Fractal-COSYSMO Systems Engineering Cost Estimation for Complex Projects Manish Shivram Khadtare University of Texas at El Paso, [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2011-01-01 Fractal-COSYSMO Systems Engineering Cost Estimation for Complex Projects Manish Shivram Khadtare University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Engineering Commons Recommended Citation Khadtare, Manish Shivram, "Fractal-COSYSMO Systems Engineering Cost Estimation for Complex Projects" (2011). Open Access Theses & Dissertations. 2326. https://digitalcommons.utep.edu/open_etd/2326 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. FRACTAL-COSYSMO SYSTEMS ENGINEERING COST ESTIMATION FOR COMPLEX PROJECTS MANISH KHADTARE Department of Electrical and Computer Engineering APPROVED: _________________________________________ Eric D. Smith, Ph.D., Chair _________________________________________ Ricardo L. Pineda, Ph.D. _________________________________________ Joseph Pierluissi, Ph.D. _________________________________________ Bill Tseng, Ph.D. _______________________________________ Benjamin C. Flores, Ph.D. Dean of the Graduate School Copyright © by Manish Khadtare 2011 Dedicated to my Parents, Shweta and Vaishnavi FRACTAL-COSYSMO SYSTEMS ENGINEERING COST ESTIMATION FOR COMPLEX PROJECTS by Manish Khadtare, BSEE THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Electrical and Computer Engineering “THE UNIVERSITY OF TEXAS AT EL PASO” August 2011 ACKNOWLEDGMENTS First and foremost, I would like to express my deepest appreciation to Dr. Eric Smith for his training, guidance, friendship, and encouragement throughout this project. I would also like to express my sincere gratitude to my committee members: Dr. Ricardo Pineda, Dr. Bill Tseng and Dr. Joseph Pierluissi. Additionally, I would like to thank the following individuals for assistance throughout this project: Gaurav Prabhukhot, Anoop Randive, Sunny Ambure, Kishan Kharade, Bhupinder Labana, Ashok Kamble, Vighnesh Nandgaonkar, Amol Shelar, Hemraj Parate and Satyan Awale. Last but not least, Dr. Ricardo Valerdi for his support and encouragement to gain new strengths for the completion of the project in different ways. In addition, I would like to thank Dr. Ricardo Valerdi, Dr. Ricardo Pineda for their support and continuous encouragement to let this kind of program continue with such progression within the university. Finally, I would like to thank the following for providing funding and allowing me to do my Thesis in other department throughout the Master’s program: University of Texas at El Paso, Department of Electrical Engineering and Department of Industrial, Manufacturing and Systems Engineering. Last but not least, I would like to thank Vaishnavi for her unconditional love, support, and motivation to do an extra effort every day. v FRACTAL-COSYSMO SYSTEMS ENGINEERING COST ESTIMATION FOR COMPLEX PROJECTS ABSTRACT By MANISH SHIVRAM KHADTARE Cost estimation for engineering projects has advanced beyond the bottom-up counting of costs and the top-down use of analogies. Parametric cost estimation is now employed to estimate volatile software costs, as well as the cost of Systems Engineering (SE) effort in engineering projects. The Constructive Systems Engineering Cost Model (COSYSMO) estimates the number of Person-Months (PM) necessary to complete systems engineering projects by using project size and cost parameters. On re-examining the nature of systems engineering and the structures of complex projects that must be built in an orderly fashion on a variety of scales, it is apparent that a parametric formula that employs fractal dimensionality principles should be well suited for their cost estimation. This thesis therefore develops the connections between fractal dimensionality and cost estimation with COSYSMO. The result is Fractal-COSYSMO, a novel cost estimating formulation that can be used to determine the cost of developing systems that show complexity on a broad scale. vi TABLE OF CONTENTS ACKNOWLEDGMENTS .............................................................................................................. v ABSTRACT ................................................................................................................................... vi TABLE OF CONTENTS .............................................................................................................. vii LIST OF FIGURES ..................................................................................................................... viii LIST OF TABLES ......................................................................................................................... xi CHAPTER I, COSYSMO ............................................................................................................... 1 1.1, Introduction: Effort Estimation for Engineering .................................................................. 1 1.2, Development of COSYSMO ................................................................................................ 2 1.3, Objective and Use of COSYSMO ........................................................................................ 8 1.4, Variations of COSYSMO (COSYSMO-Risk) ..................................................................... 9 CHAPTER II, Fractals .................................................................................................................. 11 2.1, Introduction: Conceptual Foundations ................................................................................... 11 2.2 Fractal Dimensionality Mathematics: ................................................................................. 30 2.2.1, Shoreline length (Fractals and Chaos, Chapter 3, p. 43) ............................................. 40 Chapter III, Fractal-COSYSMO ................................................................................................... 44 3.1, Analogies between COSYSMO Parameters and Fractals .................................................. 45 3.2, Mathematical Formulation ................................................................................................. 50 3.3, Sensitivity Analysis ............................................................................................................ 52 CHAPTER IV: Applications of Fractal-COSYSMO .................................................................. 39 4.1. Network Construction ........................................................................................................ 39 4.2.1 Urban Form, Growth and Pattern (Scale, Size and Morphology) ................................ 44 4.2.2 Factors Affecting the Urban Form: .............................................................................. 47 4.3 Perfect Alternator of Urban Growth: (Box Counting Method) ........................................... 49 4.3.1 Example of Box-Counting Concept Applied to the Indian Cities- Helps In Knowing The Urban Form of The City: ................................................................................................ 54 4.4 Process for Growth of Fractal: ............................................................................................ 58 4.5 Evaluating the Fractal Dimension: ...................................................................................... 61 4.6. Space, Time and Fractal Analysis of the Urbanization of Indian Mega Cities Useful For Cost Estimation of Cities. (Useful for Cost Estimation) ........................................................... 63 vii 4.6.1 Space and Time Analysis: ............................................................................................ 63 4.6.2 Fractal analysis: ............................................................................................................ 70 4.6.3 Application of fractal analysis at the outskirts of Mumbai city. .................................. 73 4.7. Education: Student Person Months .................................................................................... 79 CHAPTER V: CONCLUSION..................................................................................................... 84 REFERENCES: ............................................................................................................................ 85 APPENDIX 1: Fractal Antennae .................................................................................................. 91 CURRICULUM VITA ................................................................................................................. 99 viii LIST OF FIGURES Figure 1: A fly flying towards a piece of paper from very far away revels the problem of defining dimensions .................................................................................................................................... 12 Figure 2: A fern is a common example of geometry in nature that is easily modeled using fractal geometry ....................................................................................................................................... 13 Figure 3: Generation of Cantor set ...............................................................................................