Failure Analysis of Thin Film Solar Modules Using Lock-In Thermography
Total Page:16
File Type:pdf, Size:1020Kb
Failure Analysis of Thin Film Solar Modules using Energie & Umwelt Energie Lock-in Thermography Energy & Environment Energy Max Henrik Siegloch 258 Failure Analysis of Thin Film Solar Modules using LIT of Thin Film Analysis Failure Member of the Helmholtz Association Member of the Max Henrik Siegloch Energie & Umwelt / Energie & Umwelt / Energy & Environment Energy & Environment Band/ Volume 258 Band/ Volume 258 ISBN 978-3-95806-047-0 ISBN 978-3-95806-047-0 Failure Analysis of Thin Film Solar Modules using Lock-in Thermography Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Diplom-Ingenieur Max Henrik Siegloch aus Stuttgart Berichter: Universitätsprofessor Dr. Uwe Rau Universitätsprofessor Dr. Joachim Knoch Tag der mündlichen Prüfung: 16.12.2014 Forschungszentrum Jülich GmbH Institute of Energy and Climate Research IEK-5 Photovoltaics Failure Analysis of Thin Film Solar Modules using Lock-in Thermography Max Henrik Siegloch Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment Band / Volume 258 ISSN 1866-1793 ISBN 978-3-95806-047-0 Bibliographic information published by the Deutsche Nationalbibliothek. The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Publisher and Forschungszentrum Jülich GmbH Distributor: Zentralbibliothek 52425 Jülich Tel: +49 2461 61-5368 Fax: +49 2461 61-6103 Email: [email protected] www.fz-juelich.de/zb Cover Design: Grafische Medien, Forschungszentrum Jülich GmbH Printer: Grafische Medien, Forschungszentrum Jülich GmbH Copyright: Forschungszentrum Jülich 2015 Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment, Band / Volume 258 D 82 (Diss. RWTH Aachen Univ., 2014) ISSN 1866-1793 ISBN 978-3-95806-047-0 The complete volume is freely available on the Internet on the Jülicher Open Access Server (JuSER) at www.fz-juelich.de/zb/openaccess. Neither this book nor any part of it may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Abstract Lock-in thermography (LIT) is an imaging method that depicts radiated heat and its diffusion in manifold samples. LIT offers versatile possibilities for the characteriza- tion of solar cells and modules since the radiated heat is proportional to the dissipation of electrical power. Up to now, the quantitative correlation of detected heat and dissi- pated electrical power has been known for silicon solar cells only. For many other types of solar cells and modules – especially thin film solar cells – LIT has been used as a qualitative measurement tool for depicting the location of defects, for example. Thus, the potential of LIT in terms of the calculation of power generation and dissipation in thin film solar cells has not been exploited. This visualization and calculation of power flows leads to a better understanding of the influences of defects on the efficiency of solar modules. Furthermore, it enables the evaluation of potential improvements, which results in solar modules with higher efficiencies, produced to lower costs. In order to interpret LIT signals accurately, the lock-in algorithm and particular- ly its limits have to be understood. The present thesis shows the evaluation of the lock- in algorithm and its algebraic complex result with simulations. It is found that the weak points of the lock-in algorithm lie in the sampling of the acquired heat signal. Sampling moments that are not uniformly distributed in a lock-in period produce unreliable re- sults. A low sampling at high measurement frequencies shows significant deviations distorting the LIT result. The findings allow for the development of user-friendly LIT systems that automatically avoid sampling errors and produce reliable LIT results. The comprehension of LIT measurements of thin film solar cells needs a theo- retical thermal model for the solar cells that can be used to solve the differential heat diffusion equation. The solution describes the surface temperature distribution that is acquired in LIT measurements. By the evaluation of the frequency response of a point heat source in a thin film solar cell, a simple thermal model representing a solid body is found to adequately reproduce LIT measurements. LIT investigations in the scale of the thermal diffusion length are hampered by the diffusion of heat that leads to a blurring of heat sources. With the description of the thermal model and a Fourier transform technique, it is possible to successfully deconvo- lute the heat generating sources from the heat diffusion, meaning the removal of the thermal blurring. This leads to the unimpeded visualization of the dissipated power of small heat sources such as shunts or the series interconnection of cells in a thin film solar module. To deconvolute LIT measurements of samples, which thermal model is not known, an advanced LIT system is developed. It uses a small laser beam, which is di- III IV Abstract rected at the solar cell and is measured by the LIT setup, in order to obtain the heat dif- fusion in the sample. The deconvolution adequately reproduces the size of a shunt. Combined with an evaluation algorithm, such an LIT system is carrying out a “self- calibration” for the heat diffusion in any kind of solar cell sample. This enables the sys- tem to autonomously detect the dissipated power in manifold devices. Up to now, the estimation of power losses in solar cells commonly has been car- ried out with LIT measurements without illumination. This is justified for crystalline silicon solar cells, since their behavior in illuminated conditions can be calculated from unilluminated conditions with a simple model. In thin film solar modules, the electrical behavior in illuminated and unilluminated conditions differs significantly. Thus, the access to power losses lies in LIT measurements of solar modules in operation condi- tions: with illumination and at a voltage enabling the maximal extraction of power. The quantification of such measurements is impeded by several overlapping heat dissipation mechanisms occurring in thin film solar modules. With new developed LIT methods using a bias voltage modulation under constant illumination, the overlapping heat dissi- pation mechanisms are resolved and a power scaling for LIT images is achieved. These novel LIT methods thus propose an approach to realistic estimations of power losses in thin film solar modules. Furthermore, the novel LIT methods allow the investigation of single cells and their interaction in the compound of a module. In industrial solar modules, cells are cap- suled and cannot be contacted to determine their electrical behavior in the compound. A specially constructed laboratory scale solar mini-module allowed the contacting of the cells and the acquisition of their electrical characteristics. A good representation of the electrical behavior of the cells in the module compound in LIT measurements with the new methods was found. In future, these methods can be used for the comparison with simulations of the electrical behavior of solar modules. Findings derived from such a comparison allow for finding critical efficiency-limiting features in solar modules. Kurzfassung Lock-in Thermographie (LIT) ist ein bildgebendes Verfahren, das ausgestrahlte Wärme und ihre Diffusion von vielfältigen Proben darstellt. Die LIT bietet vielseitige Möglichkeiten für die Charakterisierung von Solarzellen und –modulen, da die ausge- strahlte Wärme von Solarzellen proportional ist zur elektrischen Verlustleistung, die in ihnen auftritt. Bis jetzt war der quantitative Zusammenhang der gemessenen Wärme und der elektrischen Verlustleistung nur für Solarzellen aus kristallinem Silizium bekannt. Für viele andere Arten von Solarzellen und -modulen – insbesondere Dünnschichtsolar- zellen – wurde LIT vor allem als qualitatives Messinstrument genutzt, z.B. zur Bestim- mung der Position von Defekten. Demzufolge wurden die Möglichkeiten von LIT in Bezug auf die Berechnung von Leistungserzeugung und -verbrauch in Dünnschichtso- larzellen bisher nicht ausgenutzt. Gerade aber die Verbildlichung von Leistungsflüssen führt zu einem besseren Verständnis des Einflusses von Defekten auf den Wirkungsgrad von Solarmodulen. Weiterhin gestattet diese Verbildlichung die Beurteilung von mögli- chen Verbesserungen, die zu Solarmodulen mit höherem Wirkungsgrad und niedrigeren Produktionskosten führen. Um LIT-Signale genau interpretieren zu können, braucht man ein tiefes Ver- ständnis des Lock-in Algorithmus und insbesondere dessen Grenzen. Die vorliegende Arbeit analysiert den Lock-in Prozess und die aus ihm resultierende, algebraisch kom- plexe Größe mithilfe von Simulationen. Die Analyse zeigt, dass der Algorithmus Schwachstellen in der Abtastung des gemessenen Wärmesignals aufweist. Unzuverläs- sige Ergebnisse werden produziert, wenn die Abtastungszeitpunkte ungleichmäßig über eine Lock-in Periode verteilt liegen. Eine Unterabtastung bei hohen Messfrequenzen zeigt deutliche Abweichungen, die das resultierende LIT Signal verfälschen. Die Unter- suchungsergebnisse erlauben die Entwicklung eines benutzerfreundlichen LIT Systems,