Incidence of Bacteriocins Produced by Food-Related Lactic Acid Bacteria Active Towards Oral Pathogens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Oral Microbiome of Healthy Japanese People at the Age of 90
applied sciences Article The Oral Microbiome of Healthy Japanese People at the Age of 90 Yoshiaki Nomura 1,* , Erika Kakuta 2, Noboru Kaneko 3, Kaname Nohno 3, Akihiro Yoshihara 4 and Nobuhiro Hanada 1 1 Department of Translational Research, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; [email protected] 2 Department of Oral bacteriology, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; [email protected] 3 Division of Preventive Dentistry, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan; [email protected] (N.K.); [email protected] (K.N.) 4 Division of Oral Science for Health Promotion, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-45-580-8462 Received: 19 August 2020; Accepted: 15 September 2020; Published: 16 September 2020 Abstract: For a healthy oral cavity, maintaining a healthy microbiome is essential. However, data on healthy microbiomes are not sufficient. To determine the nature of the core microbiome, the oral-microbiome structure was analyzed using pyrosequencing data. Saliva samples were obtained from healthy 90-year-old participants who attended the 20-year follow-up Niigata cohort study. A total of 85 people participated in the health checkups. The study population consisted of 40 male and 45 female participants. Stimulated saliva samples were obtained by chewing paraffin wax for 5 min. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene were amplified by PCR. -
The Ecology of Staphylococcus Species in the Oral Cavity
J. Med. Microbiol. Ð Vol. 50 2001), 940±946 # 2001 The Pathological Society of Great Britain and Ireland ISSN 0022-2615 REVIEW ARTICLE The ecology of Staphylococcus species in the oral cavity A. J. SMITH, M. S. JACKSON and J. BAGG Infection Research Group, Glasgow Dental Hospital and School, 378 Sauchiehall Street, Glasgow G2 3JZ Whilst the diversity of organisms present in the oral cavity is well accepted, there remains considerable controversy as to whether Staphylococcus spp. play a role in the ecology of the normal oral ¯ora. Surprisingly little detailed work has been performed on the quantitative and qualitative aspects of colonisation or infection either by coagulase- negative staphylococci CNS) or S. aureus. The latter is especially interesting in the light of present dif®culties in eradicating carriage of methicillin-resistant S. aureus MRSA) from the oropharynx in affected individuals. This paper reviews the current knowledge of staphylococcal colonisation and infection of the oral cavity in health and disease. S. aureus has been isolated from a wide range of infective oral conditions, such as angular cheilitis and parotitis. More recently, a clinical condition classi®ed as staphylococcal mucositis has emerged as a clinical problem in many debilitated elderly patients and those with oral Crohn's disease. Higher carriage rates of both CNS or S. aureus,or both, in patients prone to joint infections raises the interesting possibility of the oral cavity serving as a potential source for bacteraemic spread to compromised joint spaces. In conclusion, there is a surprising paucity of knowledge regarding the role of oral staphylococci in both health and disease. -
The Comparison of Metronidazole, Clindamycin, and Amoxicillin Againts Streptococcus Sanguinis
Indonesian Dental Association Journal of Indonesian Dental Association http://jurnal.pdgi.or.id/index.php/jida ISSN: 2621-6183 (Print); ISSN: 2621-6175 (Online) The Comparison of Metronidazole, Clindamycin, and Amoxicillin Againts Streptococcus sanguinis Kevin Lim1, Armelia Sari Widyarman2§ 1 Undergraduate student, Faculty of Dentistry, Trisakti University, Indonesia 2 Department of Microbiology, Faculty of Dentistry, Trisakti University, Indonesia Received date: August 15, 2018. Accepted date: September 27, 2018. Published date: October 19, 2018 KEYWORDS ABSTRACT amoxicillin; Introduction: Viridans streptococci group such as Streptococcus sanguinis (S. sanguinis), an clindamycin; anaerobic Gram-positive bacteria is a well-known for its involvement in dry socket (alveolar metronidazole; Streptococcus sanguinis osteitis)-associated infection. Systemic amoxicillin, clindamycin and metronidazole have all been shown to be effective to inhibit this bacterium. However, there has been a lack of studies identifying which are the most effective amongst these antibiotics toward Streptococcus sanguinis. Objectives: The purpose of this study is to evaluate the effectiveness of metronidazole, clindamycin, and amoxicillin in inhibiting the growth of Streptococcus sanguinis in vitro. Methods: This effectiveness was done by using agar well diffusion methods. S. sanguinis ATCC 10556 were cultured in Brain Heart Infusion (BHI) broth at 37°C under anaerobic condition. After 48h, bacterial cells were harvested and counted using microplate reader (490 nm) to achieve optical density of 0.25-0.30 (107 CFU/mL). Subsequently, 100 μL of bacterial suspension was cultured on BHI agar and each antibiotic suspension was added into each agar well, incubated for 72h at 37°C. The inhibition zone diameters were measured with electronic caliper. -
The C-Di-Gmp Regulatory Network in Clostridioides Difficile and Its Role in Modulating Surface Adherence and Persistence in the Mammalian Gut
THE C-DI-GMP REGULATORY NETWORK IN CLOSTRIDIOIDES DIFFICILE AND ITS ROLE IN MODULATING SURFACE ADHERENCE AND PERSISTENCE IN THE MAMMALIAN GUT Robert Woodrow McKee A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor in Philosophy in the Department of Microbiology and Immunology. Chapel Hill 2018 Approved by: Peggy A Cotter Jonathan J. Hansen Virginia L. Miller Rita Tamayo Mathew C Wolfgang © 2018 Robert Woodrow McKee ALL RIGHTS RESERVED ii ABSTRACT Robert Woodrow McKee: The c-di-GMP regulatory network in Clostridioides difficile and its role in modulating surface adherence and persistence in the mammalian gut (Under the direction of Rita Tamayo) Clostridioides difficile (Clostridium difficile) is a spore-forming bacterial pathogen responsible for hundreds of thousands of infections each year in the United States. C. difficile outbreaks are common in hospitals because C. difficile spores can persist for months on surfaces and are resistant to many disinfectants. Despite the significant disease burden that C. difficile represents, we know surprisingly little about the factors necessary for C. difficile to colonize and persist in the mammalian intestine. Previous work demonstrated that the signaling molecule cyclic diguanylate (c-di-GMP) regulates a variety of processes in C. difficile including production of the toxins that are required for disease symptoms. Using monolayers of human intestinal epithelial cells, we demonstrate that c-di-GMP promotes attachment of C. difficile to intestinal epithelial cells. We also demonstrate that regulation of type IV pili (TFP) by c-di-GMP promotes prolonged adherence of C. -
Common Commensals
Common Commensals Actinobacterium meyeri Aerococcus urinaeequi Arthrobacter nicotinovorans Actinomyces Aerococcus urinaehominis Arthrobacter nitroguajacolicus Actinomyces bernardiae Aerococcus viridans Arthrobacter oryzae Actinomyces bovis Alpha‐hemolytic Streptococcus, not S pneumoniae Arthrobacter oxydans Actinomyces cardiffensis Arachnia propionica Arthrobacter pascens Actinomyces dentalis Arcanobacterium Arthrobacter polychromogenes Actinomyces dentocariosus Arcanobacterium bernardiae Arthrobacter protophormiae Actinomyces DO8 Arcanobacterium haemolyticum Arthrobacter psychrolactophilus Actinomyces europaeus Arcanobacterium pluranimalium Arthrobacter psychrophenolicus Actinomyces funkei Arcanobacterium pyogenes Arthrobacter ramosus Actinomyces georgiae Arthrobacter Arthrobacter rhombi Actinomyces gerencseriae Arthrobacter agilis Arthrobacter roseus Actinomyces gerenseriae Arthrobacter albus Arthrobacter russicus Actinomyces graevenitzii Arthrobacter arilaitensis Arthrobacter scleromae Actinomyces hongkongensis Arthrobacter astrocyaneus Arthrobacter sulfonivorans Actinomyces israelii Arthrobacter atrocyaneus Arthrobacter sulfureus Actinomyces israelii serotype II Arthrobacter aurescens Arthrobacter uratoxydans Actinomyces meyeri Arthrobacter bergerei Arthrobacter ureafaciens Actinomyces naeslundii Arthrobacter chlorophenolicus Arthrobacter variabilis Actinomyces nasicola Arthrobacter citreus Arthrobacter viscosus Actinomyces neuii Arthrobacter creatinolyticus Arthrobacter woluwensis Actinomyces odontolyticus Arthrobacter crystallopoietes -
A Prospective Role for the Rumen in Generating Antibiotic Resistance 2 3 Cameron R
bioRxiv preprint doi: https://doi.org/10.1101/729681; this version posted August 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 TITLE: A prospective role for the rumen in generating antibiotic resistance 2 3 Cameron R. Strachan1,4,*, Anna J. Mueller2, Mahdi Ghanbari3, Viktoria Neubauer4, Benjamin 4 Zwirzitz1,4, Sarah Thalguter1,4, Monika Dziecol4, Stefanie U. Wetzels4, Jürgen Zanghellini5,6,7, 5 Martin Wagner1, 4, Stephan Schmitz-Esser8, Evelyne Mann4 6 7 1FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria 8 2University of Vienna, Centre for Microbiology and Environmental Systems Science, 9 Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria 10 11 3BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria 12 13 4Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm 14 Animals and Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 15 Vienna, Austria 16 17 5Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria 18 19 6Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 20 Vienna, Austria 21 22 7Austrian Biotech University of Applied Sciences, 3430 Tulln, Austria 23 24 8Department of Animal Science, Iowa State University, 3222 National Swine Research and 25 Information Center, 1029 North University Blvd, Ames, IA 50011-3611, USA. 26 27 *Author correspondence: [email protected] 28 29 ABSTRACT 30 31 Antibiotics were a revolutionary discovery of the 20th century, but the ability of bacteria to 32 spread the genetic determinants of resistance via horizontal gene transfer (HGT) has quickly 33 endangered their use1. -
Oxygen Dependent Pyruvate Oxidase Expression and Production in Streptococcus Sanguinis
Int J Oral Sci (2011) 3: 82-89. www.ijos.org.cn ORIGINAL ARTICLE Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis Lan-yan Zheng1, 2*, Andreas Itzek1, Zhi-yun Chen1, Jens Kreth1, 3 1Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma 73104, USA; 2China Medical University, Department of Microbiology and Parasitology, Shenyang 110001, China; 3Department of Oral Biology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma 73104, USA The objective of this study was to characterize the oxygen dependent regulation of pyruvate oxidase (SpxB) gene expression and protein production in Streptococcus sanguinis (S. sanguinis). SpxB is responsible for the generation of growth-inhibiting amounts of hydrogen peroxide (H2O2) able to antagonize cariogenic Strepto- coccus mutans (S. mutans). Furthermore, the ecological consequence of H2O2 production was investigated in its self-inhibiting ability towards the producing strain. Expression of spxB was determined with quantitative Real-Time RT-PCR and a fluorescent expression reporter strain. Protein abundance was investigated with FLAG epitope engineered in frame on the C-terminal end of SpxB. Self inhibition was tested with an antagonism plate assay. The expression and protein abundance decreased in cells grown under anaerobic conditions. S. sanguinis was resistant against its own produced H2O2, while cariogenic S. mutans was inhibited in its growth. The results suggest that S. sanguinis produces H2O2 as antimicrobial substance to inhibit susceptible niche competing species like S. mutans during initial biofilm formation, when oxygen availability allows for spxB expression and Spx production. Keywords: Streptococcus sanguinis; pyruvate oxidase; oxygen dependent International Journal of Oral Science (2011) 3: 82-89. -
A Candidate Virulence Factor in Streptococcus Sanguinis Experimental Endocarditis
Ecto-59-Nucleotidase: A Candidate Virulence Factor in Streptococcus sanguinis Experimental Endocarditis Jingyuan Fan1¤, Yongshu Zhang1, Olivia N. Chuang-Smith2, Kristi L. Frank2, Brian D. Guenther1, Marissa Kern1, Patrick M. Schlievert2, Mark C. Herzberg1,3* 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America, 2 Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America, 3 Mucosal and Vaccine Research Center, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, United States of America Abstract Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-59-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (P,0.05) to onset of platelet aggregation than the wild-type strain, without affecting platelet-bacterial adhesion in vitro (P = 0.98). In the absence of nt5e, S. sanguinis caused IE (4 d) in a rabbit model with significantly decreased mass of vegetations (P,0.01) and recovered bacterial loads (log10CFU, P = 0.01), suggesting that Nt5e contributes to the virulence of S. sanguinis in vivo. As a virulence factor, Nt5e may function by (i) hydrolyzing ATP, a pro-inflammatory molecule, and generating adenosine, an immunosuppressive molecule to inhibit phagocytic monocytes/macrophages associated with valvular vegetations. -
Identification of Clinically Relevant Streptococcus and Enterococcus
pathogens Article Identification of Clinically Relevant Streptococcus and Enterococcus Species Based on Biochemical Methods and 16S rRNA, sodA, tuf, rpoB, and recA Gene Sequencing Maja Kosecka-Strojek 1,* , Mariola Wolska 1, Dorota Zabicka˙ 2 , Ewa Sadowy 3 and Jacek Mi˛edzobrodzki 1 1 Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; [email protected] (M.W.); [email protected] (J.M.) 2 Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland; [email protected] 3 Department of Epidemiology and Clinical Microbiology, National Medicines Institute, 00-725 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-12-664-6365 Received: 13 October 2020; Accepted: 9 November 2020; Published: 11 November 2020 Abstract: Streptococci and enterococci are significant opportunistic pathogens in epidemiology and infectious medicine. High genetic and taxonomic similarities and several reclassifications within genera are the most challenging in species identification. The aim of this study was to identify Streptococcus and Enterococcus species using genetic and phenotypic methods and to determine the most discriminatory identification method. Thirty strains recovered from clinical samples representing 15 streptococcal species, five enterococcal species, and four nonstreptococcal species were subjected to bacterial identification by the Vitek® 2 system and Sanger-based sequencing methods targeting the 16S rRNA, sodA, tuf, rpoB, and recA genes. Phenotypic methods allowed the identification of 10 streptococcal strains, five enterococcal strains, and four nonstreptococcal strains (Leuconostoc, Granulicatella, and Globicatella genera). The combination of sequencing methods allowed the identification of 21 streptococcal strains, five enterococcal strains, and four nonstreptococcal strains. -
Two-Component System Vicrk Regulates Functions Associated with Establishment of Streptococcus Sanguinis in Biofilms
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio da Producao Cientifica e Intelectual da Unicamp Two-Component System VicRK Regulates Functions Associated with Establishment of Streptococcus sanguinis in Biofilms Julianna J. Moraes, Rafael N. Stipp, Erika N. Harth-Chu, Tarsila M. Camargo, José F. Höfling, Renata O. Mattos-Graner Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Sao Paulo, Brazil Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall bio- genesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of ex- tracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter se- quence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. -
Probiotics Streptococcus Salivarius 24SMB And
Bidossi et al. BMC Infectious Diseases (2018) 18:653 https://doi.org/10.1186/s12879-018-3576-9 RESEARCH ARTICLE Open Access Probiotics Streptococcus salivarius 24SMB and Streptococcus oralis 89a interfere with biofilm formation of pathogens of the upper respiratory tract Alessandro Bidossi1, Roberta De Grandi1, Marco Toscano2, Marta Bottagisio1, Elena De Vecchi1, Matteo Gelardi3 and Lorenzo Drago1,2* Abstract Background: Infections of the ears, paranasal sinuses, nose and throat are very common and represent a serious issue for the healthcare system. Bacterial biofilms have been linked to upper respiratory tract infections and antibiotic resistance, raising serious concerns regarding the therapeutic management of such infections. In this context, novel strategies able to fight biofilms may be therapeutically beneficial and offer a valid alternative to conventional antimicrobials. Biofilms consist of mixed microbial communities, which interact with other species in the surroundings and communicate through signaling molecules. These interactions may result in antagonistic effects, which can be exploited in the fight against infections in a sort of “bacteria therapy”. Streptococcus salivarius and Streptococcus oralis are α-hemolytic streptococci isolated from the human pharynx of healthy individuals. Several studies on otitis-prone children demonstrated that their intranasal administration is safe and well tolerated and is able to reduce the risk of acute otitis media. The aim of this research is to assess S. salivarius 24SMB and S. oralis 89a for the ability to interfere with biofilm of typical upper respiratory tract pathogens. Methods: To investigate if soluble substances secreted by the two streptococci could inhibit biofilm development of the selected pathogenic strains, co-cultures were performed with the use of transwell inserts. -
Aerobic Gram-Positive Bacteria
Aerobic Gram-Positive Bacteria Abiotrophia defectiva Corynebacterium xerosisB Micrococcus lylaeB Staphylococcus warneri Aerococcus sanguinicolaB Dermabacter hominisB Pediococcus acidilactici Staphylococcus xylosusB Aerococcus urinaeB Dermacoccus nishinomiyaensisB Pediococcus pentosaceusB Streptococcus agalactiae Aerococcus viridans Enterococcus avium Rothia dentocariosaB Streptococcus anginosus Alloiococcus otitisB Enterococcus casseliflavus Rothia mucilaginosa Streptococcus canisB Arthrobacter cumminsiiB Enterococcus durans Rothia aeriaB Streptococcus equiB Brevibacterium caseiB Enterococcus faecalis Staphylococcus auricularisB Streptococcus constellatus Corynebacterium accolensB Enterococcus faecium Staphylococcus aureus Streptococcus dysgalactiaeB Corynebacterium afermentans groupB Enterococcus gallinarum Staphylococcus capitis Streptococcus dysgalactiae ssp dysgalactiaeV Corynebacterium amycolatumB Enterococcus hiraeB Staphylococcus capraeB Streptococcus dysgalactiae spp equisimilisV Corynebacterium aurimucosum groupB Enterococcus mundtiiB Staphylococcus carnosusB Streptococcus gallolyticus ssp gallolyticusV Corynebacterium bovisB Enterococcus raffinosusB Staphylococcus cohniiB Streptococcus gallolyticusB Corynebacterium coyleaeB Facklamia hominisB Staphylococcus cohnii ssp cohniiV Streptococcus gordoniiB Corynebacterium diphtheriaeB Gardnerella vaginalis Staphylococcus cohnii ssp urealyticusV Streptococcus infantarius ssp coli (Str.lutetiensis)V Corynebacterium freneyiB Gemella haemolysans Staphylococcus delphiniB Streptococcus infantarius