Sathyajith Mathew Wind Energy Fundamentals, Resource Analysis and Economics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TOP 100 POWER PEOPLE 2016 the Movers and Shakers in Wind
2016 Top 100 Power People 1 TOP 100 POWER PEOPLE 2016 The movers and shakers in wind Featuring interviews with Samuel Leupold from Dong Energy and Ian Mays from RES Group © A Word About Wind, 2016 2016 Top 100 Power People Contents 2 CONTENTS Compiling the Top 100: Advisory panel and ranking process 4 Interview: Dong Energy’s Samuel Leupold discusses offshore 6 Top 100 breakdown: Statistics on this year’s table 11 Profiles: Numbers 100 to 41 13 Interview: A Word About Wind meets RES Group’s Ian Mays 21 Profiles: Numbers 40 to 6 26 Top five profiles:The most influential people in global wind 30 Top 100 list: The full Top 100 Power People for 2016 32 Next year: Key dates for your diary in 2017 34 21 Facing the future: Ian Mays on RES Group’s plans after his retirement © A Word About Wind, 2016 2016 Top 100 Power People Editorial 3 EDITORIAL resident Donald Trump. It is one of The company’s success in driving down the Pthe biggest shocks in US presidential costs of offshore wind over the last year history but, in 2017, Trump is set to be the owes a great debt to Leupold’s background new incumbent in the White House. working for ABB and other big firms. Turn to page 6 now if you want to read the The prospect of operating under a climate- whole interview. change-denying serial wind farm objector will not fill the US wind sector with much And second, we went to meet Ian Mays joy. -
SRI: Wind Power Generation Project Main Report
Environment Impact Assessment (Draft) May 2017 SRI: Wind Power Generation Project Main Report Prepared by Ceylon Electricity Board, Ministry of Power and Renewable Energy, Democratic Socialist Republic of Sri Lanka for the Asian Development Bank. CURRENCY EQUIVALENTS (as of 17 May 2017) Currency unit – Sri Lankan rupee/s(SLRe/SLRs) SLRe 1.00 = $0.00655 $1.00 = SLRs 152.70 ABBREVIATIONS ADB – Asian Development Bank CCD – Coast Conservation and Coastal Resource Management Department CEA – Central Environmental Authority CEB – Ceylon Electricity Board DoF – Department of Forest DS – District Secretary DSD – District Secretaries Division DWC – Department of Wildlife Conservation EA – executing agency EIA – environmental impact assessment EMoP – environmental monitoring plan EMP – environmental management plan EPC – engineering,procurement and construction GND – Grama Niladhari GoSL – Government of Sri Lanka GRM – grievance redress mechanism IA – implementing agency IEE – initial environmental examination LA – Local Authority LARC – Land Acquisition and Resettlement Committee MPRE – Ministry of Power and Renewable Energy MSL – mean sea level NARA – National Aquatic Resources Research & Development Agency NEA – National Environmental Act PIU – project implementation unit PRDA – Provincial Road Development Authority PUCSL – Public Utility Commission of Sri Lanka RDA – Road Development Authority RE – Rural Electrification RoW – right of way SLSEA – Sri Lanka Sustainable Energy Authority WT – wind turbine WEIGHTS AND MEASURES GWh – 1 gigawatt hour = 1,000 Megawatt hour 1 ha – 1 hectare=10,000 square meters km – 1 kilometre = 1,000 meters kV – 1 kilovolt =1,000 volts MW – 1 megawatt = 1,000 Kilowatt NOTE In this report, “$” refers to US dollars This environmental impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. -
Wind Turbine Report
Wind Turbine Report Horizontal Axis Wind Turbine( HAWT ) -What is wind Turbine? -A wind turbine is a device that converts the wind's kinetic energy into electrical energy. -What is it looks like? - (↓The picture of wind turbine listed below↓) I did a wind-turbine assembly in solidworks, and the following pictures basically show each part of the structure of a wind turbine. (Base↑) (lower mast↑) (upper mast↑) (hub↑) (blade↑) (Nacelle↑) Assembling the parts shown above, I got the wind-turbine assembly, which looks like the picture below. (←My turbine in Solidworks) (↑Multi-view graph for mu wind turbine↑) Darrieus wind turbines -What is the Darrieus wind turbine? -The Darrieus wind turbine is a type of vertical axis wind turbine (VAWT) used to generate electricity from the energy carried in the wind. The turbine consists of a number of curved aerofoil blades mounted on a vertical rotating shaft or framework. The curvature of the blades allows the blade to be stressed only in tension at high rotating speeds. There are several closely related wind turbines that use straight blades. This design of wind turbine was patented by Georges Jean Marie Darrieus, a French aeronautical engineer; filing for the patent was October 1, 1926. There are major difficulties in protecting the Darrieus turbine from extreme wind conditions and in making it self-starting. -What does it look like? -The photo of Darrieus wind turbine and my solidworks picture of Darrieus wind turbine are listed below. -What are the advantages of Darrieus wind turbine? - (1) The rotor shaft is vertical. Therefore it is possible to place the load, like a generator or a centrifugal pump at ground level. -
U.S. Offshore Wind Manufacturing and Supply Chain Development
U.S. Offshore Wind Manufacturing and Supply Chain Development Prepared for: U.S. Department of Energy Navigant Consulting, Inc. 77 Bedford Street Suite 400 Burlington, MA 01803-5154 781.270.8314 www.navigant.com February 22, 2013 U.S. Offshore Wind Manufacturing and Supply Chain Development Document Number DE-EE0005364 Prepared for: U.S. Department of Energy Michael Hahn Cash Fitzpatrick Gary Norton Prepared by: Navigant Consulting, Inc. Bruce Hamilton, Principal Investigator Lindsay Battenberg Mark Bielecki Charlie Bloch Terese Decker Lisa Frantzis Aris Karcanias Birger Madsen Jay Paidipati Andy Wickless Feng Zhao Navigant Consortium member organizations Key Contributors American Wind Energy Association Jeff Anthony and Chris Long Great Lakes Wind Collaborative John Hummer and Victoria Pebbles Green Giraffe Energy Bankers Marie DeGraaf, Jérôme Guillet, and Niels Jongste National Renewable Energy Laboratory David Keyser and Eric Lantz Ocean & Coastal Consultants (a COWI company) Brent D. Cooper, P.E., Joe Marrone, P.E., and Stanley M. White, P.E., D.PE, D.CE Tetra Tech EC, Inc. Michael D. Ernst, Esq. Notice and Disclaimer This report was prepared by Navigant Consulting, Inc. for the use of the U.S. Department of Energy – who supported this effort under Award Number DE-EE0005364. The work presented in this report represents our best efforts and judgments based on the information available at the time this report was prepared. Navigant Consulting, Inc. is not responsible for the reader’s use of, or reliance upon, the report, nor any decisions based on the report. NAVIGANT CONSULTING, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESSED OR IMPLIED. Readers of the report are advised that they assume all liabilities incurred by them, or third parties, as a result of their reliance on the report, or the data, information, findings and opinions contained in the report. -
A Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Small Wind Turbines
Journal of Power and Energy Engineering, 2019, 7, 27-44 http://www.scirp.org/journal/jpee ISSN Online: 2327-5901 ISSN Print: 2327-588X A Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Small Wind Turbines Palanisamy Mohan Kumar1,2*, Krishnamoorthi Sivalingam2,3, Srikanth Narasimalu3, Teik-Cheng Lim2, Seeram Ramakrishna1, He Wei4 1Department of Mechanical Engineering, National University of Singapore, Singapore City, Singapore 2School of Science and Technology, Singapore University of Social Sciences, Singapore City, Singapore 3Innovation Centre, Nanyang Technological University, Singapore City, Singapore 4Singapore Institute of Manufacturing Technology, Singapore city, Singapore How to cite this paper: Kumar, P.M., Abstract Sivalingam, K., Narasimalu, S., Lim, T.-C., Ramakrishna, S. and Wei, H. (2019) A Re- Wind energy witnessed tremendous growth in the past decade and emerged view on the Evolution of Darrieus Vertical as the most sought renewable energy source after solar energy. Though the Axis Wind Turbine: Small Wind Turbines. Horizontal Axis Wind Turbines (HAWT) is preferred for multi-megawatt Journal of Power and Energy Engineering, power generation, Vertical Axis Wind Turbines (VAWT) is as competitive as 7, 27-44. https://doi.org/10.4236/jpee.2019.74002 HAWT. The current study aims to summarize the development of VAWT, in particular, Darrieus turbine from the past to the project that is underway. The Received: March 31, 2019 reason for the technical challenges and past failures are discussed. Various Accepted: April 25, 2019 configurations of VAWT have been assessed in terms of reliability, compo- Published: April 28, 2019 nents and low wind speed performance. Innovative concepts and the feasibil- Copyright © 2019 by author(s) and ity to scale up for megawatt electricity generation, especially in offshore envi- Scientific Research Publishing Inc. -
Annual Report 2011 2011 Annu a L Repo R T
Key AnnuAl RepoRt Key milestones 2011 figuRes Financial figures 2011 2010 2009 2008 2007 2012 2011 Revenues (€mn) 3,033 2,764 3,229 3,834 3,247 MW equivalent sold 2,802 2,405 3,145 3,684 3,289 • Gamesa consolidated its leading position in energy • Gamesa maintains its leading position in the world EBIT (€mn) 131 119 177 233 250 efficiency and environmental terms with the energy business, having installed 3,308 MW in net profit (€mn) 51 50 115 320 220 certification of the world's first ecodesigned the year net debt/EBITDA 2.0x -0.6x 0.7x 0.1x 0.5x wind turbine • Gamesa signs deal to supply 356 MW of the new Share price at 31 Dec. (€) 3.21 5.71 11.78 12.74 31.98 • Ignacio Martín appointed Executive Chairman G97-2.0 MW turbine in 2011 Earnings per share (€) 0.21 0.21 0.47 1.32 0.90 Gross dividend per share (€) 0.05 0.12 0.21 0.23 0.21 • Gamesa decides to install its first offshore prototype • Supply of 200 MW in Egypt, with a 5-year in Spain, at Arinaga (Gran Canaria) maintenance contract • Entering new markets: uruguay and nicaragua • new framework agreement with Iberdrola Social indicators 2011 2010 2009 2008 2007 2011 t Workforce 8,357 7,262 6,360 7,187 6,945 • European launch of large component • Type certificate from lG for the G128-4.5 MW turbine, R refurbishment service the most powerful onshore turbine on the market % international workforce 42 36 31 32 33 % women in workforce 23.2 24.55 25.52 25.34 22.30 Repo • Agreement to sell 480 MW in the united States to • New supply contracts in China: 200 MW for Huadian % permanently employed -
CHAPTER 8 Development and Analysis of Vertical-Axis Wind Turbines
CHAPTER 8 Development and analysis of vertical-axis wind turbines Paul Cooper School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW, Australia. Vertical-axis wind turbines (VAWTs) have been demonstrated to be effective devices for extracting useful energy from the wind. VAWTs have been used to generate mechanical and electrical energy at a range of scales, from small-scale domestic applications through to large-scale electricity production for utilities. This chapter summarises the development of the main types of VAWT, including the Savonius, Darrieus and Giromill designs. A summary of the multiple-streamtube analysis of VAWTs is also provided to illustrate how the complex aerodynamics of these devices may be analysed using relatively straightforward techniques. Results from a double-multiple-streamtube analysis are used to illustrate the details of the performance of VAWTs in terms of turbine blade loads and rotor power output as a function of fundamental parameters such as tip speed ratio. The implications for VAWT design are discussed. 1 Introduction Vertical-axis wind turbines (VAWTs) come in a wide and interesting variety of physical confi gurations and they involve a range of complex aerodynamic char- acteristics. Not only were VAWTs the fi rst wind turbines to be developed but they have also been built and operated at a scale matching some of the biggest wind turbines ever made. VAWTs in principle can attain coeffi cients of performance, Cp ,max, that are comparable to those for horizontal-axis wind turbines (HAWTs) and they have several potentially signifi cant advantages over the HAWTs. These advantages include the fact that VAWTs are cross-fl ow devices and therefore accept wind from any direction. -
Spotlight on Northern Ireland Regional Focus
COMMUNICATION HUB FOR THE WIND ENERGY INDUSTRY ‘TITANIC’ SPOTLIGHT ON NORTHERN IRELAND REGIONAL FOCUS GLOBAL WIND ALLIANCE COMPETEncY BasED TRaininG FEBRUARY/MARCH 2012 | £5.25 www.windenergynetwork.co.uk INTRODUCTION COMMUNICATING YOUR THOUGHTS AND OPINIONS WIND ENERGY NETWORK TV CHANNEL AND ONLINE LIBRARY These invaluable industry resources continue to build and we are very YOU WILL FIND WITHIN THIS We hope you enjoy the content and pleased with the interest and support EDITION CONTRIBUTIONS WHICH please feel free to contact us to make of our proposed sponsors. Please give COULD BE DESCRIBED AS OPINION your feelings known – it’s good to talk. the team a call and find out how to get PIECES. THEY ARE THERE TO FOCUS involved in both. ATTENTION ON VERY IMPORTANT ‘SpoTLIGHT ON’ regIONAL FOCUS SUBJECT AREAS WITH A VIEW Our regional focus in this edition features Remember they are free to TO GALVANISING OPINION AND Northern Ireland. Your editor visited contribute and free to access. BRINGING THE INDUSTRY TOGETHER the area in late November 2011 when TO ENSURE EFFECTIVE PROGRESS reporting on the Quo Vadis conference Please also feel free to contact us AND THEREFORE SUCCESS. and spent a very enjoyable week soaking if you wish to highlight any specific up the atmosphere, local beverages as area within the industry and we will Ray Sams from Spencer Coatings well the Irish hospitality (the craic). endeavour to encourage debate and features corrosion in marine steel feature the issue within our publication. structures, Warren Fothergill from As you will see it is a very substantial Group Safety Services on safety feature and the overall theme is one of passports and Michael Wilder from excitement and forward thinking which Petans on competency based training will ensure Northern Ireland is at the standardisation. -
Annual-Report-Summary-2014.Pdf
gamesa 2014-01-1 INGLES (resumen)_Maquetación 1 27/04/15 09:52 Página 1 gamesa 2014-01-1 INGLES_Maquetación 1 24/04/15 14:40 Página 2 Gamesa in 2014 MW installed 18,831 MW MW installed 3,572 MW MW under O M 961 MW MW under O &M 14,498 MW & Proprietary capacity 3,971 MW Proprietary capacity 602 MW Europe & RoW 16% United States China 15% MW installed 4,151 MW 9% MW under O &M 1,348 MW Proprietary capacity 838 MW % India 26% Latin America MW installed 1,713 MW 34% MW under O &M 1,444 MW Proprietary capacity 1,041 MW MW installed 2,970 MW MW under O &M 2,519 MW Proprietary capacity 314 MW % MW sold in 2014. 31,237 MW 6,766 MW 20,770 MW installed proprietary capacity under O &M 2 gamesa 2014-01-1 INGLES_Maquetación 1 24/04/15 14:40 Página 3 Economic indicators Recurring E bit Net profit and E bit margin Sales MW sold MM € MM € MM € 2,623 92 191 2,846 129 2,336 1,953 45 5.5% 6.7% 2013 2014 2013 2014 2013 2014 2013 2014 Social and environmental indicators Employees Health & Safety CO 2 prevented MM t Workforce Frequency index 6,431 47 6,079 1.74 1.72 43 2013 2014 2013 2014 2013 2014 Gender Severity index 0.055 0.054 22% 78% 2013 2014 Gamesa in 2014 3 gamesa 2014-01-1 INGLES_Maquetación 1 28/04/15 11:36 Página 4 Index Message from the Chairman Message from the Business CEO Corporate Governance 4 gamesa 2014-01-1 INGLES (resumen)_Maquetación 1 27/04/15 10:39 Página 5 1 2 Business model 2014 Results 18 Geographic 52 Market environment diversification and outlook 21 Vertical integration 55 Financial performance 24 Innovation 28 Financial strength 32 Commitments: employees, customers, shareholders, suppliers, environment and communities Index 5 gamesa 2014-01-1 INGLES_Maquetación 1 24/04/15 14:41 Página 6 Message from the Chairman Dear shareholders, For the past couple of years Gamesa has been focused on executing its 2013-2015 business Plan, designed with the aim of making the company profitable again and adapting it to the new sector paradigm without sacrificing the flexibility needed to tap potential market opportunities. -
Wind Power Research in Wikipedia
Scientometrics Wind power research in Wikipedia: Does Wikipedia demonstrate direct influence of research publications and can it be used as adequate source in research evaluation? --Manuscript Draft-- Manuscript Number: SCIM-D-17-00020R2 Full Title: Wind power research in Wikipedia: Does Wikipedia demonstrate direct influence of research publications and can it be used as adequate source in research evaluation? Article Type: Manuscript Keywords: Wikipedia references; Wikipedia; Wind power research; Web of Science records; Research evaluation; Scientometric indicators Corresponding Author: Peter Ingwersen, PhD, D.Ph., h.c. University of Copenhagen Copenhagen S, DENMARK Corresponding Author Secondary Information: Corresponding Author's Institution: University of Copenhagen Corresponding Author's Secondary Institution: First Author: Antonio E. Serrano-Lopez, PhD First Author Secondary Information: Order of Authors: Antonio E. Serrano-Lopez, PhD Peter Ingwersen, PhD, D.Ph., h.c. Elias Sanz-Casado, PhD Order of Authors Secondary Information: Funding Information: This research was funded by the Spanish Professor Elias Sanz-Casado Ministry of Economy and Competitiveness (CSO 2014-51916-C2-1-R) Abstract: Aim: This paper is a result of the WOW project (Wind power On Wikipedia) which forms part of the SAPIENS (Scientometric Analyses of the Productivity and Impact of Eco-economy of Spain) Project (Sanz-Casado et al., 2013). WOW is designed to observe the relationship between scholarly publications and societal impact or visibility through the mentions -
Breeze Production Wind Farm Management System
Breeze Production Wind Farm Management System PRODUCT OVERVIEW Software for wind farm owners and operators. Contents Contents 2 Monitor 15 Operator’s Dashboard 16 Company Overview 4 Map Overview 17 Wind Turbine 18 Increase Profitability 5 Alarms & Notifications 19 Error Categorization 20 Customers 6 Analyze 21 Wallenstam 7 YARD ENERGY Group 8 Performance 22 Rabbalshede Kraft 9 Stop 23 Vindin 10 Loss 24 Weather 25 Product Overview 11 Custom Data 26 Breeze User Types 12 Manage 27 Breeze Highlights 13 Breeze Components 14 Budget & KPI’s 28 Scheduled Maintenance 29 2 Contractual Availability 30 Support 44 Flexible User Permissions 31 Release Management 45 Reports 32 Breeze vs. the Competition 46 Secure 33 Network Architecture 34 Word from the CEO 47 Wind Farm Architecture 35 Data Security 36 Data Collection 37 Extend 38 Breeze API 39 Park PC Data Buffer 40 Wind Farm Monitoring for Your Mobile Device 41 Installation & Support 42 Installation 43 3 Company Overview Greenbyte, the company behind Breeze, was founded in 2010 based on the firm belief that the inherent variability in the “fuels”, for renewable electricity production make the industry highly dependent on quality data to create value. During the company’s four year life time this belief has proven to be true and to become increasingly important. Value creation in the renewable energy industry is dependent on high quality data from production assets. With so many actors in the value chain dependent on data to create value there is a need for products leveraging modern software to make the data available. During the past four years Greenbyte has developed two products - Breeze Development – for wind energy project developers and Breeze Production – for wind turbine owners. -
Vertical Axis Wind Turbines: Current Technologies and Future Trends
International Conference on Renewable Energies and Power Quality (ICREPQ’15) La Coruña (Spain), 25th to 27th March, 2015 exÇxãtuÄx XÇxÜzç tÇw cÉãxÜ dâtÄ|àç ]ÉâÜÇtÄ (RE&PQJ) ISSN 2172-038 X, No.13, April 2015 Vertical Axis Wind Turbines: Current Technologies and Future Trends J. Damota 1, I. Lamas 2, A. Couce 1, J. Rodríguez 1 1 Marine Innovations Research Group E.U.P. A Coruna University Avda 19 feb, s/n - 15405 Ferrol (Spain) Phone number: +0034 981 337 400 - 3002, e-mail: [email protected] [email protected], [email protected] 2 Thermal Systems and Heat Transfer Research Group E.P.S. A Coruna University C/ Mendizabal, s/n Esteiro 15403 Ferrol (Spain) Phone number: +0034 981 337 400 - 3002, e-mail: [email protected] Abstract. This paper, based on the pursuit of scientific 1. Introduction to VAWT technology. articles published and recorded in the last five years (2010-2014) patents on VAWT technology, gives an A wind turbine converts the kinetic energy in wind into image of the current situation of the treated technology. mechanical energy, which will be reflected on its axis. To convert this mechanical energy into electrical energy, the From data extracted we know: turbine has to be coupled to an electrical generator, The different models that are working with different becoming a wind turbine. geometries, distinguishing between Savonius, Darrieus, To perform this task, several types of turbines are used, hybrid of both (D+S), models dedicated to Offshore differentiated into two types by the position of its axis of technology and what can be applied generally (D&S) on rotation with respect to the surface on which it is fixed, both types of VAWT (controllers, electric generators, and can be then Horizontal Axis Wind Turbines (HAWT), materials ...).