remote sensing Article Morphometric Analysis for Soil Erosion Susceptibility Mapping Using Novel GIS-Based Ensemble Model Alireza Arabameri 1,* , John P. Tiefenbacher 2 , Thomas Blaschke 3 , Biswajeet Pradhan 4,5 and Dieu Tien Bui 6,* 1 Department of Geomorphology, Tarbiat Modares University, Tehran 14117-13116, Iran 2 Department of Geography, Texas State University, San Marcos, TX 78666, USA;
[email protected] 3 Department of Geoinformatics–Z_GIS, University of Salzburg, 5020 Salzburg, Austria;
[email protected] 4 Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Information, Systems and Modelling, Faculty of Engineering and IT, University of Technology Sydney, Sydney, 2007 NSW, Australia;
[email protected] 5 Department of Energy and Mineral Resources Engineering, Sejong University, Choongmu-gwan, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea 6 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam * Correspondence:
[email protected] (A.A.);
[email protected] (D.T.B.) Received: 17 January 2020; Accepted: 2 March 2020; Published: 9 March 2020 Abstract: The morphometric characteristics of the Kalvar¯ ¯ı basin were analyzed to prioritize sub-basins based on their susceptibility to erosion by water using a remote sensing-based data and a GIS. The morphometric parameters (MPs)—linear, relief, and shape—of the drainage network were calculated using data from the Advanced Land-observing Satellite (ALOS) phased-array L-type synthetic-aperture radar (PALSAR) digital elevation model (DEM) with a spatial resolution of 12.5 m. Interferometric synthetic aperture radar (InSAR) was used to generate the DEM. These parameters revealed the network’s texture, morpho-tectonics, geometry, and relief characteristics.