Ginger, the Genus Zingiber {P. N. Ravindran}

Total Page:16

File Type:pdf, Size:1020Kb

Ginger, the Genus Zingiber {P. N. Ravindran} Ginger The Genus Zingiber Ginger The Genus Zingiber Edited by P.N. Ravindran and K. Nirmal Babu Medicinal and Aromatic Plants — Industrial Profiles CRC PRESS Boca Raton London New York Washington, D.C. Library of Congress Cataloging-in-Publication Data Ginger : the genus Zingiber / edited by P.N. Ravindran, K. Nirmal Babu. p. cm.—(Medicinal and aromatic plants—industrial profiles; v. 41) Includes bibliographical references (p. ). ISBN 0-415-32468-8 (alk. Paper) 1. Ginger. I. Ravindran, P.N. II. Nirmal Babu, K. III. Series. SB304.G56 2004 633.8'3—dc22 2004055370 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, may be granted by CRC Press, provided that $1.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 0-415-32468-8/05/$0.00+$1.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying. Direct all inquiries to CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com © 2005 by CRC Press No claim to original U.S. Government works International Standard Book Number 0-415-32468-8 Library of Congress Card Number 2004055370 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper This volume is dedicated to Prof. V.L. Chopra, Member, Planning Commission, Government of India (formerly BP Pal National Chair, Indian Council of Agricultural Research [ICAR]; Director General, ICAR; Secretary, Department of Agricultural Research and Education, Government of India); a distinguished scientist, humanist, and research manager; an individual of rare distinction and qualities; for his guidance, encouragement, and support. CONTENTS Preface to the Series ix Preface xi Acknowledgments xv List of contributors xvii 1. Introduction 1 P.N. RAVINDRAN AND K. NIRMAL BABU 2. Botany and Crop Improvement of Ginger 15 P.N. RAVINDRAN, K. NIRMAL BABU, AND K.N. SHIVA 3. Chemistry of Ginger 87 GASTON VERNIN AND CYRIL PARKANYI 4 . Tissue Culture and Biotechnology of Ginger 181 K. NIRMAL BABU, K. SAMSUDEEN, D. MINOO, S.P. GEETHA, AND P.N. RAVINDRAN 5. Ginger Production in India and Other South Asian Countries 211 E.V. NYBE AND N. MINI RAJ 6. Ginger Production in Southeast Asia 241 AI XIZHEN, SONG JINFENG, AND XU XIA 7 . Ginger in Africa and the Pacific Ocean Islands 279 P.A. OKWUOWULU 8 . Diseases of Ginger 305 N.P. DOHROO 9. Bacterial Diseases of Ginger and Their Control 341 A. KUMAR AND A.C. HAYWARD viii CONTENTS 10. Insect Pests of Ginger 367 S. DEVASAHAYAM AND K.M. ABDULLA KOYA 11. Postharvest and Industrial Processing of Ginger 391 K.V. BALAKRISHNAN 12. Production, Marketing, and Economics of Ginger 435 M.S. MADAN 13. Pharmacology of Ginger 469 IKUKO KIMURA, LEONARA R. PANCHO, AND HIROSHI TSUNEKI 14. Properties and Medicinal Uses of Ginger 489 R. REMADEVI, E. SURENDRAN, AND P.N. RAVINDRAN 15. Ginger as a Spice and Flavorant 509 K.S. PREMAVALLI 16. Yield Gaps and Constraints in Ginger 527 K.V. PETER, E.V. NYBE, AND ALICE KURIEN 17. Other Economically Important Zingiber Species 533 M. SABU AND DAVE SKINNER Index 547 Preface to the Series There is increasing interest in industry, academia, and the health sciences in medicinal and aromatic plants. In passing from plant production to the eventual product used by the public, many sciences are involved. This series brings together information which is currently scattered through an ever-increasing number of journals. Each volume gives an in-depth look at one plant genus, about which an area specialist has assembled information ranging from the production of the plant to market trends and quality control. Many industries are involved, such as forestry, agriculture, chemicals, food, flavor, beverage, pharmaceutical, cosmetics, and fragrance. The plant raw materials are roots, rhizomes, bulbs, leaves, stems, barks, wood, flowers, fruits, and seeds. These yield gums, resins, essential (volatile) oils, fixed oils, waxes, juices, extracts, and spices for medicinal and aromatic purposes. All these commodities are traded worldwide. A dealer’s market report for an item may say “drought in the country of origin has forced up prices.” Natural products do not mean safe products, and account of this has to be taken by the above industries, which are subject to regulation. For example, a number of plants which are approved for use in medicine must not be used in cosmetic products. The assessment of “safe to use” starts with the harvested plant material, which has to comply with an official monograph. This may require absence of, or prescribed limits of, radioactive material, heavy metals, aflatoxin, pesticide residue, as well as the required level of active principle. This analytical control is costly and tends to exclude small batches of plant material. Large-scale, contracted, mechanized cultivation with designated seed or plantlets is now preferable. Today, plant selection is not only for the yield of active principle, but for the plant’s ability to overcome disease, climatic stress, and the hazards caused by mankind. Such methods as in vitro fertilization, meristem cultures, and somatic embryogenesis are used. The transfer of sections of DNA is giving rise to controversy in the case of some end uses of the plant material. Some suppliers of plant raw material are now able to certify that they are supplying organically farmed medicinal plants, herbs, and spices. The Economic Union directive CVO/EU No. 2092/91 details the specifications for the obligatory quality controls to be carried out at all stages of production and processing of organic products. Fascinating plant folklore and ethnopharmacology leads to medicinal potential. Exam- ples are the muscle relaxants based on the arrow poison, curare, from species of Chondro- dendron, and the antimalarials derived from species of Cinchona and Artemisia. The methods of detection of pharmacological activity have become increasingly reliable and specific, x Preface to the Series frequently involving enzymes in bioassays and avoiding the use of laboratory animals. By using bioassay-linked fractionation of crude plant juices or extracts, compounds can be specifically targeted which, for example, inhibit blood platelet aggregation, or have antitumor, or antiviral, or any other required activity. With the assistance of robotic devices, all the members of a genus may be readily screened. However, the plant material must be fully authenticated by a specialist. The medicinal traditions of ancient civilizations such as those of China and India have a large armamentarium of plants in their pharmacopoeias which are used throughout Southeast Asia. A similar situation exists in Africa and South America. Thus, a very high percentage of the world’s population relies on medicinal and aromatic plants for their medicine. Western medicine is also responding. Already in Germany all medical practitioners have to pass an examination in phytotherapy before being allowed to practice. It is noticeable that medical, pharmacy, and health-related schools throughout Europe and the United States are increasingly offering training in phytotherapy. Multinational pharmaceutical companies have become less enamored of the single compound, magic-bullet cure. The high costs of such ventures and the endless compe- tition from “me-too” compounds from rival companies often discourage the attempt. Independent phytomedicine companies have been very strong in Germany. However, by the end of 1995, 11 (almost all) had been acquired by the multinational pharmaceutical firms, acknowledging the lay public’s growing demand for phytomedicines in the West- ern world. The business of dietary supplements in the Western world has expanded from the health store to the pharmacy. Alternative medicine includes plant-based products. Appropriate measures to ensure their quality, safety, and efficacy either already exist or are being answered by greater legislative control by such bodies as the U.S. Food and Drug Administration and the recently created European Agency for the Evaluation of Medicinal Products based in London. In the United States, the Dietary Supplement and Health Education Act of 1994 recognized the class of phytotherapeutic agents derived from medicinal and aromatic plants. Furthermore, under public pressure, the U.S. Congress set up an Office of Alternative Medicine, which in 1994 assisted the filing of several Investigational New Drug (IND) applications, required for clinical trials of some Chinese herbal preparations. The significance of these applications was that each Chinese preparation involved several plants and yet was handled as a single IND. A demonstration of the contribution to efficacy of each ingredient of each plant was not required.
Recommended publications
  • Zingiber Officinale (Ginger Ayurvedic and Modern T
    ss zz Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 13, Issue, 03, pp.16583-16587, March, 2021 ISSN: 0975-833X DOI: https://doi.org/10.24941/ijcr.40963.03.2021 RESEARCH ARTICLE OPEN ACCESS ZINGIBER OFFICINALE (GINGER): A REVIEW BASED UPON ITS AYURVEDIC AND MODERN THERAPEUTIC PROPERTIES *Isha Kumari, Madhusudan, S., Bhawna Walia and Gitika Chaudhary Shuddhi Ayurveda, Jeena Sikho Lifecare Pvt. Ltd. Zirakpur 140603, Punjab, India ARTICLE INFO ABSTRACT Article History: Ginger is utilized globally as a spice and herbal drug. Ginger, a plant of Zingiberaceae family, is a Received 1xxxxxxxxxxxxxxxxxxxxxxxx8th December, 2020 culinary flavor that has been utilized as a significant plant with therapeutic, and healthy benefits in Received in revised form traditional frameworks of medication like Chinese Medicine System, Ayurveda, Siddhia, Yunani, 0xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx7th January, 2021 Folk arrangement of medication for a long time. Many phytochemical constituents are present in Accepted 1xxxxxxxxxxxxxxxxxxxxxxxxx5th February, 2021 ginger. It exhibits some extraordinary medical advantages too. Ginger and its overall phytochemicals, Published online 26xxxxxxxxxxxxxxxxxxth March, 2021 for example, Fe, Mg, Ca, flavonoids, phenolic mixes (gingerdiol, gingerol, gingerdione and shogaols), sesquiterpenes and paradols have been utilized as herbal medication to treat different ailments like KeyKeyWords:Words: torment, cold indications and it has been appeared to have anti-inflammatory, anti-cancer, anti- EpithelialShunthi, Rasapanchak,ovarian cancer Gingerol,, EOC, Shogaol, pyretic, anti-microbial, anti-oxidant and anti- diabetic. It has been generally utilized for joint pain, CytoreductionHypotensive, ,AntiDebulking- cancer., Neoadjuvant, cramps, sore throats, stiffness, muscle pain, torments, vomiting, obstruction, heartburn, hypertension, Chemotherapy. fever and irresistible sicknesses.
    [Show full text]
  • Development of a Ginger Product to Add Value to the Fijian Ginger Industry
    Pacific Horticultural and Agricultural Market Access (PHAMA) Program Department of Foreign Affairs and Trade 16-Nov-2016 Development of a ginger product to add value to the Fijian ginger industry Technical report 110 \\auadl1fp001\JOBS\42444251\5 Works\STA Reports Phase 2\Tech Report 110 Fiji Ginger\TR110 (Fiji ginger).docx Revision – 16-Nov-2016 Prepared for – Department of Foreign Affairs and Trade – ABN: 47 065 634 525 AECOM Pacific Horticultural and Agricultural Market Access (PHAMA) Program Development of a ginger product to add value to the Fijian ginger industry Development of a ginger product to add value to the Fijian ginger industry Client: Department of Foreign Affairs and Trade ABN: 47 065 634 525 Prepared by AECOM Services Pty Ltd Level 28, 91 King William Street, Adelaide SA 5000, Australia T +61 8 7223 5400 F +61 8 7223 5499 www.aecom.com ABN 46 000 691 690 16-Nov-2016 Job No.: 42444251 AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001. © AECOM Services Pty Limited. All rights reserved. No use of the contents, concepts, designs, drawings, specifications, plans etc. included in this report is permitted unless and until they are the subject of a written contract between AECOM Services Pty Limited (AECOM) and the addressee of this report. AECOM accepts no liability of any kind for any unauthorised use of the contents of this report and AECOM reserves the right to seek compensation for any such unauthorised use. Document Delivery AECOM Services Pty Limited (AECOM) provides this document in either printed format, electronic format or both.
    [Show full text]
  • Zingiber Officinale – Ingwer (Zingiberaceae), Heilpflanze Des Jahres 2018 258-263 Jahrb
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Jahrbuch des Bochumer Botanischen Vereins Jahr/Year: 2019 Band/Volume: 10 Autor(en)/Author(s): Kabus Iris Artikel/Article: Zingiber officinale – Ingwer (Zingiberaceae), Heilpflanze des Jahres 2018 258-263 Jahrb. Bochumer Bot. Ver. 10 258–263 2019 Zingiber officinale – Ingwer (Zingiberaceae), Heilpflanze des Jahres 2018 IRIS KABUS 1 Einleitung Der Verein zur Förderung der naturgemäßen Heilweise nach THEOPHRASTUS BOMBASTUS VON HOHENHEIM, genannt PARACELSUS (NHV THEOPHRASTUS) kürt seit 2003 die Heilpflanze des Jahres und hat für 2018 Ingwer (Zingiber officinale) aus der Familie der Ingwergewächse (Zingiberaceae) ausgewählt (Abb. 1 & 2). Ingwer erlebte im Laufe der Geschichte immer wieder höchste Beachtung. Vor allem im Mittelalter fehlte die Pflanze auf keiner Tafel, da sie Linderung nach Völlerei und fettem Essen verschaffte und den Reichtum des Gastgebers unterstrich. Eine weitere schon lange bekannte Wirkung ist die Hilfe bei Übelkeit, insbeson- dere Reiseübelkeit und Seekrankheit. Aktuell wird Ingwer in allen Lifestyle-Magazinen als der Schlankmacher schlechthin gepriesen. Abb. 1: Zingiber officinale, „Ingwerknollen“ im Verkauf (A. JAGEL). Abb. 2: Zingiber officinale, Ingwerblüte (Palmengarten Frankfurt, K. KAMM). 2 Name Der deutsche Name Ingwer, das lateinische Zingiber und der englische Ginger leiten sich von der altindischen Bezeichnung srngavera her, wobei das altindische srnga für Horn/Geweih steht und auf die hornförmige Gestalt des Rhizoms hinweist und veru aus dem Tamilischen für Wurzel stammt (MARZELL 1979). Nach GENAUST (1983) ist der erste Wortteil wahrscheinlich eine Abwandlung des Begriffs inchi aus der südindischen Sprache Malayalam und kann mit Wurzel übersetzt werden. Somit würde der Ingwer die wörtliche Bezeichnung „Wurzel-Wurzel“ tragen.
    [Show full text]
  • 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger
    International Journal of Molecular Sciences Article 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice Chien-Kei Wei 1,†, Yi-Hong Tsai 1,†, Michal Korinek 1, Pei-Hsuan Hung 2, Mohamed El-Shazly 1,3, Yuan-Bin Cheng 1, Yang-Chang Wu 1,4,5,6, Tusty-Jiuan Hsieh 2,7,8,9,* and Fang-Rong Chang 1,7,9,* 1 Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan; [email protected] (C.-K.W.); [email protected] (Y.-H.T.); [email protected] (M.K.); [email protected] (M.E.-S.); [email protected] (Y.-B.C.); [email protected] (Y.-C.W.) 2 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; [email protected] 3 Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt 4 School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan 5 Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan 6 Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan 7 Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan 8 Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan 9 Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan * Correspondence: [email protected] (T.-J.H.); [email protected] (F.-R.C.); Tel.: +886-7-312-1101 (ext.
    [Show full text]
  • Pharmacological Importance of Kaempferia Galanga (Zingiberaceae): a Mini Review
    International Journal of Research in Pharmacy and Pharmaceutical Sciences International Journal of Research in Pharmacy and Pharmaceutical Sciences ISSN: 2455-698X Impact Factor: RJIF 5.22 www.pharmacyjournal.in Volume 3; Issue 3; May 2018; Page No. 32-39 Pharmacological importance of Kaempferia galanga (Zingiberaceae): A mini review Hosne Jahan Shetu1, Kaniz Taskina Trisha2, Shishir Ahmed Sikta3, Raihanatul Anwar4, Sadman Sakib Bin Rashed5, Pritesh Ranjan Dash6* 1, 2, 3 Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh 4, 5 Department of Pharmacy, BRAC University, Mohakhali, Dhaka, Bangladesh 6 Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh Abstract Kaempferia galanga L. belonging to the family Zingiberaceae is an endangered medicinal plant with potent medicinal activities. The leaves, rhizome and root tubers of the plant possess a number of medicinal applications. The plant is economically important and is over exploited to the extent that there is always scarcity of propagating material (rhizomes) which is the consumable part too. The present review provides broad information of Kaempferia galanga throwing light on its current status, ethnobotany, phytochemistry and pharmacology. Extracts of Kaempferia galanga have anti-inflammatory, analgesic, anti-diarrheal, anti- bacterial, sedative, cytotoxic, insecticidal and anthelmintic properties which are reported here. Keywords: Kaempferia galanga, zingiberaceae, phytochemistry, pharmacological activity Introduction spite of the variety of useful pharmacological properties it Kaempferia galanga Linn., commonly known as Cekor, possess. Therefore, the importance of the plant K. galanga as Ekangi, Kencur or aromatic ginger is a stem less herb in a medicinal plant is to be documented and presented to the Zingiberaceae family. The plant is native to tropical Asia mass of people.
    [Show full text]
  • Etlingera Elatior Jack) FLOWER EXTRACTS and ESSENTIAL OIL UPM
    UNIVERSITI PUTRA MALAYSIA EFFECTS OF DRYING METHODS ON CHEMICAL COMPOSITION, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF TORCH GINGER (Etlingera elatior Jack) FLOWER EXTRACTS AND ESSENTIAL OIL UPM ALIAA BINTI ANZIAN COPYRIGHT © FSTM 2018 17 EFFECTS OF DRYING METHODS ON CHEMICAL COMPOSITION, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF TORCH GINGER (Etlingera elatior Jack) FLOWER EXTRACTS AND ESSENTIAL OIL UPM By ALIAA BINTI ANZIAN Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in COPYRIGHTFulfilment of the Requirements for the Degree of Master of Science © April 2018 All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, and written permission of Universiti Putra Malaysia. Copyright © Universiti Putra Malaysia UPM COPYRIGHT © Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science EFFECTS OF DRYING METHODS ON CHEMICAL COMPOSITION, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF TORCH GINGER (Etlingera elatior Jack) FLOWER EXTRACTS AND ESSENTIAL OIL By ALIAA BINTI ANZIAN April 2018 UPM Chairman : Associate Professor Anis Shobirin Meor Hussin, PhD Faculty : Food Science and Technology Torch ginger (Etlingera elatior Jack) flower is a well-known spice for local delicacies and natural remedies that has been reported to possess significant antioxidant and antibacterial activities. However, the maturity stages, drying conditions and extraction methods are still questionable in preserving bioactive compounds of torch ginger flower.
    [Show full text]
  • Herbal Medicines in Pregnancy and Lactation : an Evidence-Based
    00 Prelims 1410 10/25/05 2:13 PM Page i Herbal Medicines in Pregnancy and Lactation An Evidence-Based Approach Edward Mills DPh MSc (Oxon) Director, Division of Clinical Epidemiology Canadian College of Naturopathic Medicine North York, Ontario, Canada Jean-Jacques Duguoa MSc (cand.) ND Naturopathic Doctor Toronto Western Hospital Assistant Professor Division of Clinical Epidemiology Canadian College of Naturopathic Medicine North York, Ontario, Canada Dan Perri BScPharm MD MSc Clinical Pharmacology Fellow University of Toronto Toronto, Ontario, Canada Gideon Koren MD FACMT FRCP Director of Motherisk Professor of Medicine, Pediatrics and Pharmacology University of Toronto Toronto, Ontario, Canada With a contribution from Paul Richard Saunders PhD ND DHANP 00 Prelims 1410 10/25/05 2:13 PM Page ii © 2006 Taylor & Francis Medical, an imprint of the Taylor & Francis Group First published in the United Kingdom in 2006 by Taylor & Francis Medical, an imprint of the Taylor & Francis Group, 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN Tel.: ϩ44 (0)20 7017 6000 Fax.: ϩ44 (0)20 7017 6699 E-mail: [email protected] Website: www.tandf.co.uk/medicine All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans- mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher or in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P 0LP.
    [Show full text]
  • C-23 Phytochemical of Kaempferia Plant And
    Proceeding of International Conference On Research, Implementation And Education Of Mathematics And Sciences 2014, Yogyakarta State University, 18-20 May 2014 C-23 PHYTOCHEMICAL OF KAEMPFERIA PLANT AND BIOPROSPECTING FOR CANCER TREATMENT Sri Atun Chemistry education Faculty of Mathematical and Natural Science, Yogyakarta State University, Jl. Colombo No. 1 Yogyakarta, Indonesia, 55281 e-mail : [email protected] ABSTRACT Kaempferia genus is perennial member of the Zingiberaceae family and is cultivated in Indonesia and other parts of Southeast Asia. Number of studies has been conducted, providing information related to Kaempferia as antioxidant; antimutagenic; and chemopreventive agent. This paper reports some isolated compounds from this plant, biological activity, and bioprospecting for cancer treatment. Keyword: Cancer treatment; Kaempferia; Zingiberaceae INTRODUCTION Kaempferia is a genus, belong to family of Zingiberaceae. This plant grows in Southeast Asia, India, Sri Lanka, Indonesia, and Southem China. Kaempferia genus sinonim with Boesenbergia genus by Baker. This plant has 8 different botanical names which are Boesenbergia cochinchinensis (Gagnep.) Loes., Boesenbergia pandurata (Roxb.) Schltr., Curcuma rotunda L., Gastrochilus panduratus (Roxb.) Ridl., Gastrochilus rotundus (L.) Alston, Kaempferia cochinchinensis Gagnep., Kaempferia ovate Roscoe, Kaempferia galanga, Kaempferia rotunda, and Kaempferia pandurata Roxb nonetheless it is currently known as Boesenbergia rotunda (L.)Mansf (Tan Eng-Chong, et. al, 2012). The plants grown naturally in damp, shaded parts of the lowland or on hill slopes, as scattered plants or thickets. Economically important species among the plant families, the Zingiberaceae, which are perennial rhizomatous herbs, contain volatile oil and other important compounds of enormous medicinal values (Singh C.B., 2013). Phytochemical and biologycal activities of some species of Kaempferia Phytochemical and biologycal some species of plants of the genus Kaempferia reported by many researchers, among others: 1.
    [Show full text]
  • An In-Vitro Evaluation of the Anthelmintic Activity of Rhizome Extracts of Zingiber Officinalis, Zingiber Zerumbet and Curcuma L
    Saroj Kumar Raul et al. / Journal of Pharmacy Research 2012,5(7),3813-3814 Research Article Available online through ISSN: 0974-6943 http://jprsolutions.info An in-vitro evaluation of the anthelmintic activity of rhizome extracts of Zingiber officinalis, Zingiber zerumbet and Curcuma longa, a comparative study *Saroj Kumar Raul, Gopal K Padhy, Jasmin P Charly, K Venkatesh Kumar Maharajah’s College of Pharmacy,Phoolbaugh,Vizianagaram,Andhra Pradesh, India Received on:07-04-2012; Revised on: 12-05-2012; Accepted on:16-06-2012 ABSTRACT The present study was undertaken to evaluate the Anthelmintic activity of ethanol extracts of Zingiber officinalis (Zingiberacae), Zingiber zerumbet (Zingiberacae) and Curcuma longa on Indian earthworm, Pheretima posthuma.Various concentrations (10ug/ml, 25ug/ml, 50ug/ml) of all extracts were tested and results were expressed in terms of time of paralysis and time of death of the earthworm. Piperazine citrate (10ug/ml) was used as reference standard and sterile water as control group. KEYWORDS: Anthelmintic activity, Pheretima posthuma, Piperazine citrate, Zingiber officinalis, Zingiber zerumbet, Curcuma longa INTRODUCTION: Medicinal plants used in India for centuries have an important therapeutic Curcuma longa commonly known as Turmeric is a rhizomatous herbaceous source for treating a variety of ailments and has been found to immense global perennial plant of the ginger family, Zingiberaceae. [2]. It is native to tropical importance. India is perhaps the largest producer of medicinal herbs and is South Asia and needs temperatures between 20 °C and 30 °C and a consider- rightly called the ‘Botanical Garden of the world’. Medicinal herbs have been able amount of annual rainfall to thrive.[3] Plants are gathered annually for used for thousands of years in the indigenous system of medicines like their rhizomes, and propagated from some of those rhizomes in the following Ayurveda, Siddha and Unani.
    [Show full text]
  • Production of Wine from Ginger and Indian Gooseberry and a Comparative Study of Them Over Commercial Wine
    AmericAmerican Journal of Engineering Research (AJER) 2013 American Journal of Engineering Research (AJER) e-ISSN : 2320-0847 p-ISSN : 2320-0936 Volume-02, Issue-05, pp-19-38 www.ajer.us Research Paper Open Access Production of Wine from Ginger and Indian Gooseberry and A Comparative Study of Them over Commercial Wine Giri Nandagopal.M.S a, Praveen.S.Nair b a,b- Post Graduate Scholars, Department of Chemical Engineering, Kongu Engineering College, Perundurai, Erode, India- 638052. Abstract: Wine is one of the functional fermented foods that have many health benefits. Commercially, wine is produced by the fermentation of yeast which involves the conversion of sugar to alcohol. Wine can act as a nutrient supplement for seasonal fruits and vegetables throughout the year. Using fruits and vegetables having medicinal and nutritional value as a substrate for wine production, the health benefits of them can be improved widely. Ginger and Indian gooseberry, which are known for its high medicinal and nutritional value are used as the substrate here. Fermentation is carried out with Saccharomyces cerevisiae commonly known as bakers yeast. Daily monitoring was done to study the composition and characteristics of the wine. The wine produced resembled the commercial wine in terms of its composition, taste and aroma. During the fermentation period the wines were analyzed for pH, titratable acidity, specific gravity, biomass content, alcohol and reducing sugar on a daily basis. pH show a decreased trend then attains minima and then increased. As the fermentation days proceed, the specific gravity increased and the alcohol percentage increased gradually. Batch 1 Amla (A1) showed a pH range of 3.79-3.56, specific gravity ranges from 1.09 -1.17 and alcohol content was 10.5%.
    [Show full text]
  • Comparative Chloroplast Genome Analysis of Rhubarb Botanical Origins and the Development of Specific Identification Markers
    molecules Article Comparative Chloroplast Genome Analysis of Rhubarb Botanical Origins and the Development of Specific Identification Markers Yuxin Zhou 1, Jing Nie 2, Ling Xiao 2, Zhigang Hu 1,* and Bo Wang 2,* 1 College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; [email protected] 2 Hubei Institute for Drug Control, Wuhan 430012, China; [email protected] (J.N.); [email protected] (L.X.) * Correspondence: [email protected] (Z.H.); [email protected] (B.W.); Tel.: +86-027-87705271 (Z.H. & B.W.) Received: 15 September 2018; Accepted: 27 October 2018; Published: 30 October 2018 Abstract: Rhubarb is an important ingredient in traditional Chinese medicine known as Rhei radix et rhizome. However, this common name refers to three different botanical species with different pharmacological effects. To facilitate the genetic identification of these three species for their more precise application in Chinese medicine we here want to provide chloroplast sequences with specific identification sites that are easy to amplify. We therefore sequenced the complete chloroplast genomes of all three species and then screened those for suitable sequences describing the three species. The length of the three chloroplast genomes ranged from 161,053 bp to 161,541 bp, with a total of 131 encoded genes including 31 tRNA, eight rRNA and 92 protein-coding sequences. The simple repeat sequence analysis indicated the differences existed in these species, phylogenetic analyses showed the chloroplast genome can be used as an ultra-barcode to distinguish the three botanical species of rhubarb, the variation of the non-coding regions is higher than that of the protein coding regions, and the variations in single-copy region are higher than that in inverted repeat.
    [Show full text]
  • In Vitro Antimicrobial Evaluation of Kaempferia Galanga L. Rhizome Extract Kochuthressia K
    AMERICAN JOURNAL BIOTECHNOLOGY AND MOLECULAR SCIENCES ISSN Print: 2159-3698, ISSN Online: 2159-3701, doi:10.5251/ajbms.2012.2.1.1.5 © 2012, ScienceHuβ, http://www.scihub.org/AJBMS In vitro antimicrobial evaluation of Kaempferia galanga L. rhizome extract Kochuthressia K. P.1 S.John Britto2, Jaseentha M.O1 and Rini Raphael3 1Dept of Botany , Carmel College, Mala, Trissur-680732 2The Rapinat Herbarium and Centre for Molecular Systematics St.Joseph’s College (Autonomous), Tiruchirappalli-620 002 3Dept of Zoology, Carmel College, Mala, Trissur-680732 ABSTRACT In the present study, antimicrobial activity of ethanol, methanol, petroleum ether, chloroform and aqueous extracts of Kaempferia galanga rhizome were screened aganist ten human pathogenic bacteria such as Staphylococcus aureus, Streptococcus faecalis, Bacillus cereus, Bacillus subtilis, Enterobacter aerogenes, Salmonella typhi, Escherichia coli, Klebsiella pneumoniae, Pesudomonas aeruginosa and Vibrio cholerae and four fungal species :Aspergillus niger, A . flavus, A.fumigatus and Candida albicans susing disc diffusion assay. All the extracts showed significant antibacterial and antifungal properties. Highest inhibition zone (21.3±0.08) was recorded for ethanolic extract against Staphylococcus aureus. Key words : Rhizome, Kaempferia galanga, antimicrobial activity, disc diffusion assay. INTRODUCTION of medicinal plants are being increasingly reported from different parts of the world (Saxena, 1999). It is Herbal medicines are gaining priorities in treating expected that plant extracts showing target sites various health ailments of diverse origins in man. other than those used by antibiotics will be active Before the inventions of the modern synthetic against drug resistant microbial pathogen medicines, man’s dependence was totally on plants. Traditional systems of plant based products have Kaempferia galanga L.
    [Show full text]