Lunar and Planetary Science XXXIX (2008) 1443.pdf THE CASE FOR A LUNAR SAMPLE RETURN MISSION: LICHTENBERG CRATER. D.B. McAlpin, J.I. Nuñez, A.R. Griffin, S.B. Porter, M.S. Robinson, School of Earth and Space Exploration, Arizona State University, PO Box 871404, Tempe, AZ 85287-1404 (
[email protected]). Introduction: The Oceanus Procellarum region research show that its rays reflect composition, not of the Moon contains what are believed to be the maturity, [1,7], while an age as much as 1.68 b.y. has youngest lunar mare deposits [1,2,3,4]. To date been suggested by Hiesinger et al. [2]. however, no samples of these deposits have been Analysis: We used multi-spectral images from returned for radiometric dating, so their precise age, Clementine’s UV/VIS camera to examine the and a well-constrained date for the end of lunar Lichtenberg area as a 3-band color composite image volcanism remains elusive. Understanding the age of (Fig. 1) and in false-color ratio data sensitive to the lunar mare deposits is key to understanding the absorption range of FeO and TiO2 . We also subjected evolution of the Moon and its internal structure. the 3-band composite image to iterative cluster Lichtenberg Crater presents a diverse geologic setting analysis, and produced a generalized lithologic sketch that may hold the answer to this and other critical map, which we overlaid against a high-resolution questions, including the age of the Lichtenberg Lunar Orbiter image (Fig. 2) to clarify key geologic impact, composition of pre-mare crust in the relations.