Histone Methylation by Temozolomide; a Classic DNA Methylating Anticancer Drug
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Cross-Talk Between Methylation and Phosphorylation in Lymphoid-Specific Helicase Drives Cancer Stem-Like Properties
Signal Transduction and Targeted Therapy www.nature.com/sigtrans ARTICLE OPEN The cross-talk between methylation and phosphorylation in lymphoid-specific helicase drives cancer stem-like properties Na Liu1,2,3, Rui Yang1,2, Ying Shi1,2, Ling Chen1,2, Yating Liu1,2, Zuli Wang1,2, Shouping Liu1,2, Lianlian Ouyang4, Haiyan Wang1,2, Weiwei Lai1,2, Chao Mao1,2, Min Wang1,2, Yan Cheng5, Shuang Liu4, Xiang Wang6, Hu Zhou7, Ya Cao1,2, Desheng Xiao1 and Yongguang Tao1,2,6 Posttranslational modifications (PTMs) of proteins, including chromatin modifiers, play crucial roles in the dynamic alteration of various protein properties and functions including stem-cell properties. However, the roles of Lymphoid-specific helicase (LSH), a DNA methylation modifier, in modulating stem-like properties in cancer are still not clearly clarified. Therefore, exploring PTMs modulation of LSH activity will be of great significance to further understand the function and activity of LSH. Here, we demonstrate that LSH is capable to undergo PTMs, including methylation and phosphorylation. The arginine methyltransferase PRMT5 can methylate LSH at R309 residue, meanwhile, LSH could as well be phosphorylated by MAPK1 kinase at S503 residue. We further show that the accumulation of phosphorylation of LSH at S503 site exhibits downregulation of LSH methylation at R309 residue, which eventually promoting stem-like properties in lung cancer. Whereas, phosphorylation-deficient LSH S503A mutant promotes the accumulation of LSH methylation at R309 residue and attenuates stem-like properties, indicating the critical roles of LSH PTMs in modulating stem-like properties. Thus, our study highlights the importance of the crosstalk between LSH PTMs in determining its activity and function in lung cancer stem-cell maintenance. -
Amino Acid Building Block Models – in Brief
Amino Acid Building Block Models – In Brief Key Teaching Points for Amino Acid Building Block Models© Overall Student Learning Objective: What Dictates How a Protein Folds? Amino acids are the building blocks of proteins. All amino acids have an identical core structure consisting of an alpha-carbon, carboxyl group, amino group and R-group (sidechain). A linear chain of amino acids is a polypeptide. The primary sequence of a protein is the linear sequence of amino acids in a polypeptide. Proteins are made up of amino acid monomers linked together by peptide bonds. Peptide bond formation between amino acids results in the release of water (dehydration synthesis or condensation reaction). The protein backbone is characterized by the “N-C-C-N-C-C. .” pattern. The “ends” of the protein can be identified by the N-terminus (amino group) end and the C-terminus (carboxyl group) end. For a more complete lesson guide, please visit: http://www.3dmoleculardesigns.com/3DMD-Files/AABB/ContentsandAssembly.pdf Amino Acid Core Structure Build an amino acid according to the diagram to the right: 1. Identify the alpha carbon, amino group, carboxyl group and R-group (sidechain representation) in the structure you have constructed. Two amino acids can be chemically linked by a reaction called “condensation” or “dehydration synthesis” to form a dipeptide bond linking the two amino acids. A chain of amino acid units (monomers) linked together by peptide bonds is called a polypeptide. General Dipeptide Structure Construct a model of a dipeptide using the amino acid models previously built. 2. What are the products of the condensation reaction (dehydration synthesis)? 3. -
Distinct Contributions of DNA Methylation and Histone Acetylation to the Genomic Occupancy of Transcription Factors
Downloaded from genome.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press Research Distinct contributions of DNA methylation and histone acetylation to the genomic occupancy of transcription factors Martin Cusack,1 Hamish W. King,2 Paolo Spingardi,1 Benedikt M. Kessler,3 Robert J. Klose,2 and Skirmantas Kriaucionis1 1Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom; 2Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom; 3Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, United Kingdom Epigenetic modifications on chromatin play important roles in regulating gene expression. Although chromatin states are often governed by multilayered structure, how individual pathways contribute to gene expression remains poorly under- stood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs). Both of these mechanisms can potentially affect gene expression, but the importance of each, and whether these activities are inte- grated to achieve appropriate gene regulation, remains largely unknown. To address this important question, we measured gene expression, chromatin accessibility, and transcription factor occupancy in wild-type or DNA methylation-deficient mouse embryonic stem cells following HDAC inhibition. We observe widespread increases in chromatin accessibility at ret- rotransposons when HDACs are inhibited, and this is magnified when cells also lack DNA methylation. A subset of these elements has elevated binding of the YY1 and GABPA transcription factors and increased expression. The pronounced ad- ditive effect of HDAC inhibition in DNA methylation–deficient cells demonstrates that DNA methylation and histone deacetylation act largely independently to suppress transcription factor binding and gene expression. -
Small Nucleolar Rnas Determine Resistance to Doxorubicin in Human Osteosarcoma
International Journal of Molecular Sciences Article Small Nucleolar RNAs Determine Resistance to Doxorubicin in Human Osteosarcoma Martina Godel 1, Deborah Morena 1, Preeta Ananthanarayanan 1, Ilaria Buondonno 1, Giulio Ferrero 2,3 , Claudia M. Hattinger 4, Federica Di Nicolantonio 1,5 , Massimo Serra 4 , 1 2 1, , 1, , Riccardo Taulli , Francesca Cordero , Chiara Riganti * y and Joanna Kopecka * y 1 Department of Oncology, University of Torino, 1026 Torino, Italy; [email protected] (M.G.); [email protected] (D.M.); [email protected] (P.A.); [email protected] (I.B.); [email protected] (F.D.N.); [email protected] (R.T.) 2 Department of Computer Science, University of Torino, 10149 Torino, Italy; [email protected] (G.F.); [email protected] (F.C.) 3 Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy 4 Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; [email protected] (C.M.H.); [email protected] (M.S.) 5 Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy * Correspondence: [email protected] (C.R.); [email protected] (J.K.); Tel.: +39-0116705857 (C.R.); +39-0116705849 (J.K.) These authors equally contributed to this work. y Received: 31 May 2020; Accepted: 21 June 2020; Published: 24 June 2020 Abstract: Doxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells. -
Ubiquitination/Deubiquitination and Acetylation/Deacetylation
Acta Pharmacologica Sinica (2011) 32: 139–140 npg © 2011 CPS and SIMM All rights reserved 1671-4083/11 $32.00 www.nature.com/aps Research Highlight Ubiquitination/deubiquitination and acetylation/ deacetylation: Making DNMT1 stability more coordinated Qi HONG, Zhi-ming SHAO* Acta Pharmacologica Sinica (2011) 32: 139–140; doi: 10.1038/aps.2011.3 n mammals, DNA methylation plays important role in human cancers[7, 8]. abundance of DNMT1 mutant lacking Ia crucial role in the regulation of Ubiquitinproteasome pathway is sig the HAUSP interaction domain, but not gene expression, telomere length, cell nificant in the stability of DNMT1[8], but the fulllength protein. These results differentiation, X chromosome inactiva ubiquitinmediated protein degradation show the coordination between ubiquit tion, genomic imprinting and tumori can be enhanced or attenuated by some ination of DNMT1 by UHRF1 and deu genesis[1]. DNA methylation patterns modifications like acetylation/deacety biquitination by HAUSP. Furthermore, are established de novo by DNA meth lation, protein methylation/demethyla they found that knockdown of HDAC1 yltransferases (DNMTs) 3a and 3b, tion, phosphorylation and Snitrosy increased DNMT1 acetylation, and whereas DNMT1 maintains the parent lation[9–11]. Estève et al demonstrated reduced DNMT1 abundance. Addition specific methylation from parental cells that SET7mediated lysine methy lation ally, acetyltransferase Tip60 which was to their progeny[2]. After DNA replica of DNMT1 decreased DNMT1 level found to acetylate DNMT1 promoted its tion, the new DNA strand is unmethy by ubiquitinmediated degradation[10]. ubiquitination, then destabilized it. At lated. Thus with the mother methylated Furthermore, an early study[12] showed last, Tip60 and HAUSP were found to strand, the DNA is hemimethylated. -
Introduction to Proteins and Amino Acids Introduction
Introduction to Proteins and Amino Acids Introduction • Twenty percent of the human body is made up of proteins. Proteins are the large, complex molecules that are critical for normal functioning of cells. • They are essential for the structure, function, and regulation of the body’s tissues and organs. • Proteins are made up of smaller units called amino acids, which are building blocks of proteins. They are attached to one another by peptide bonds forming a long chain of proteins. Amino acid structure and its classification • An amino acid contains both a carboxylic group and an amino group. Amino acids that have an amino group bonded directly to the alpha-carbon are referred to as alpha amino acids. • Every alpha amino acid has a carbon atom, called an alpha carbon, Cα ; bonded to a carboxylic acid, –COOH group; an amino, –NH2 group; a hydrogen atom; and an R group that is unique for every amino acid. Classification of amino acids • There are 20 amino acids. Based on the nature of their ‘R’ group, they are classified based on their polarity as: Classification based on essentiality: Essential amino acids are the amino acids which you need through your diet because your body cannot make them. Whereas non essential amino acids are the amino acids which are not an essential part of your diet because they can be synthesized by your body. Essential Non essential Histidine Alanine Isoleucine Arginine Leucine Aspargine Methionine Aspartate Phenyl alanine Cystine Threonine Glutamic acid Tryptophan Glycine Valine Ornithine Proline Serine Tyrosine Peptide bonds • Amino acids are linked together by ‘amide groups’ called peptide bonds. -
1519038862M28translationand
Paper No. : 15 Molecular Cell Biology Module : 28 Translation and Post-translation Modifications in Eukaryotes Development Team Principal Investigator : Prof. Neeta Sehgal Department of Zoology, University of Delhi Co-Principal Investigator : Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator : Prof. Kuldeep K. Sharma Department of Zoology, University of Jammu Content Writer : Dr. Renu Solanki, Deen Dayal Upadhyaya College Dr. Sudhida Gautam, Hansraj College, University of Delhi Mr. Kiran K. Salam, Hindu College, University of Delhi Content Reviewer : Prof. Rup Lal Department of Zoology, University of Delhi 1 Molecular Genetics ZOOLOGY Translation and Post-translation Modifications in Eukaryotes Description of Module Subject Name ZOOLOGY Paper Name Molecular Cell Biology; Zool 015 Module Name/Title Cell regulatory mechanisms Module Id M28: Translation and Post-translation Modifications in Eukaryotes Keywords Genome, Proteome diversity, post-translational modifications, glycosylation, phosphorylation, methylation Contents 1. Learning Objectives 2. Introduction 3. Purpose of post translational modifications 4. Post translational modifications 4.1. Phosphorylation, the addition of a phosphate group 4.2. Methylation, the addition of a methyl group 4.3. Glycosylation, the addition of sugar groups 4.4. Disulfide bonds, the formation of covalent bonds between 2 cysteine amino acids 4.5. Proteolysis/ Proteolytic Cleavage 4.6. Subunit binding to form a multisubunit protein 4.7. S-nitrosylation 4.8. Lipidation 4.9. Acetylation 4.10. Ubiquitylation 4.11. SUMOlytion 4.12. Vitamin C-Dependent Modifications 4.13. Vitamin K-Dependent Modifications 4.14. Selenoproteins 4.15. Myristoylation 5. Chaperones: Role in PTM and mechanism 6. Role of PTMs in diseases 7. Detecting and Quantifying Post-Translational Modifications 8. -
Transcriptional Regulation by Histone Ubiquitination and Deubiquitination
Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Transcriptional regulation by histone ubiquitination and deubiquitination Yi Zhang1 Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA Ubiquitin (Ub) is a 76-amino acid protein that is ubiqui- The fact that histone ubiquitination occurs in the largely tously distributed and highly conserved throughout eu- monoubiquitinated form and is not linked to degrada- karyotic organisms. Whereas the extreme C-terminal tion, in combination with the lack of information regard- four amino acids are in a random coil, its N-terminal 72 ing the responsible enzymes, prevented us from under- amino acids have a tightly folded globular structure (Vi- standing the functional significance of this modification. jay-Kumar et al. 1987; Fig. 1A). Since its discovery ∼28 Recent identification of the E2 and E3 proteins involved years ago (Goldknopf et al. 1975), a variety of cellular in H2B ubiquitination (Robzyk et al. 2000; Hwang et al. processes including protein degradation, stress response, 2003; Wood et al. 2003a) and the discovery of cross-talk cell-cycle regulation, protein trafficking, endocytosis sig- between histone methylation and ubiquitination (Dover naling, and transcriptional regulation have been linked et al. 2002; Sun and Allis 2002) have set the stage for to this molecule (Pickart 2001). Ubiquitylation is pro- functional analysis of histone ubiquitination. In a timely posed to serve as a signaling module, and the informa- paper published in the previous issue of Genes & Devel- tion transmitted by this tag may depend on the nature of opment, Shelley Berger and colleagues (Henry et al. -
Introduction 1.1 Post-Translational Modifications
Chapter I: Introduction 1.1 Post-translational modifications Post-translational modifications (PTMs) are responsible for dynamic regulation of protein structure and function (Jensen et al., 2006). One example of the function of post-translational modifications in the dynamic regulation of protein structure and function is signal transduction; post-translational modification of key regulatory proteins in signal transduction pathways controls cellular proliferation, metabolism, gene expression, cytoskeletal organization and apoptosis (Jensen et al., 2006). Post-translational modifications not only change the mass of the protein, they are also often responsible for changes in charge, structure and conformation. This leads to changes in the biological activity of proteins like enzymes, the binding affinity of proteins to receptors and other protein-protein interactions (Hoffmann et al., 2008) (Murray et al., 1998). For example, the interaction of the cytokine TGF-beta with its receptor complex results in the phosphorylation of SMAD family proteins which activates these proteins to regulate target gene expression (Massague et al., 2000). Post-translational modified amino acid residues can act as binding sites on proteins for a specific recognition domain on other proteins. For example, phosphorylated tyrosine residues can bind to SH2 or PTB domains (Pawson et al., 1997). Depending on the type of PTM they can be very abundant and have a large number of target proteins, whereas other PTM`s have only a few target proteins. Moreover, some PTM`s are connected with several different residues and not only with one residue. For example multi-site phosphorylation that primarily targets Serine, Threonine and Tyrosine residues is a crucial mechanism for the regulation of protein localization and functional activity (Cohen et al., 2000). -
Peptides & Proteins
Peptides & Proteins (thanks to Hans Börner) 1 Proteins & Peptides Proteuos: Proteus (Gr. mythological figure who could change form) proteuo: „"first, ref. the basic constituents of all living cells” peptos: „Cooked referring to digestion” Proteins essential for: Structure, metabolism & cell functions 2 Bacterium Proteins (15 weight%) 50% (without water) • Construction materials Collagen Spider silk proteins 3 Proteins Structural proteins structural role & mechanical support "cell skeleton“: complex network of protein filaments. muscle contraction results from action of large protein assemblies Myosin und Myogen. Other organic material (hair and bone) are also based on proteins. Collagen is found in all multi cellular animals, occurring in almost every tissue. • It is the most abundant vertebrate protein • approximately a quarter of mammalian protein is collagen 4 Proteins Storage Various ions, small molecules and other metabolites are stored by complexation with proteins • hemoglobin stores oxygen (free O2 in the blood would be toxic) • iron is stored by ferritin Transport Proteins are involved in the transportation of particles ranging from electrons to macromolecules. • Iron is transported by transferrin • Oxygen via hemoglobin. • Some proteins form pores in cellular membranes through which ions pass; the transport of proteins themselves across membranes also depends on other proteins. Beside: Regulation, enzymes, defense, functional properties 5 Our universal container system: Albumines 6 zones: IA, IB, IIA, IIB, IIIA, IIIB; IIB and -
How Genes Work
Help Me Understand Genetics How Genes Work Reprinted from MedlinePlus Genetics U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services Table of Contents 1 What are proteins and what do they do? 1 2 How do genes direct the production of proteins? 5 3 Can genes be turned on and off in cells? 7 4 What is epigenetics? 8 5 How do cells divide? 10 6 How do genes control the growth and division of cells? 12 7 How do geneticists indicate the location of a gene? 16 Reprinted from MedlinePlus Genetics (https://medlineplus.gov/genetics/) i How Genes Work 1 What are proteins and what do they do? Proteins are large, complex molecules that play many critical roles in the body. They do most of the work in cells and are required for the structure, function, and regulation of thebody’s tissues and organs. Proteins are made up of hundreds or thousands of smaller units called amino acids, which are attached to one another in long chains. There are 20 different types of amino acids that can be combined to make a protein. The sequence of amino acids determineseach protein’s unique 3-dimensional structure and its specific function. Aminoacids are coded by combinations of three DNA building blocks (nucleotides), determined by the sequence of genes. Proteins can be described according to their large range of functions in the body, listed inalphabetical order: Antibody. Antibodies bind to specific foreign particles, such as viruses and bacteria, to help protect the body. Example: Immunoglobulin G (IgG) (Figure 1) Enzyme. -
Structure and Synthesis of Antifungal Disulfide
microorganisms Review Structure and Synthesis of Antifungal Disulfide β-Strand Proteins from Filamentous Fungi Györgyi Váradi 1,*, Gábor K. Tóth 1,2 and Gyula Batta 3 1 Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; [email protected] 2 MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary 3 Department of Organic Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-62-545-142; Fax: +36-62-545-971 Received: 20 November 2018; Accepted: 24 December 2018; Published: 27 December 2018 Abstract: The discovery and understanding of the mode of action of new antimicrobial agents is extremely urgent, since fungal infections cause 1.5 million deaths annually. Antifungal peptides and proteins represent a significant group of compounds that are able to kill pathogenic fungi. Based on phylogenetic analyses the ascomycetous, cysteine-rich antifungal proteins can be divided into three different groups: Penicillium chrysogenum antifungal protein (PAF), Neosartorya fischeri antifungal protein 2 (NFAP2) and “bubble-proteins” (BP) produced, for example, by P. brevicompactum. They all dominantly have β-strand secondary structures that are stabilized by several disulfide bonds. The PAF group (AFP antifungal protein from Aspergillus giganteus, PAF and PAFB from P. chrysogenum, Neosartorya fischeri antifungal protein (NFAP)) is the best characterized with their common β-barrel tertiary structure. These proteins and variants can efficiently be obtained either from fungi production or by recombinant expression. However, chemical synthesis may be a complementary aid for preparing unusual modifications, e.g., the incorporation of non-coded amino acids, fluorophores, or even unnatural disulfide bonds.