Fully Printed 3D Cube Cantor Fractal Rectenna for Ambient RF Energy Harvesting Application
Total Page:16
File Type:pdf, Size:1020Kb
Fully Printed 3D Cube Cantor Fractal Rectenna for Ambient RF Energy Harvesting Application Thesis by Azamat Bakytbekov In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia © November, 2017 2 EXAMINATION COMMITTEE PAGE The thesis of Azamat Bakytbekov is approved by the examination committee Committee Chairperson: Dr. Atif Shamim Committee Members: Dr. Khaled Salama, Dr. Hakan Bagci, Dr. Thomas Anthopoulos 3 COPYRIGHT © 2017 Azamat Bakytbekov All Rights Reserved 4 ABSTRACT Fully Printed 3D Cube Cantor Fractal Rectenna for Ambient RF Energy Harvesting Application Azamat Bakytbekov Internet of Things (IoT) is a new emerging paradigm which requires billions of wirelessly connected devices that communicate with each other in a complex radio-frequency (RF) environment. Considering the huge number of devices, recharging batteries or replacing them becomes impractical in real life. Therefore, harvesting ambient RF energy for powering IoT devices can be a practical solution to achieve self-charging operation. The antenna for the RF energy harvesting application must work on multiple frequency bands (multiband or wideband) to capture as much power as possible from ambient; it should be compact and small in size so that it can be integrated with IoT devices; and it should be low cost, considering the huge number of devices. This thesis presents a fully printed 3D cube Cantor fractal RF energy harvesting unit, which meets the above-mentioned criteria. The multiband Cantor fractal antenna has been designed and implemented on a package of rectifying circuits using additive manufacturing (combination of 3D inkjet printing of plastic substrate and 2D metallic screen printing of silver paste) for the first time for RF energy harvesting application. The antenna, which is in a Cantor fractal shape, is folded on five faces of a 3D cube where the bottom face accommodates rectifying circuit with matching network. The 5 rectenna (rectifying antenna) harvests RF power from GSM900, GSM1800, and 3G at 2100 MHz frequency. Indoor and outdoor field tests of the RF energy harvester have been conducted in the IMPACT lab and the King Abdullah University of Science and Technology (KAUST) campus territory, and 252.4 mV of maximum output voltage is harvested. 6 ACKNOWLEDGEMENTS I would like to express my appreciation and gratitude to my supervisor and chair of the committee, Dr. Atif Shamim, for his guidance and massive support throughout the course of this research. My sincere thank also goes to committee member Dr. Khaled Nabil Salama for successful collaborative work done during this project. In addition, I would like to thank my family: my father, – Murzatov Bakytbek, my mother, – Bimaganbetova Roza, and my sister, – Bakytbekova Aidana - for their endless support and overwhelming care that they have extended despite how far away I am from home. Finally, I am grateful to my friends and colleagues at IMPACT Lab at King Abdullah University of Science and Technology for sharing their knowledge and experience with me whenever I needed help. 7 TABLE OF CONTENTS EXAMINATION COMMITTEE PAGE ...................................................................................... 2 COPYRIGHT .......................................................................................................................... 3 ABSTRACT ............................................................................................................................ 4 ACKNOWLEDGEMENTS ....................................................................................................... 6 LIST OF ABBREVIATIONS ..................................................................................................... 9 LIST OF ILLUSTRATIONS..................................................................................................... 10 LIST OF TABLES .................................................................................................................. 12 Chapter 1. Introduction ......................................................................................... 13 1.1. Motivation and Objectives ................................................................................. 13 1.2. Challenges ........................................................................................................... 14 1.3. Contributions ...................................................................................................... 15 1.4. Thesis Organization ............................................................................................ 16 Chapter 2. Literature Review ................................................................................. 18 2.1. Internet of Things ............................................................................................... 18 2.2. Wireless RF Energy Harvesters ........................................................................... 19 2.3. Fractal Antennas ................................................................................................. 21 2.4. Antennas-on-Package ......................................................................................... 22 Chapter 3. Antenna: Theory, Design, Simulation and Fabrication ........................... 24 3.1. Ambient RF Power Measurement ...................................................................... 24 3.2. Concept of Fractals: Cantor Fractal .................................................................... 26 3.3. 2D Planar Cantor Fractal Antenna ...................................................................... 28 3.3.1 Design ............................................................................................................ 28 3.3.2 Fabrication .................................................................................................... 33 3.3.3 Simulation and Measurement Results .......................................................... 35 3.4. 3D Cube Cantor Fractal Antenna ........................................................................ 38 3.4.1 Design ............................................................................................................ 38 3.4.2 Fabrication .................................................................................................... 44 8 3.4.3 Simulation and Measurement Results .......................................................... 47 Chapter 4. System Level Integration ...................................................................... 58 4.1. Rectifier and Multiband Impedance Matching Network ................................... 58 4.2. Indoor and Outdoor Measurement Results ....................................................... 61 Chapter 5. Conclusion and Future Work ................................................................ 66 5.1. Conclusion .......................................................................................................... 66 5.2. Future Work ........................................................................................................ 67 BIBLIOGRAPHY .................................................................................................................. 68 APPENDICES ...................................................................................................................... 72 9 LIST OF ABBREVIATIONS ADS Advanced Design System CMOS complementary metal oxide semiconductor CPW coplanar waveguide DC direct current EM electromagnetic GSM Global System for Mobile communication IoT Internet of Things RF radio frequency SMA SubMiniature version A 10 LIST OF ILLUSTRATIONS Figure 2.1 Number of connected objects to the Internet by 2020 [2] ............................. 18 Figure 2.2 Log-periodic antenna, two element dipole array, and planar circular spiral inductor antenna .............................................................................................................. 20 Figure 2.3 Circular patch antenna with triangular slots ................................................... 22 Figure 2.4 Fractal antennas ............................................................................................... 22 Figure 2.5 Antennas-on-package ...................................................................................... 23 Figure 3.1 KAUST map ....................................................................................................... 25 Figure 3.2 Ambient RF power measurements (a) daytime (b) nighttime ........................ 25 Figure 3.3 RF power measurements near Discovery Square ............................................ 26 Figure 3.4 Fractals in nature ............................................................................................. 27 Figure 3.5 Koch, Sierpinski and Hilbert fractals ................................................................ 27 Figure 3.6 Cantor fractal ................................................................................................... 28 Figure 3.7 Cantor Fractal: (a) top view (b) bottom view .................................................. 29 Figure 3.8 Dependence of bandwidth on the widths of Cantor segments ...................... 30 Figure 3.9 Dependence of bandwidth on the lengths of separations .............................. 31 Figure 3.10 Effect of different iterations on impedance bandwidth ................................ 32 Figure 3.11 (a) Stratasys Objet 260 Connex 3D printer (b) Diamatix DMP-2831