani2#, Bei Liu2, Honglue Shi1, Uyen Pham2, Amy Liu, and Hashim M. Al-Hashimi*1,2 1Department of Chemistry, Duke University, Durham, NC, 27710, USA 2Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA *Corresponding author: Hashim M. Al-Hashimi Email:
[email protected] #These authors contributed equally to this work Running title: Hoogsteen-mediated DNA damage Keywords. DNA dynamics; sequencing; m1A; AlkB; echinomycin 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.24.113951; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: As the Watson-Crick faces of nucleobases are protected in double-stranded DNA (dsDNA), it is commonly assumed that deleterious alkylation damage to the Watson-Crick faces of nucleobases predominantly occurs when DNA becomes single-stranded during replication and transcription. However, damage to the Watson-Crick faces of nucleobases has been reported in dsDNA in vitro through mechanisms that are not understood. In addition, the extent of protection from methylation damage conferred by dsDNA relative to single-stranded DNA (ssDNA) has not been quantified. Watson-Crick base-pairs in dsDNA exist in dynamic equilibrium with Hoogsteen base-pairs that expose the Watson-Crick faces of purine nucleobases to solvent.