Physiological Changes in Barley Mlo-11 Powdery Mildew Resistance Conditioned by Tandem Repeat Copy Number

Total Page:16

File Type:pdf, Size:1020Kb

Physiological Changes in Barley Mlo-11 Powdery Mildew Resistance Conditioned by Tandem Repeat Copy Number International Journal of Molecular Sciences Article Physiological Changes in Barley mlo-11 Powdery Mildew Resistance Conditioned by Tandem Repeat Copy Number Cynthia Ge 1, Paula Moolhuijzen 1 , Lee Hickey 2 , Elzette Wentzel 1, Weiwei Deng 1, Eric G. Dinglasan 2 and Simon R. Ellwood 1,* 1 Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia; [email protected] (C.G.); [email protected] (P.M.); [email protected] (E.W.); [email protected] (W.D.) 2 Centre Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4069, Australia; [email protected] (L.H.); [email protected] (E.G.D.) * Correspondence: [email protected] Received: 28 October 2020; Accepted: 17 November 2020; Published: 20 November 2020 Abstract: Wild barley accessions have evolved broad-spectrum defence against barley powdery mildew through recessive mlo mutations. However, the mlo defence response is associated with deleterious phenotypes with a cost to yield and fertility, with implications for natural fitness and agricultural productivity. This research elucidates the mechanism behind a novel mlo allele, designated mlo-11(cnv2), which has a milder phenotype compared to standard mlo-11. Bisulphite sequencing and histone ChIP-seq analyses using near-isogenic lines showed pronounced repression of the Mlo promoter in standard mlo-11 compared to mlo-11(cnv2), with repression governed by 24 nt heterochromatic small interfering RNAs. The mlo-11(cnv2) allele appears to largely reduce the physiological effects of mlo while still endorsing a high level of powdery mildew resistance. RNA sequencing showed that this is achieved through only partly restricted expression of Mlo, allowing adequate temporal induction of defence genes during infection and expression close to wild-type Mlo levels in the absence of infection. The two mlo-11 alleles showed copy number proportionate oxidase and peroxidase expression levels during infection, but lower amino acid and aromatic compound biosynthesis compared to the null allele mlo-5. Examination of highly expressed genes revealed a common WRKY W-box binding motif (consensus ACCCGGGACTAAAGG) and a transcription factor more highly expressed in mlo-11 resistance. In conclusion, mlo-11(cnv2) appears to significantly mitigate the trade-off between mlo defence and normal gene expression. Keywords: Hordeum vulgare; Blumeria graminis f. sp. hordei; gene silencing; histone modification; reactive oxygen species (ROS) 1. Introduction Barley is an important cereal crop globally, ranked fourth in terms of total quantity produced (http://www.fao.org/in-action/inpho/crop-compendium/cereals-grains/en/). Powdery mildews are obligate biotrophic fungal diseases which in barley are caused by Blumeria graminis f. sp. hordei (Bgh). The fungus stunts barley growth, reduces yield, and can downgrade grain quality from malting to animal feed. Broad-spectrum resistance to powdery mildew that confers resistance to all races of Bgh is determined by recessive mutations of the Mlo gene. Mlo is an enigmatic and broadly conserved plant gene with mlo-governed resistance reported in both monocot and dicot species (reviewed in [1]). In barley, over 30 artificially induced mlo alleles are known to exist [2]. The gene is responsive to Int. J. Mol. Sci. 2020, 21, 8769; doi:10.3390/ijms21228769 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 18 death [3,4]. mlo alleles act via rapid formation of large cell-wall appositions (CWA) and necrosis that correlate with resistance in epidermal cells. The CWA phenotype is also observed in nonhost resistance to powdery mildew, for example, following inoculation of barley with wheat powdery mildew [5]. Int. J. Mol. Sci. 2020, 21, 8769 2 of 18 A natural form of barley mlo resistance, known as mlo-11, involves a wild-type Mlo gene that is silenced via an upstreambiotic and abiotic tandem stimuli, isrepeat involved array in developmental consisting processes, of the and isMlo a negative 5′ UTR regulator and of cellexons 1–5 [6]. Both induced mutantsdeath and [3 ,4the]. mlo originalalleles act viaor rapid standard formation mlo-11 of large cell-wall exhibit appositions undesirable (CWA) and side necrosis effects, that with necrotic correlate with resistance in epidermal cells. The CWA phenotype is also observed in nonhost resistance leaf spotting, chlorosis,to powdery and mildew, leaf for example,senescence following (Fig inoculationure 1). of barleyBreeders with wheat have powdery overcome mildew [5]. these effects, with most European springA natural cultivars form of now barley mlocontainingresistance, known mlo resistance as mlo-11, involves [7,8]. a wild-type Ge et Mloal. [9]gene uncovered that a second is silenced via an upstream tandem repeat array consisting of the Mlo 50 UTR and exons 1–5 [6]. natural variant ofBoth mlo-11 induced mutantswith andan theapparently original or standard fewermlo-11 pleiotropicexhibit undesirable effects, side eff ects,named with necrotic mlo-11(cnv2), which showed partial resistanceleaf spotting, chlorosis, to powdery and leaf senescence mildew (Figure in 1s).eedling Breeders have leaves overcome and these full e ffects, resistance with most in adult leaves. European spring cultivars now containing mlo resistance [7,8]. Ge et al. [9] uncovered a second natural The variant had variantjust two of mlo-11 copieswith anof apparently the tandem fewer pleiotropic repeat earray,ffects, named comparedmlo-11(cnv2 to), which 11–12 showed in standard mlo-11, and lacked spontaneouspartial resistance cell to powderydeath mildewin uninfected in seedling leaves leaves and full and resistance death in adult of leaves. underlying The variant mesophyll cells had just two copies of the tandem repeat array, compared to 11–12 in standard mlo-11, and lacked during infection,spontaneous characteristic cell death inof uninfected mlo alleles leaves and with death ofa underlyingstronger mesophyll effect. cells Other during infection,partial mlo resistance phenotypes, conferredcharacteristic by of missensemlo alleles with mutati a strongerons, effect. have Other partialbeenmlo reportedresistance phenotypes, in barley conferred (mlo-12 by and mlo-28 [3]) missense mutations, have been reported in barley (mlo-12 and mlo-28 [3]) and a series of alleles provide and a series of allelesvarying provide levels of potency varying in wheat levels [10]. of potency in wheat [10]. Figure 1. Field-grownFigure 1.barleyField-grown Pallas barley 22 Pallas (mlo-5 22 ()mlo-5 plants) plants displaying displaying chlorosis chlorosis and senescence and senescence on the on the right- right-hand side, compared to a wild-type Mlo line Pallas 18 on the left-hand side. hand side, compared to a wild-type Mlo line Pallas 18 on the left-hand side. The mlo-11(cnv2) phenotype appears to correspond to the relative Mlo expression level differences compared to standard mlo-11 [9], and, on the basis of DNA methylation sequencing, the authors The mlo-11(postulatedcnv2) phenotype that this may involve appears small RNA-directed to correspond DNA methylation to the (RdDM). relative DNA methylation Mlo expression level differences comparedwas first to discovered standard in plants, mlo-11 and research [9], hasand, consequently on the demonstratedbasis of DNA an elaborate methylation role in plant sequencing, the development and environmental responses through histone modifications [11,12]. Previous studies authors postulatedrevealed that silencing this ofmay transposable involve elements small and repetitive RNA-directed heterochromatic DNA sequences methylation by RdDM [13] (RdDM). DNA methylation wasand first histone discovered H3K9 methylation in plants, [14], while and repression research of regions has consequently and genes in euchromatic demonstrated regions an elaborate occurs via H3K27 methylation [15]. H3K4 methylation, associated with actively transcribed genes, role in plant developmentoccurs in euchromatic and regions. environmental In addition to methylation, responses acetylation through of histones histone leads to remodelling modifications [11,12]. Previous studiesof condensedrevealed chromatin, silencing leading toof gene transposable activation [16]. elements and repetitive heterochromatic The precise functions and molecular basis of mlo resistance remain little understood, although a sequences by RdDMrole in immunity[13] and or histone suppression H3K9 of defence methylat responses ision implicit [14], with while the wild-type repression gene negatively of regions and genes in euchromatic regulatingregions plantoccurs defence via responses, H3K27 with methylation similar sets of co-expressed [15]. H3K4 genes demonstrated methylation, in both associated with Arabidopsis and barley [4,17,18]. Aside from measurable yield and phenotypic effects associated with actively transcribedmlo alleles, genes, resource occurs requirements in euchromatic of this resistance re andgions. defence In against addition pathogens to inmethylation, general have acetylation of histones leads tobeen remodelling a matter of some of conjecture.condensed A trade-o chffromatin,between energy leading for growth to gene and activation activation of defence [16]. The precise functions and molecular basis of mlo resistance remain little understood, although a role in immunity or suppression of defence responses is implicit with the wild-type gene negatively regulating plant defence responses, with
Recommended publications
  • Proteomic Analysis of Meja-Induced Defense Responses in Rice Against Wounding
    Article Proteomic Analysis of MeJa-Induced Defense Responses in Rice against Wounding Laura Bertini 1,†, Luana Palazzi 2,†, Silvia Proietti 1, Susanna Pollastri 3, Giorgio Arrigoni 4,5, Patrizia Polverino de Laureto 2,* and Carla Caruso 1,* 1 Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; [email protected] (L.B.); [email protected] (S.P.) 2 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; [email protected] 3 Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy; [email protected] 4 Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; [email protected] 5 Proteomics Center of Padova University and Azienda Ospedaliera di Padova, 35131 Padova, Italy. * Correspondence: [email protected] (P.P.d.L.); [email protected] (C.C.); Tel.: +39-049-8276157 (P.P.d.L.); Tel.: +39-0761-357330 (C.C.) † These authors contributed equally to this work. Received: 16 April 2019; Accepted: 20 May 2019; Published: 22 May 2019 Abstract: The role of jasmonates in defense priming has been widely recognized. Priming is a physiological process by which a plant exposed to low doses of biotic or abiotic elicitors activates faster and/or stronger defense responses when subsequently challenged by a stress. In this work, we investigated the impact of MeJA-induced defense responses to mechanical wounding in rice (Oryza sativa). The proteome reprogramming of plants treated with MeJA, wounding or MeJA+wounding has been in-depth analyzed by using a combination of high throughput profiling techniques and bioinformatics tools.
    [Show full text]
  • The Paxfoxo1s Trigger Fast Trans-Differentiation of Chick
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.18.097618; this version posted May 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The PAXFOXO1s trigger fast trans-differentiation of chick embryonic neural cells into alveolar rhabdomyosarcoma with tissue invasive properties limited by S phase entry inhibition Short Title: PAX3/7FOXO1 drive neural cells into dormant alveolar rhabdomyosarcoma Gloria GONZALEZ CURTO1*, Audrey DER VARTANIAN2*, Youcef FRARMA*1, Line MANCEAU*1, Lorenzo BALDI*1, Selene PRISCO1, Nabila ELAROUCI3, Frédéric CAUSERET4,5, Muriel RIGOLET2, Frédéric AURADE2,6, Aurélien DE REYNIES3, Vincent CONTREMOULINS7, Frédéric RELAIX2, Orestis FAKLARIS7,8, James BRISCOE9, Pascale GILARDI-HEBENSTREIT1, Vanessa RIBES1# 1 Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France 2 Univ Paris Est Créteil, INSERM, EnVA, EFS, IMRB, F-94010 Créteil, France 3 Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France 4 Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France 5 Institut IMAGINE, Université de Paris, Paris, France 6 Sorbonne Université, INSERM, UMRS974, Center for Research in Myology, F-75013, Paris, France 7 ImagoSeine core facility of Institut Jacques Monod and member of France-BioImaging 8 Current address: MRI-CRBM imaging facility, CNRS, 34293 Montpellier cedex, France 9 The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK * these authors have equally contributed to the work # corresponding authors: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.18.097618; this version posted May 20, 2020.
    [Show full text]
  • Whole Genome and Transcriptome Sequencing of Matched Primary And
    www.nature.com/scientificreports OPEN Whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric Received: 07 April 2015 Accepted: 04 August 2015 carcinoma Published: 02 September 2015 Zhang J.1,2,*, Huang J. Y.2,3,*, Chen Y. N.1,2,*, Yuan F.4, Zhang H.5, Yan F. H.5, Wang M. J.3, Wang G.6, Su M.6, Lu G.6, Huang Y.6, Dai H.6, Ji J.1,2, Zhang J.1,2, Zhang J. N.1,2, Jiang Y. N.1,2, Chen S. J.2,3, Zhu Z. G.1,2 & Yu Y. Y.1,2 Gastric cancer is one of the most aggressive cancers and is the second leading cause of cancer death worldwide. Approximately 40% of global gastric cancer cases occur in China, with peritoneal metastasis being the prevalent form of recurrence and metastasis in advanced disease. Currently, there are limited clinical approaches for predicting and treatment of peritoneal metastasis, resulting in a 6-month average survival time. By comprehensive genome analysis will uncover the pathogenesis of peritoneal metastasis. Here we describe a comprehensive whole-genome and transcriptome sequencing analysis of one advanced gastric cancer case, including non-cancerous mucosa, primary cancer and matched peritoneal metastatic cancer. The peripheral blood is used as normal control. We identified 27 mutated genes, of which 19 genes are reported in COSMIC database (ZNF208, CRNN, ATXN3, DCTN1, RP1L1, PRB4, PRB1, MUC4, HS6ST3, MUC17, JAM2, ITGAD, IREB2, IQUB, CORO1B, CCDC121, AKAP2, ACAN and ACADL), and eight genes have not previously been described in gastric cancer (CCDC178, ARMC4, TUBB6, PLIN4, PKLR, PDZD2, DMBT1and DAB1).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0198970 A1 Roberts (43) Pub
    US 2003O19897OA1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0198970 A1 Roberts (43) Pub. Date: Oct. 23, 2003 (54) GENOSTICS clinical trials on groups or cohorts of patients. This group data is used to derive a Standardised method of treatment (75) Inventor: Gareth Wyn Roberts, Cambs (GB) which is Subsequently applied on an individual basis. There is considerable evidence that a significant factor underlying Correspondence Address: the individual variability in response to disease, therapy and FINNEGAN, HENDERSON, FARABOW, prognosis lies in a person's genetic make-up. There have GARRETT & DUNNER been numerous examples relating that polymorphisms LLP within a given gene can alter the functionality of the protein 1300 ISTREET, NW encoded by that gene thus leading to a variable physiological WASHINGTON, DC 20005 (US) response. In order to bring about the integration of genomics into medical practice and enable design and building of a (73) Assignee: GENOSTIC PHARMA LIMITED technology platform which will enable the everyday practice (21) Appl. No.: 10/206,568 of molecular medicine a way must be invented for the DNA Sequence data to be aligned with the identification of genes (22) Filed: Jul. 29, 2002 central to the induction, development, progression and out come of disease or physiological States of interest. Accord Related U.S. Application Data ing to the invention, the number of genes and their configu rations (mutations and polymorphisms) needed to be (63) Continuation of application No. 09/325,123, filed on identified in order to provide critical clinical information Jun. 3, 1999, now abandoned. concerning individual prognosis is considerably less than the 100,000 thought to comprise the human genome.
    [Show full text]
  • Comprehensive Analysis Reveals Novel Gene Signature in Head and Neck Squamous Cell Carcinoma: Predicting Is Associated with Poor Prognosis in Patients
    5892 Original Article Comprehensive analysis reveals novel gene signature in head and neck squamous cell carcinoma: predicting is associated with poor prognosis in patients Yixin Sun1,2#, Quan Zhang1,2#, Lanlin Yao2#, Shuai Wang3, Zhiming Zhang1,2 1Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; 2School of Medicine, Xiamen University, Xiamen, China; 3State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China Contributions: (I) Conception and design: Y Sun, Q Zhang; (II) Administrative support: Z Zhang; (III) Provision of study materials or patients: Y Sun, Q Zhang; (IV) Collection and assembly of data: Y Sun, L Yao; (V) Data analysis and interpretation: Y Sun, S Wang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Zhiming Zhang. Department of Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China. Email: [email protected]. Background: Head and neck squamous cell carcinoma (HNSC) remains an important public health problem, with classic risk factors being smoking and excessive alcohol consumption and usually has a poor prognosis. Therefore, it is important to explore the underlying mechanisms of tumorigenesis and screen the genes and pathways identified from such studies and their role in pathogenesis. The purpose of this study was to identify genes or signal pathways associated with the development of HNSC. Methods: In this study, we downloaded gene expression profiles of GSE53819 from the Gene Expression Omnibus (GEO) database, including 18 HNSC tissues and 18 normal tissues.
    [Show full text]
  • 12P Deletion Spectrum Syndrome: a New Case Report Reinforces The
    Leyser et al. Molecular Cytogenetics (2016) 9:75 DOI 10.1186/s13039-016-0278-0 CASE REPORT Open Access 12p deletion spectrum syndrome: a new case report reinforces the evidence regarding the potential relationship to autism spectrum disorder and related developmental impairments Marcio Leyser1*, Bruno Leonardo Dias1, Ana Luiza Coelho1, Marcio Vasconcelos2 and Osvaldo J. M. Nascimento2 Abstract Background: Autism Spectrum Disorders (ASD) now encompass a broad heterogeneous group of people who present in the early developmental years with a wide range of social and communication deficits, which are typically also associated with complex repetitive behaviors and circumscribed interests. The target goal is to heighten readers’ perception into the trend to personalize the distinct autistic and related developmental conditions encompassing the 12p region. Case Presentation: This is a case-report of a 4-year-old male who presented the core signs of ASD, which were thought to be related to a rare 12p13.2 deletion. We further reviewed the literature in order to outline the related developmental conditions in the 12p region. Aside from this patient reported here, we found an additional number of 43 cases described in the medical literature since 1974, that have been related to deletions in the 12p region. However, to the best of our knowledge, none of the previous had been specifically linked to the 12p13.2 band. Conclusions: The 12p deletion spectrum is rarely described as part of the selective genotypes thought to be related to ASD. Even inside of a small piece of the puzzle, there might be ample variation in the behavioral and clinical phenotypes of children and adults presenting with this particular genetic profile.
    [Show full text]
  • RBL1 Polyclonal Antibody
    RBL1 polyclonal antibody Catalog # : PAB29467 規格 : [ 100 uL ] List All Specification Application Image Product Rabbit polyclonal antibody raised against recombinant human RBL1. Western Blot (Cell lysate) Description: Immunogen: Recombinant protein corresponding to human RBL1. Sequence: DAEEEIGTPRKFTRDTPLGKLTAQANVEYNLQQHFEKKRSFAPSTPLTG RRYLRE enlarge Host: Rabbit Immunohistochemistry (Formalin/PFA-fixed paraffin- Reactivity: Human embedded sections) Form: Liquid Purification: Antigen affinity purification Isotype: IgG enlarge Recommend Immunohistochemistry (1:500-1:1000) Immunofluorescence Usage: Immunofluorescence (1-4 ug/mL) Western Blot (1:250-1:500) The optimal working dilution should be determined by the end user. Storage Buffer: In PBS, pH 7.2 (40% glycerol, 0.02% sodium azide) Storage Store at 4°C. For long term storage store at -20°C. enlarge Instruction: Aliquot to avoid repeated freezing and thawing. Note: This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only. Datasheet: Download Applications Western Blot (Cell lysate) Western blot analysis of Lane 1: Human cell line RT-4 Lane 2: Human cell line U-251MG sp Lane 3: Human plasma (IgG/HSA depleted) Lane 4: Human liver tissue Lane 5: Human tonsil tissue with RBL1 polyclonal antibody (Cat # PAB29467) at 1:250-1:500 dilution. Page 1 of 3 2017/2/16 Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) Immunohistochemical staining of human colon with RBL1 polyclonal antibody (Cat # PAB29467) shows moderate nuclear positivity in glandular cells at 1:500-1:1000 dilution. Immunofluorescence Immunofluorescent staining of human cell line U-2 OS with RBL1 polyclonal antibody (Cat # PAB29467) at 1-4 ug/mL concentration shows positivity in nucleus but excluded from the nucleoli.
    [Show full text]
  • Vacuolar Proteases of Saccharomyces Cerevisiae: Characterization of an Overlooked Homolog Leads to New Functional Insights
    Vacuolar Proteases of Saccharomyces cerevisiae: Characterization of an Overlooked Homolog Leads to New Functional Insights by Katherine Rose Parzych A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular, Cellular, and Developmental Biology) in the University of Michigan 2017 Doctoral Committee: Professor Daniel J. Klionsky, Chair Professor Matthew R. Chapman Professor Anuj Kumar Professor Lois S. Weisman Katherine Rose Parzych [email protected] ORCID iD: 0000-0002-6263-0396 © Katherine Rose Parzych 2017 Dedication To my family, with love. ii Acknowledgements Thank you to the many mentors I have had along the way. Matt Chapman, who gave me my first laboratory technician job and started me on my path towards research. Tom Bernhardt and the whole Bernhardt lab at Harvard, where my graduate career began; I am forever grateful for the solid foundation you gave me as a scientist and the camaraderie and support that made working there a joy. Thank you to my thesis committee, Matt Chapman, Anuj Kumar, and Lois Weisman, for your guidance, support, and encouragement. Thank you to the members of the Klionsky lab, past and present. You have been wonderful colleagues and fabulous friends, and you’re all wickedly smart and talented. Special thanks to Molly Day, who became one of my closest friends. Thank you to my graduate mentor, Dan Klionsky. You have been such a supportive mentor throughout this long journey. When the Rim11 project collapsed and I struggled to find my next steps, you helped me to establish a new project and discover the beauty of vacuolar proteases so that I could achieve my goals of finishing strong and showing who I really am as a scientist.
    [Show full text]
  • Proteomic Analysis of Meja-Induced Defense Responses in Rice Against Wounding
    International Journal of Molecular Sciences Article Proteomic Analysis of MeJa-Induced Defense Responses in Rice against Wounding 1, 2, 1 3 4,5 Laura Bertini y, Luana Palazzi y, Silvia Proietti , Susanna Pollastri , Giorgio Arrigoni , Patrizia Polverino de Laureto 2,* and Carla Caruso 1,* 1 Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; [email protected] (L.B.); [email protected] (S.P.) 2 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; [email protected] 3 Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy; [email protected] 4 Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; [email protected] 5 Proteomics Center of Padova University and Azienda Ospedaliera di Padova, 35131 Padova, Italy * Correspondence: [email protected] (P.P.d.L.); [email protected] (C.C.); Tel.: +39-049-8276157 (P.P.d.L.); Tel.: +39-0761-357330 (C.C.) These authors contributed equally to this work. y Received: 16 April 2019; Accepted: 20 May 2019; Published: 22 May 2019 Abstract: The role of jasmonates in defense priming has been widely recognized. Priming is a physiological process by which a plant exposed to low doses of biotic or abiotic elicitors activates faster and/or stronger defense responses when subsequently challenged by a stress. In this work, we investigated the impact of MeJA-induced defense responses to mechanical wounding in rice (Oryza sativa). The proteome reprogramming of plants treated with MeJA, wounding or MeJA+wounding has been in-depth analyzed by using a combination of high throughput profiling techniques and bioinformatics tools.
    [Show full text]
  • Promoter Mutations That Allow Nifa-Independent Expression Of
    Proc. Nati. Acad.. Sci. USA Vol. 80, pp. 5812-5816, October 1983 Biochemistry Promoter mutations that allow nifA-independent expression of the nitrogen fixation nifHDKY operon (nitrogenase genes/Klebsielia pneumoniae/nifH'-'laeZ fusion/cruciform structure) R. BITOUN*, J. BERMAN*, A. ZILBERSTEIN*, D. HOLLAND*, J. B. COHEN+, D. GIVOLt, AND A. ZAMIR* *Biochemistry Department and tDepartment of Chemical Immunology, Weizmann Institute of Science, Rehovot 76100, Israel Communicated by Michael Sela, May 24, 1983 ABSTRACT The nifHDKY operon of KlebsieUa pneumoniae regulatory region of the nif operon and included insertion se- encodes 'for structural polypeptides of nitrogenase and requires quence 2 (IS2) insertions, a sequence duplication, and a base the nifA gene product for transcription. Mutations that allow tran- substitution. Nucleotide sequence analysis of two mutants in- scription of the niJHDKY operon in absence of the nifA gene dicated that sequences included in the 41 base pairs (bp) up- product were characterized in plasmids containing the regulatory stream to the coding sequence of nifH function in regulation region of nifHDKY and nifH fused in:phase to lacZ. -B-Galacto- of the nifoperon. Furthermore, the results suggest that an in- sidase activity served as a measure for nifHWexpression. Most mu- verted repeat within this region, which theoretically could gen- tations were located in the nifregulatory region and included in- - erate a cruciform structure, is involved in .the transcriptional sertion sequence 2 (IS2) insertions, a sequence duplication, and a control- by nifA. base substitution. In Escherichia coli, 3-pgalactosidase activity ex- pressed from the mutant plasmids in the absence of MfA was 6- MATERIALS AND METHODS 30% of the.nifA-activated, parental level.
    [Show full text]
  • Genome-Wide CNV Investigation Suggests a Role for Cadherin, Wnt, and P53 Pathways in Primary Open-Angle Glaucoma Valeria Lo Faro1,2, Jacoline B
    Lo Faro et al. BMC Genomics (2021) 22:590 https://doi.org/10.1186/s12864-021-07846-1 RESEARCH Open Access Genome-wide CNV investigation suggests a role for cadherin, Wnt, and p53 pathways in primary open-angle glaucoma Valeria Lo Faro1,2, Jacoline B. ten Brink2, Harold Snieder3, Nomdo M. Jansonius1 and Arthur A. Bergen2,4,5* Abstract Background: To investigate whether copy number variations (CNVs) are implicated in molecular mechanisms underlying primary open-angle glaucoma (POAG), we used genotype data of POAG individuals and healthy controls from two case-control studies, AGS (n = 278) and GLGS-UGLI (n = 1292). PennCNV, QuantiSNP, and cnvPartition programs were used to detect CNV. Stringent quality controls at both sample and marker levels were applied. The identified CNVs were intersected in CNV region (CNVR). After, we performed burden analysis, CNV-genome-wide association analysis, gene set overrepresentation and pathway analysis. In addition, in human eye tissues we assessed the expression of the genes lying within significant CNVRs. Results: We reported a statistically significant greater burden of CNVs in POAG cases compared to controls (p- value = 0,007). In common between the two cohorts, CNV-association analysis identified statistically significant CNVRs associated with POAG that span 11 genes (APC, BRCA2, COL3A1, HLA-DRB1, HLA-DRB5, HLA-DRB6, MFSD8, NIPBL, SCN1A, SDHB, and ZDHHC11). Functional annotation and pathway analysis suggested the involvement of cadherin, Wnt signalling, and p53 pathways. Conclusions: Our data suggest that CNVs may have a role in the susceptibility of POAG and they can reveal more information on the mechanism behind this disease.
    [Show full text]
  • Comparative Analysis of Transcriptome and Srnas Expression Patterns in the Brachypodium Distachyon—Magnaporthe Oryzae Pathosystems
    International Journal of Molecular Sciences Article Comparative Analysis of Transcriptome and sRNAs Expression Patterns in the Brachypodium distachyon—Magnaporthe oryzae Pathosystems Silvia Zanini 1, Ena Šeˇci´c 1 , Tobias Busche 2, Matteo Galli 1 , Ying Zheng 1 , Jörn Kalinowski 2 and Karl-Heinz Kogel 1,* 1 Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University (iFZ), 35392 Giessen, Germany; [email protected] (S.Z.); [email protected] (E.Š.); [email protected] (M.G.); [email protected] (Y.Z.) 2 Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany; [email protected] (T.B.); [email protected] (J.K.) * Correspondence: [email protected] Abstract: The hemibiotrophic fungus Magnaporthe oryzae (Mo) is the causative agent of rice blast and can infect aerial and root tissues of a variety of Poaceae, including the model Brachypodium distachyon (Bd). To gain insight in gene regulation processes occurring at early disease stages, we comparatively analyzed fungal and plant mRNA and sRNA expression in leaves and roots. A total of 310 Mo genes were detected consistently and differentially expressed in both leaves and roots. Contrary to Mo, only minor overlaps were observed in plant differentially expressed genes (DEGs), with 233 Bd-DEGs in infected leaves at 2 days post inoculation (DPI), compared to 4978 at 4 DPI, and 138 in infected roots. sRNA sequencing revealed a broad spectrum of Mo-sRNAs that accumulated in infected tissues, including candidates predicted to target Bd mRNAs.
    [Show full text]