Radio Frequency (Rf) Energy Harvesting Using

Total Page:16

File Type:pdf, Size:1020Kb

Radio Frequency (Rf) Energy Harvesting Using University of Wollongong Research Online University of Wollongong in Dubai - Papers University of Wollongong in Dubai 2018 Radio frequency (Rf) energy harvesting using metamaterial structure for antenna/rectenna communication network: A review Nornikman Hassan Universiti Teknikal Malaysia Melaka Badrul Ahmad Universiti Teknikal Malaysia Melaka Mohd Fareq Abdul Malek University of Wollongong in Dubai, [email protected] Mohamad Zoinol Abi Aziz Universiti Teknikal Malaysia Melaka Hamizan Abu Bakar Universiti Teknikal Malaysia Melaka, [email protected] See next page for additional authors Publication Details Hassan, N., Ahmad, B. Hisham., Abd Malek, M. Fareq., Aziz, M. Zoinol Abidin Abd., Bakar, H., Azizi, M. Syafiq oorN . & Ismail, M. Khairy. 2018, 'Radio frequency (Rf) energy harvesting using metamaterial structure for antenna/rectenna communication network: A review', Journal of Theoretical and Applied Information Technology, vol. 96, no. 6, pp. 1538-1550. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Authors Nornikman Hassan, Badrul Ahmad, Mohd Fareq Abdul Malek, Mohamad Zoinol Abi Aziz, Hamizan Abu Bakar, Muhammad Syafiq ooN Azizi, and M Ismail This journal article is available at Research Online: http://ro.uow.edu.au/dubaipapers/976 Journal of Theoretical and Applied Information Technology 31st March 2018. Vol.96. No 6 © 2005 – ongoing JATIT & LLS ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 RADIO FREQUENCY (RF) ENERGY HARVESTING USING METAMATERIAL STRUCTURE FOR ANTENNA/RECTENNA COMMUNICATION NETWORK: A REVIEW *1NORNIKMAN HASSAN, 1BADRUL HISHAM AHMAD, 2MOHAMED FAREQ ABD MALEK, 1MOHAMAD ZOINOL ABIDIN ABD AZIZ, 1HAMIZAN ABU BAKAR, 1MUHAMMAD SYAFIQ NOOR AZIZI, 1MOHD KHAIRY ISMAIL 1Center for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, Malaysia 2Faculty of Engineering and Information Sciences, University of Wollongong in Dubai (UOWD), United Arab Emirates (UAE) E-mail: *[email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] ABSTRACT Starting from the year 2000, metamaterial structure has been one of the favorite techniques used by several researchers to improve the performance of many radio frequency (RF) device designs, especially in the microwave range area. Wireless charging technologies that have emerged are also one of the highlighted discussions among users, fabricators and researchers. This paper presents a literature review of radio frequency energy harvesting, using a split ring resonator (SRR) and other metamaterial structure in antenna network applications. The objective of this paper is to define and compare the several performances such as the technique used, the material of the substrate, dimension, return loss and the resonant frequency of the antenna. The split ring resonator is an interesting metamaterial structure, that is applied in several researcher’s work compared with other metamaterial structure such as electronic band gap (EBG), photonic band gap (PBG), and artificial magnetic conductor (AMC). This structure has the capability to improve the performance of the resonant frequency, minimizing the size and improving the return loss of the design, while sometimes creating a filter notch to the design. SRR structure is a good candidate for energy harvesting because it can increase the conversion efficiency. Keywords: Radio Frequency, Energy Harvesting, Antenna Network, Split Ring Resonator, Metamaterial, Rectenna 1. INTRODUCTION efficiency of the devices or the system. Secondly, to enable the implementation of a new technology, for Urgent need caused by environmental example wireless sensor networks while the third is conditions which are less secure and energy to reduce the cost of fabrication, for example the consuming to have caused widespread computing cost which can be reduced by harvesting contamination in need of alternative energy such as the waste heat and this can be used to power the energy harvesting from natural energy. Energy computer. harvesting or energy scavenging is a practice where Previously, several reviews on energy natural energy is derived from external sources that harvesting has been carried out. Babayo [2] is caught and stored in small wireless devices. reviewed on the energy management scheme, in The examples of energy harvesting sources energy harvesting wireless sensor networks while are mechanical energy, thermal energy (heat), Guo [3] focused on the piezoelectric and vibration, movement, sound, light energy, thermoelectric technologies for energy harvesting. electromagnetic energy, natural energy, human In another review paper, Mohrehkesh [4] described body energy and others [1]. One of the advantages energy harvesting in electromagnetic nanonetwork of energy harvesting is firstly, to improve the areas while Zhao [5], Invernizzi [6] and Albrni [7] 1538 Journal of Theoretical and Applied Information Technology 31st March 2018. Vol.96. No 6 © 2005 – ongoing JATIT & LLS ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 focused on wind energy harvesting, the technique of photonic band gap (PBG), and artificial magnetic energy harvesting on human motion and ultra-low conductor (AMC) for energy harvester. power energy harvester wireless communication Firstly, the focus is about the limitations of devices, respectively. Apart from that, Shaikh [8] the previous antenna design works which only reviewed wireless sensor networks while Soyata considered the patch antenna works, without other [9], Qasem [10] and Monticone [11] reviewed the antenna such as the YagiUda, helical, horn antenna RF energy harvesting in embedded system, rectenna or parabolic type antenna. Secondly, the selected design in energy harvesting, and metamaterial on antenna of the previous study is only on the patch the optical range, respectively. Sothman [12] antenna with metamaterial structure such as SRR, focused on thermoelectric energy harvesting while EBG, PBG and AMC that is applied in the energy Le [13] and Sum [14] focused on energy harvesting harvesting works. Also, the limit consideration of in aeronautical applications and metaresonator array antenna is only focused on the microwave range on energy harvesting. antenna with antenna resonant frequency between Radio Frequency (RF) energy harvesting is 300 MHz and 300 GHz. It also focusses on the an emerging technology that will drive the next antenna or rectenna that with embedded structure of generation of wireless sensor networks (WSN) metamaterial. without the need of batteries. The battery is the The research gap of this work is that there main source of goods, but the disposal of it is are limited literature review papers which focus on causing extreme toxic pollution to the environment. the energy harvesting devices that apply the In addition, the replacement and disposal of the metamaterial structure in the antenna design. The battery are a hassle, because of its limited useful life previous research. The need of this research is to [15]. Therefore, environmentally friendly collect and describe the previous work about the technology is needed to avoid disposal of batteries metamaterials, which applied several works of the that contain hazardous chemicals and metals. energy harvesting. The review of this study can be RF energy harvesting is a green technology used for other researchers and show meaningful that has the potential to provide power indefinitely. gaps in this topic. This collected literature review It is suitable for an inclusive range of wireless can be used to other researcher to compare and applications, such as RFID tags, wireless sensor guide their next research. The limitation and networks and implantable electronics devices. demerits in this work is when searching for Figure 1 shows the block diagram of an effective information including not open access manuscript antenna including a circuit capable of converting in several libraries. RF signals to DC voltage. Again, this study of literature review will compare the several types of the metamaterial structure used in antenna or rectenna application. It also shows the material of the substrate used for fabrication, the resonant frequency used, antenna gain result and return loss achieved. 2. BASIC CONCEPT OF METAMATERIAL Figure 1: Block diagram of an effective antenna network STRUCTURE alongside a circuit capable of converting RF signals to The metamaterial resonator structure has an DC voltage. artificial media that is not usually found in nature, but their parameters can be engineered to any The efficiency of an antenna mainly depends specified value. Research on metamaterial resonator on its impedance and the impedance of the energy structure started in the late 1960s by Veselago [18] converting circuit [16-17]. A normal RF energy who introduced the electrodynamics of substances harvesting system consists of an antenna as the with simultaneously negative values of dielectric main component with an impedance matching permittivity and magnetic permeability. Split ring circuit, voltage booster rectifier and a charging resonator (SRR) is a popular and basic circuit. metamaterial resonator structure. Veselago The discussion of this study will focus on explained that, if a material had both negative previous
Recommended publications
  • Array Designs for Long-Distance Wireless Power Transmission: State
    INVITED PAPER Array Designs for Long-Distance Wireless Power Transmission: State-of-the-Art and Innovative Solutions A review of long-range WPT array techniques is provided with recent advances and future trends. Design techniques for transmitting antennas are developed for optimized array architectures, and synthesis issues of rectenna arrays are detailed with examples and discussions. By Andrea Massa, Member IEEE, Giacomo Oliveri, Member IEEE, Federico Viani, Member IEEE,andPaoloRocca,Member IEEE ABSTRACT | The concept of long-range wireless power trans- the state of the art for long-range wireless power transmis- mission (WPT) has been formulated shortly after the invention sion, highlighting the latest advances and innovative solutions of high power microwave amplifiers. The promise of WPT, as well as envisaging possible future trends of the research in energy transfer over large distances without the need to deploy this area. a wired electrical network, led to the development of landmark successful experiments, and provided the incentive for further KEYWORDS | Array antennas; solar power satellites; wireless research to increase the performances, efficiency, and robust- power transmission (WPT) ness of these technological solutions. In this framework, the key-role and challenges in designing transmitting and receiving antenna arrays able to guarantee high-efficiency power trans- I. INTRODUCTION fer and cost-effective deployment for the WPT system has been Long-range wireless power transmission (WPT) systems soon acknowledged. Nevertheless, owing to its intrinsic com- working in the radio-frequency (RF) range [1]–[5] are plexity, the design of WPT arrays is still an open research field currently gathering a considerable interest (Fig.
    [Show full text]
  • Metamaterial Design Antenna for Biomedical Application Integrated with Solar Panel
    METAMATERIAL DESIGN ANTENNA FOR BIOMEDICAL APPLICATION INTEGRATED WITH SOLAR PANEL G. Jeevagan Navukarasu Lenin1*, R. Vimala2, R. Dhanasekaran3, S. Arun Prakash4 and K. Baskaran5 1Department of ECE, Anna University- University College of Engineering, Ramanathapuram, India. 2Department of EEE, PSNA College of Engineering and Technology, Dindigul, India. 3Department of EEE, Syed Ammal Engineering College, Ramanathapuram, India. 4Department of EEE, Anna University- University College of Engineering, Ramanathapuram, India. 5Department of CSE, Government College of Technology, Coimbatore, India. *Correspondence: [email protected] Abstract: Today biomedical application holds a vital role an increase in antenna bandwidth. This can be in medical diagnosis and treatment and as an academic achieved by loading the radiating element of a patch discipline. In recent days glucose monitoring, insulin with complementary split-ring resonator (CSRR), pumps, deep brain simulations and endoscopy are a few employing a metamaterial superstrate or using CSRR examples of the medical applications through body in the ground plane. The future mobile applications implantable units. Antennas are placed into human bodies or mounted over the torso (skin-fat-muscle) to form a make use of the solar panel for self-power. The biomedical application and exterior instruments can be drawback is the size limitation for antenna in mobile arranged to be used for short range biotelemetry devices. The three main design types of mobile applications. Remote monitoring allows the diagnosis of photovoltaic antenna include the use of solar cells as diseases and can be serving as the application of hospital an RF ground plane, as a radiating element and as RF at home, this installation of instruments reduces the stacked parasitic patch element suspended above the hospitalization period.
    [Show full text]
  • A Survey on Microstrip Patch Antenna Using Metamaterial Anisha Susan Thomas1, Prof
    ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (An ISO 3297: 2007 Certified Organization) Vol. 2, Issue 12, December 2013 A Survey on Microstrip Patch Antenna using Metamaterial Anisha Susan Thomas1, Prof. A K Prakash2 PG Student [Wireless Technology], Dept of ECE, Toc H Institute of Science and Technology, Cochin, Kerala, India 1 Professor, Dept of ECE, Toc H Institute of Science and Technology, Cochin, Kerala, India 2 ABSTRACT: Microstrip patch antennas are used for mobile phone applications due to their small size, low cost, ease of production etc. The MSA has proved to be an excellent radiator for many applications because of its several advantages, but it also has some disadvantages. Lower gain and narrow bandwidth are the major drawbacks of a patch antenna. In this paper, a survey on the existing solutions for the same which are developed through several years and an evolving technology metamaterial is presented. Metamaterials are artificial materials characterized by parameters generally not found in nature, but can be engineered. They differ from other materials due to the property of having negative permeability as well as permittivity. Metamaterial structure consists of Split Ring Resonators (SRRs) to produce negative permeability and thin wire elements to generate negative permittivity. Performance parameters especially bandwidth, of patch antennas which are usually considered as narrowband antennas can be improved using metamaterial. Metamaterials are also the basis of further miniaturization of microwave antennas. Keywords: Microstrip antenna, Metamaterial, Split Ring Resonator, Miniaturization, Narrowband antennas. I. INTRODUCTION Although the field of antenna engineering has a history of over 80 years it still remains as described in [1] “….
    [Show full text]
  • Vivaldi Antenna for Rf Energy Harvesting
    666 J. SCHNEIDER, M. MRNKA, J. GAMEC, ET AL., VIVALDI ANTENNA FOR RF ENERGY HARVESTING Vivaldi Antenna for RF Energy Harvesting Jan SCHNEIDER1, Michal MRNKA 2, Jan GAMEC1, Maria GAMCOVA1, Zbynek RAIDA2 1 Dept. of Electronics and Multimedia Communications, Technical University of Košice, Park Komenského 13, 041 20 Košice, Slovak Republic 2 Dept. of Radio Electronics, Brno University of Technology, Technická 12, 616 00 Brno, Czech Republic [email protected], [email protected], [email protected], [email protected], [email protected] Manuscript received November 13, 2015 Abstract. Energy harvesting is a future technology for capturing ambient energy from the environment to be recy- cled to feed low-power devices. A planar antipodal Vivaldi antenna is presented for gathering energy from GSM, WLAN, UMTS and related applications. The designed antenna has the potential to be used in energy harvesting systems. Moreover, the antenna is suitable for UWB appli- cations, because it operates according to FCC regulations (3.1–10.6 GHz). The designed antenna is printed on Fig. 1. Block diagram of the energy harvesting system. ARLON 600 substrate and operates in frequency band The antennas for energy harvesting may be divided from 0.810 GHz up to more than 12 GHz. Experimental into several categories by the operating frequency band. results show good conformity with simulated performance. The 900 MHz slot-dipole antenna on a flexible substrate was discussed in [4]. In [5], the slot-dipole antenna was improved and integrated with energy harvesting circuit. Due to the narrow-band operation and the directive radia- Keywords tion, the slot-dipole antenna harvests energy from one RF energy harvesting, UWB, Vivaldi antenna source only.
    [Show full text]
  • Radiation Performance of Log Periodic Koch Fractal Antenna Array with Different Materials and Thickness
    Journal of Scientific & Industrial Research Vol. 77, May 2018, pp. 276-281 Radiation Performance of Log Periodic Koch Fractal Antenna Array with Different Materials and Thickness V Dhana Raj1*, A Mallikarjuna Prasad2 and G M V Prasad3 *1,2Department of Electronics and Communication Enggineering, JNTUK, Kakinada, A. P, India 3Department of Electronics and Communication Enggineering, BVCITS, Amalapuram, A. P, India Received 13 February 2017; revised 19 September 2017; accepted 22 January 2018 A frequency independent Printed Log Periodic Dipole antenna (PLPDA) with and without fractals for different materials and thickness is proposed for UWB applications. The impedance bandwidth of PLPD without fractal for FR4 of 4.71GHz to 9.99GHz. Similarly, for the RT/Duroid, the impedance bandwidth of 3.09GHz to 12.13GHz with VSWR less than two is achieved. The radiation patterns for different combinations are also observed to be an end-fire radiation pattern. In this paper, the first iteration is proposed, the parametric and performance observations are also made for different thickness (63mil, 62mil, and 31mil) of the dielectric substrate. Antennas are fabricated, and its performance is authenticated using vector network analyzer (E5071C) to carry out return loss and VSWR measurements. The obtained results are insensible agreement with the theoretical results. Keywords: UWB Ultra Wide Band , S-parameter, VSWR Voltage Standing Wave Ratio, FR4, RT/Duroid, Koch fractal Introduction fractal concepts in log periodic antennas to realize An antenna is often explicated as a transformation communication, reported in earlier literature6. structure between the free space and a guiding device. In 1950, Isbell et al. have first introduced the log PLPDA design considerations periodic antenna and depicted various curves relating In the proposed PLPDA, 10 elements were σ, τ and antenna gain for the LPDA antenna design1.
    [Show full text]
  • Frequency Reconfigurable Vivaldi Antenna with Switched Resonators for Wireless Applications
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 5, 2019 Frequency Reconfigurable Vivaldi Antenna with Switched Resonators for Wireless Applications 1 4 Rabiaa Herzi , Ali Gharsallah Mohamed-Ali Boujemaa2, Fethi Choubani3 Unit of Research CSEHF Faculty of Sciences of Tunis INNOVCOM Laboratory, SUPCOM, University of El Manar, Tunis 2092, Tunisia Carthage, Tunis, Tunisia Abstract—In this paper, a frequency reconfigurable Vivaldi There are many types of frequency reconfigurable antenna with switched slot ring resonators is presented. The antennas such as switching between different narrow bands, principle of the method to reconfigure the Vivaldi antenna is wideband to notch band reconfiguration, wideband to based on the perturbation of the surface currents distribution. narrowband switching [10-11]. Switched ring resonators that act as a bandpass filter are printed in specific positions on the antenna metallization. This structure Achieving an antenna which has the capacity of wideband has the ability to reconfigurate between wideband mode and four to multi-narrow bands reconfiguration is very important and narrow-band modes which cover significant wireless essential for several applications such as a cognitive radio that applications. Combination of the bandpass filters and tapered uses wideband sensing and multi-bands communications [10, slot antenna characteristics achieve an agile antenna capable to 12, 13]. operate in UWB mode from 2 to 8 GHz and to generate multi- narrow bands at 3.5 GHz, 4GHz, 5.2 GHz, 5.5 GHz, 5.8 GHz and Because of their better radiation performances as well as 6.5 GHz. The measurement and simulation results show good Ultra-wide bandwidth, elevated gain, and compact structure agreement.
    [Show full text]
  • Rectenna Design of GSM Frequency Band 900 Mhz for Electromagnetic Energy Harvesting
    Journal of Communications Vol. 14, No. 4, April 2019 Rectenna Design of GSM Frequency Band 900 MHz for Electromagnetic Energy Harvesting Aisah1, Rudy Yuwono2, and Fabian Adna Suryanto2 1Department of Electrical Engineering Polinema, Jl Sukarno Hatta 9, Malang 2 Department of Electrical Engineering, University of Brawijaya, Jl MT Haryono 167, Malang, Indonesia Email: {aisahzahra, fabianadna}@gmail.com; [email protected] Abstract—Rectenna can be used as electromagnetic energy voltage source (DC). The used rectifier is a full wave harvesting. The principle of this electromagnetic energy rectifier with four diodes. harvesting can be applied at 900 MHz GSM frequency band. To create a rectenna that can work on 900 MHz frequency band, it C. Antenna is necessary to design a rectifier circuit that can work at that Antenna is defined by Webster’s dictionary as "a frequency band and to use a 900 MHz GSM antenna. metallic device for radiating or receiving radio waves". Index Terms—Rectenna, energy harvesting, GSM Meanwhile, according to IEEE, the antenna is defined as "a means for radiating or receiving radio waves". In this paper, antenna is defined as a device that processes the transfer of signals into electromagnetic I. INTRODUCTION waves through free space and can be received by other Electromagnetic waves is not fully utilized by GSM antennas and vice versa. Transmission line of antenna Mobile Station devices so there is widespread dispersion can be either a coaxial or waveguide that is used to of electromagnetic waves. These excess electromagnetic transport electromagnetic energy from a transmitting waves can be used as energy sources.
    [Show full text]
  • Multilayered Metamaterial Low Profile Antenna for Iot Applications
    J. ADV. SIMULAT. SCI. ENG. Vol. 6, No. 1, 273-281. © 2019 Japan Society for Simulation Technology MMLPA: Multilayered Metamaterial Low Profile Antenna for IoT Applications Tojoarisoa Rakotoaritina1,*, Megumi Saito1, Zhenni Pan1, Jiang Liu1, Shigeru Shimamoto1 1Department of Computer Science and Communications Engineering, Waseda University ∗[email protected] Received: November 22, 2018; Accepted: July 21, 2019; Published: August 10, 2019 Abstract. Nowadays, within the concept of Internet of Things (IoT), smart homes, smart factory, intelligent transportation among others are infrastructure systems that connect our world to the Internet. However, wireless communications technology are considerably con- strained by complicated structures, and lossy media in complex environments. Fundamental limitations on the transmission range have been treated to connect IoT devices in such Ra- dio Frequency (RF) challenging environments. In order to extend the transmission range in complex environments, Magnetic Induction (MI) communication has been proved to be an efficient solution. In this paper, a Multilayered Metamaterial low profile antenna (MMLPA) using Magnetic Induction communication scheme is proposed for IoT applications. The system model of the MMLPA is analyzed. Then an MMLPA system is designed by using a circular loop antenna backed with isotropic metamaterial which is considered as a Defected Ground Structure (DGS) as well as with anisotropic metamaterial for the purpose of a di- electric uniaxial metamaterial. By using a full-wave finite-element method, the proposed analysis is supported with simulation results where good agreement is achieved compared to the measurement results after realizing four prototypes of the MMLPA antennas. The effect of the presence of metal in the vicinity of the transceivers is also analyzed.
    [Show full text]
  • Amorphous Silicon Solar Vivaldi Antenna
    Technological University Dublin ARROW@TU Dublin Articles School of Electrical and Electronic Engineering 2016-3 Amorphous Silicon Solar Vivaldi Antenna Oisin O'Conchubhair Technological University Dublin Kansheng Yang Technological University Dublin Patrick McEvoy Technological University Dublin, [email protected] See next page for additional authors Follow this and additional works at: https://arrow.tudublin.ie/engscheleart2 Part of the Electrical and Electronics Commons, Electromagnetics and Photonics Commons, and the Electronic Devices and Semiconductor Manufacturing Commons Recommended Citation O'Conchubhair, O., Yang, K, McEvoy, P & Ammann, Max. (2016) Amorphous Silicon Solar Vivaldi Antenna, IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 893-896. doi: 10.1109/LAWP.2015.2479189. This Article is brought to you for free and open access by the School of Electrical and Electronic Engineering at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Funder: Part funded by the Irish Higher Education Authority Authors Oisin O'Conchubhair, Kansheng Yang, Patrick McEvoy, and Max Ammann This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/engscheleart2/196 > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Amorphous Silicon Solar Vivaldi Antenna Oisin O’Conchubhair, Kansheng Yang, Patrick McEvoy, Senior Member, IEEE and Max J. Ammann, Senior Member, IEEE A 2.4 - 2.46 GHz Vivaldi antenna made of copper produced Abstract— An ultra-wideband solar Vivaldi antenna is a 0 dBi gain to feed a rectifier [8].
    [Show full text]
  • Analysis of a Waveguide-Fed Metasurface Antenna
    Analysis of a Waveguide-Fed Metasurface Antenna Smith, D., Yurduseven, O., Mancera, L. P., Bowen, P., & Kundtz, N. B. (2017). Analysis of a Waveguide-Fed Metasurface Antenna. Physical Review Applied, 8(5). https://doi.org/10.1103/PhysRevApplied.8.054048 Published in: Physical Review Applied Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 American Physical Society. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:02. Oct. 2021 PHYSICAL REVIEW APPLIED 8, 054048 (2017) Analysis of a Waveguide-Fed Metasurface Antenna † † David R. Smith,* Okan Yurduseven, Laura Pulido Mancera, and Patrick Bowen Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA Nathan B.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.232,618 B2 Bourke, Jr
    USOO9232618B2 (12) United States Patent (10) Patent No.: US 9.232,618 B2 Bourke, Jr. et al. (45) Date of Patent: Jan. 5, 2016 (54) UP AND DOWN CONVERSION SYSTEMS (58) Field of Classification Search FOR PRODUCTION OF EMITTED LIGHT CPC .............. H01J9/00; H01J 61/00; A61N 5700; FROM VARIOUS ENERGY SOURCES G01N33/00; G01N 2003/0003; G01N 33/53; INCLUDING RADIO FREQUENCY, G01N 33/551; G01N33/54346; G01N 33/553; MCROWAVE ENERGY AND MAGNETC G01N 23/02; G02B 26/00 USPC ....................................................... 250/458.1 INDUCTION SOURCES FOR UPCONVERSION See application file for complete search history. (56) References Cited (75) Inventors: Frederic A. Bourke, Jr., Greenwich, CT (US); Zakaryae Fathi, Raleigh, NC U.S. PATENT DOCUMENTS (US); Ian Nicholas Stanton, Durham, NC (US); Michael J. Therien, Durham, 4,608.222 A 8, 1986 Brueckner .................... 376/104 NC (US); Paul Rath Stauffer, Durham, 5,118,422 A * 6/1992 Cooper et al. ................ 210,636 NC (US); Paolo MacCarini. Durham, (Continued) NC (US); Katherine Sarah Hansen, Cary, NC (US); Diane Renee Fels, FOREIGN PATENT DOCUMENTS Morrisville, NC (US); Cory Robert EP 2130553 A1 * 12/2009 ............. A61K 41.00 Wyatt, Durham, NC (US); Mark Wesley WO WO 2008, 118234 A2 10/2008 Dewhirst, Durham, NC (US) WO WO 2008118234 A2 * 10, 2008 .............. HOL 31,04 (73) Assignees: IMMUNOLIGHT, LLC, Detroit, MI OTHER PUBLICATIONS (US); DUKE UNIVERSITY, Durham, International Search Report and Written Opinion of the International NC (US) Searching Authority issued Mar. 28, 2011, in Patent Application No. PCT/US 2010/0561.78. *) Notice: Subject to anyy disclaimer, the term of this patent is extended or adjusted under 35 (Continued) U.S.C.
    [Show full text]
  • Analysis of Nonlinear Fractal Optical Antenna Arrays — a Conceptual Approach
    Progress In Electromagnetics Research B, Vol. 56, 289{308, 2013 ANALYSIS OF NONLINEAR FRACTAL OPTICAL ANTENNA ARRAYS | A CONCEPTUAL APPROACH Mounissamy Levy1, 2, *, Dhamodharan Sriram Kumar1, and Anh Dinh2 1National Institute of Technology, Tiruchirappalli 620015, India 2University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada Abstract|Fractal antennas have undergone dramatic changes since they were ¯rst considered for wireless systems. Numerous advancements are developed both in the area of fractal shaped elements and fractal antenna array technology for fractal electrodynamics. This paper makes an attempt of applying the concept of fractal antenna array technology in the RF regime to optical antenna array technology in the optical regime using nonlinear array concepts. The paper further discusses on the enhancement of nonlinear array characteristics of fractal optical antenna arrays using nonlinearities in coupled antennas and arrays in a conceptual manner. 1. INTRODUCTION Nonlinear Antennas were extremely complicated in analysis, design and expensive [1]. In the 1980's and 1990's, however, came the development of antenna and antenna array concepts for commercial systems, and increases in digital signal processing complexity that pushed single antenna wireless systems close to their theoretical (Shannon) capacity. Nonlinear antennas are now seen as one of the key concept to further, many-fold, increase in both the link capacity, through pattern tailoring, spatial multiplexing, and system capacity, through interference suppression and beam forming, as well as increasing coverage and robustness for antenna designs. Furthermore, decreases in integrated circuit cost and antenna advancements have made these antennas attractive in terms of both cost and implementation even on small devices. Therefore an exponential growth have been seen in nonlinear antenna research, the inclusion Received 26 September 2013, Accepted 6 November 2013, Scheduled 8 November 2013 * Corresponding author: Mounissamy Levy (levy [email protected]).
    [Show full text]