Infective Endocarditis: a Focus on Oral Microbiota
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Long-Term Uncontrolled Hereditary Gingival Fibromatosis: a Case Report
Long-term Uncontrolled Hereditary Gingival Fibromatosis: A Case Report Abstract Hereditary gingival fibromatosis (HGF) is a rare condition characterized by varying degrees of gingival hyperplasia. Gingival fibromatosis usually occurs as an isolated disorder or can be associated with a variety of other syndromes. A 33-year-old male patient who had a generalized severe gingival overgrowth covering two thirds of almost all maxillary and mandibular teeth is reported. A mucoperiosteal flap was performed using interdental and crevicular incisions to remove excess gingival tissues and an internal bevel incision to reflect flaps. The patient was treated 15 years ago in the same clinical facility using the same treatment strategy. There was no recurrence one year following the most recent surgery. Keywords: Gingival hyperplasia, hereditary gingival hyperplasia, HGF, hereditary disease, therapy, mucoperiostal flap Citation: S¸engün D, Hatipog˘lu H, Hatipog˘lu MG. Long-term Uncontrolled Hereditary Gingival Fibromatosis: A Case Report. J Contemp Dent Pract 2007 January;(8)1:090-096. © Seer Publishing 1 The Journal of Contemporary Dental Practice, Volume 8, No. 1, January 1, 2007 Introduction Hereditary gingival fibromatosis (HGF), also Ankara, Turkey with a complaint of recurrent known as elephantiasis gingiva, hereditary generalized gingival overgrowth. The patient gingival hyperplasia, idiopathic fibromatosis, had presented himself for examination at the and hypertrophied gingival, is a rare condition same clinic with the same complaint 15 years (1:750000)1 which can present as an isolated ago. At that time, he was treated with full-mouth disorder or more rarely as a syndrome periodontal surgery after the diagnosis of HGF component.2,3 This condition is characterized by had been made following clinical and histological a slow and progressive enlargement of both the examination (Figures 1 A-B). -
CASE REPORTS Supraventricular Tachycardia As the Initial
http://crim.sciedupress.com Case Reports in Internal Medicine, 2015, Vol. 2, No. 3 CASE REPORTS Supraventricular tachycardia as the initial presentation of bacterial infective endocarditis: A rare case report Wei-Tsung Wu1, Hung-Ling Huang2, Ho-Ming Su1, 3, Tsung-Hsien Lin1, 3, Kun-Tai Lee1, 3, Sheng-Hsiung Sheu1, 3, Po-Chao Hsu1, 3 1. Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC. 2. Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC. 3. Department of Internal Medicine, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC Correspondence: Po-Chao Hsu. Address: Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Tzyou 1st Road, Kaohsiung. 80708, Taiwan, ROC. Email: [email protected] Received: May 19, 2015 Accepted: June 15, 2015 Online Published: June 17, 2015 DOI: 10.5430/crim.v2n3p26 URL: http://dx.doi.org/10.5430/crim.v2n3p26 Abstract Infective endocarditis (IE) is an infection of the heart valves or the heart’s inner lining. The clinical symptoms of infectious endocarditis vary considerably, some are subtle and non-specific, which make the diagnosis difficult or the signs misleading. In some cases cardiac symptoms are associated with intra cardiac extension of the infection, including murmur, conduction blocks and congestive heart failure. However, there was no literature description of supraventricular tachycardia (SVT) as the initial presentation of IE. Herein we report a case of bacterial IE with SVT as the initial presentation of disease, which finally leaded to catastrophic outcome. -
The Oral Microbiome of Healthy Japanese People at the Age of 90
applied sciences Article The Oral Microbiome of Healthy Japanese People at the Age of 90 Yoshiaki Nomura 1,* , Erika Kakuta 2, Noboru Kaneko 3, Kaname Nohno 3, Akihiro Yoshihara 4 and Nobuhiro Hanada 1 1 Department of Translational Research, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; [email protected] 2 Department of Oral bacteriology, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; [email protected] 3 Division of Preventive Dentistry, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan; [email protected] (N.K.); [email protected] (K.N.) 4 Division of Oral Science for Health Promotion, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-45-580-8462 Received: 19 August 2020; Accepted: 15 September 2020; Published: 16 September 2020 Abstract: For a healthy oral cavity, maintaining a healthy microbiome is essential. However, data on healthy microbiomes are not sufficient. To determine the nature of the core microbiome, the oral-microbiome structure was analyzed using pyrosequencing data. Saliva samples were obtained from healthy 90-year-old participants who attended the 20-year follow-up Niigata cohort study. A total of 85 people participated in the health checkups. The study population consisted of 40 male and 45 female participants. Stimulated saliva samples were obtained by chewing paraffin wax for 5 min. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene were amplified by PCR. -
Catalogue of Bacteria Shapes
We first tried to use the most general shape associated with each genus, which are often consistent across species (spp.) (first choice for shape). If there was documented species variability, either the most common species (second choice for shape) or well known species (third choice for shape) is shown. Corynebacterium: pleomorphic bacilli. Due to their snapping type of division, cells often lie in clusters resembling chinese letters (https://microbewiki.kenyon.edu/index.php/Corynebacterium) Shown is Corynebacterium diphtheriae Figure 1. Stained Corynebacterium cells. The "barred" appearance is due to the presence of polyphosphate inclusions called metachromatic granules. Note also the characteristic "Chinese-letter" arrangement of cells. (http:// textbookofbacteriology.net/diphtheria.html) Lactobacillus: Lactobacilli are rod-shaped, Gram-positive, fermentative, organotrophs. They are usually straight, although they can form spiral or coccobacillary forms under certain conditions. (https://microbewiki.kenyon.edu/index.php/ Lactobacillus) Porphyromonas: A genus of small anaerobic gram-negative nonmotile cocci and usually short rods thatproduce smooth, gray to black pigmented colonies the size of which varies with the species. (http:// medical-dictionary.thefreedictionary.com/Porphyromonas) Shown: Porphyromonas gingivalis Moraxella: Moraxella is a genus of Gram-negative bacteria in the Moraxellaceae family. It is named after the Swiss ophthalmologist Victor Morax. The organisms are short rods, coccobacilli or, as in the case of Moraxella catarrhalis, diplococci in morphology (https://en.wikipedia.org/wiki/Moraxella). *This one could be changed to a diplococcus shape because of moraxella catarrhalis, but i think the short rods are fair given the number of other moraxella with them. Jeotgalicoccus: Jeotgalicoccus is a genus of Gram-positive, facultatively anaerobic, and halotolerant to halophilicbacteria. -
Porphyromonas Gingivalis, Strain F0566 Catalog
Product Information Sheet for HM-1141 Porphyromonas gingivalis, Strain F0566 immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze- thaw cycles should be avoided. Catalog No. HM-1141 Growth Conditions: For research use only. Not for human use. Media: Supplemented Tryptic Soy broth or equivalent Contributor: Tryptic Soy agar with 5% defibrinated sheep blood or Floyd E. Dewhirst, D.D.S., Ph.D., Senior Member of the Staff, Supplemented Tryptic Soy agar or equivalent Department of Microbiology and Jacques Izard, Assistant Incubation: Member of the Staff, Department of Molecular Genetics, The Temperature: 37°C Forsyth Institute, Cambridge, Massachusetts, USA Atmosphere: Anaerobic Propagation: Manufacturer: 1. Keep vial frozen until ready for use, then thaw. BEI Resources 2. Transfer the entire thawed aliquot into a single tube of broth. Product Description: 3. Use several drops of the suspension to inoculate an Bacteria Classification: Porphyromonadaceae, agar slant and/or plate. Porphyromonas 4. Incubate the tube, slant and/or plate at 37°C for 24 to Species: Porphyromonas gingivalis 72 hours. Broth cultures should include shaking. Strain: F0566 Original Source: Porphyromonas gingivalis (P. gingivalis), Citation: strain F0566 was isolated in October 1987 from the tooth Acknowledgment for publications should read “The following of a patient diagnosed with moderate periodontitis in the reagent was obtained through BEI Resources, NIAID, NIH as United States.1 part of the Human Microbiome Project: Porphyromonas Comments: P. gingivalis, strain F0566 (HMP ID 1989) is a gingivalis, Strain F0566, HM-1141.” reference genome for The Human Microbiome Project (HMP). HMP is an initiative to identify and characterize Biosafety Level: 2 human microbial flora. -
Introduction to Bacteriology and Bacterial Structure/Function
INTRODUCTION TO BACTERIOLOGY AND BACTERIAL STRUCTURE/FUNCTION LEARNING OBJECTIVES To describe historical landmarks of medical microbiology To describe Koch’s Postulates To describe the characteristic structures and chemical nature of cellular constituents that distinguish eukaryotic and prokaryotic cells To describe chemical, structural, and functional components of the bacterial cytoplasmic and outer membranes, cell wall and surface appendages To name the general structures, and polymers that make up bacterial cell walls To explain the differences between gram negative and gram positive cells To describe the chemical composition, function and serological classification as H antigen of bacterial flagella and how they differ from flagella of eucaryotic cells To describe the chemical composition and function of pili To explain the unique chemical composition of bacterial spores To list medically relevant bacteria that form spores To explain the function of spores in terms of chemical and heat resistance To describe characteristics of different types of membrane transport To describe the exact cellular location and serological classification as O antigen of Lipopolysaccharide (LPS) To explain how the structure of LPS confers antigenic specificity and toxicity To describe the exact cellular location of Lipid A To explain the term endotoxin in terms of its chemical composition and location in bacterial cells INTRODUCTION TO BACTERIOLOGY 1. Two main threads in the history of bacteriology: 1) the natural history of bacteria and 2) the contagious nature of infectious diseases, were united in the latter half of the 19th century. During that period many of the bacteria that cause human disease were identified and characterized. 2. Individual bacteria were first observed microscopically by Antony van Leeuwenhoek at the end of the 17th century. -
The Comparison of Metronidazole, Clindamycin, and Amoxicillin Againts Streptococcus Sanguinis
Indonesian Dental Association Journal of Indonesian Dental Association http://jurnal.pdgi.or.id/index.php/jida ISSN: 2621-6183 (Print); ISSN: 2621-6175 (Online) The Comparison of Metronidazole, Clindamycin, and Amoxicillin Againts Streptococcus sanguinis Kevin Lim1, Armelia Sari Widyarman2§ 1 Undergraduate student, Faculty of Dentistry, Trisakti University, Indonesia 2 Department of Microbiology, Faculty of Dentistry, Trisakti University, Indonesia Received date: August 15, 2018. Accepted date: September 27, 2018. Published date: October 19, 2018 KEYWORDS ABSTRACT amoxicillin; Introduction: Viridans streptococci group such as Streptococcus sanguinis (S. sanguinis), an clindamycin; anaerobic Gram-positive bacteria is a well-known for its involvement in dry socket (alveolar metronidazole; Streptococcus sanguinis osteitis)-associated infection. Systemic amoxicillin, clindamycin and metronidazole have all been shown to be effective to inhibit this bacterium. However, there has been a lack of studies identifying which are the most effective amongst these antibiotics toward Streptococcus sanguinis. Objectives: The purpose of this study is to evaluate the effectiveness of metronidazole, clindamycin, and amoxicillin in inhibiting the growth of Streptococcus sanguinis in vitro. Methods: This effectiveness was done by using agar well diffusion methods. S. sanguinis ATCC 10556 were cultured in Brain Heart Infusion (BHI) broth at 37°C under anaerobic condition. After 48h, bacterial cells were harvested and counted using microplate reader (490 nm) to achieve optical density of 0.25-0.30 (107 CFU/mL). Subsequently, 100 μL of bacterial suspension was cultured on BHI agar and each antibiotic suspension was added into each agar well, incubated for 72h at 37°C. The inhibition zone diameters were measured with electronic caliper. -
Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I. -
Myocarditis, Pericarditis Cardiomyopathies
Endocarditis, myocarditis, pericarditis. Cardiomyopathies Attila Zalatnai Endocarditis: inflammation of the endocardium, especially the valves 1. Infective endocarditis: (bacteria, fungi) Predisposing factors: - septicemia - valve malformations - deformed, calcified valves - arteficial valve implantation - previous rheumatic fever - peridontal, periapical foci! Most important causative agents: Strcc. viridans Enterococcus (Str. fecalis) Staphylococcus aureus Candida species Morphology: Vegetations Valve destruction Both Complications: embolization (septic emboli, septic abscesses) sepsis „mycotic aneurysms”, subarachnoidal hemorrhage acute left sided heart failure (regurgitation, chorda tendinea rupture) healing by scarring and calcification VITIUM stenosis insufficiency combined 2. Non-infective endocarditis: verrucous endocarditis (rheumatic fever) SLE (Libman-Sacks endocarditis) – atypical „marantic” endocarditis - paraneoplastic Myocarditis: an inflammatory infiltrate (helper T-cells, macrophages) of the myocardium with necrosis and/or degeneration of adjacent myocytes Genetic and environmental disposition + causative mechanisms Direct cytotoxic Aberrant effect of infectious induction of causative agents apoptosis Cytokine expression in the myocardium Secondary autoimmune (TNF-alpha, NOS) mechanisms Etiology of the myocarditis - I. Infectious origin - VIRUSES (Coxsackie B, enterovirus, influenza, CMV, EBV, HSV… Coxsackie A9 – self limiting disease; Coxsackie B3 – severe, sometimes lethal) - bacteria (Diphtheria, tbc, clostridia, staphylococci, -
Dentinal Hypersensitivity: a Review
Dentinal Hypersensitivity: A Review Abstract Dentinal hypersensitivity is generally reported by the patient after experiencing a sharp pain caused by one of several different stimuli. The pain response varies substantially from one person to another. The condition generally involves the facial surfaces of teeth near the cervical aspect and is very common in premolars and canines. The most widely accepted theory of how the pain occurs is Brannstrom’s hydrodynamic theory, fluid movement within the dentinal tubules. The dental professional, using a variety of diagnostic techniques, will discern the condition from other conditions that may cause sensitive teeth. Treatment of the condition can be invasive or non-invasive in nature. The most inexpensive and efficacious first line of treatment for most patients is a dentifrice containing a desensitizing active ingredient such as potassium nitrate and/or stannous fluoride. This review will address the prevalence, diagnosis, and treatment of dentinal hypersensitivity. In addition the home care recommendations will focus on desensitizing dentifrices. Keywords: Dentinal hypersensitivity, hydrodynamic theory, stannous fluoride, potassium nitrate Citation: Walters PA. Dentinal Hypersensitivity: A Review. J Contemp Dent Pract 2005 May;(6)2:107-117. © Seer Publishing 1 The Journal of Contemporary Dental Practice, Volume 6, No. 2, May 15, 2005 Introduction The prevalence of dentinal hypersensitivity Dentifrices and mouth rinses are routinely used has been reported over the years in a variety as a delivery system for therapeutic agents of ways: as greater than 40 million people such as antimicrobials and anti-sensitivity in the U.S. annually1, 14.3% of all dental agents. Therapeutic oral care products are patients2, between 8% and 57% of adult dentate available to assist the patient in the control of population3, and up to 30% of adults at some time dental caries, calculus formation, and dentinal during their lifetime.4 hypersensitivity to name a few. -
HACEK Endocarditis: State-Of-The-Art Matthieu Revest, Gérald Egmann, Vincent Cattoir, Pierre Tattevin
HACEK endocarditis: state-of-the-art Matthieu Revest, Gérald Egmann, Vincent Cattoir, Pierre Tattevin To cite this version: Matthieu Revest, Gérald Egmann, Vincent Cattoir, Pierre Tattevin. HACEK endocarditis: state- of-the-art. Expert Review of Anti-infective Therapy, Expert Reviews, 2016, 14 (5), pp.523-530. 10.1586/14787210.2016.1164032. hal-01296779 HAL Id: hal-01296779 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01296779 Submitted on 10 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HACEK endocarditis: state-of-the-art Matthieu Revest1, Gérald Egmann2, Vincent Cattoir3, and Pierre Tattevin†1 ¹Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, Rennes; ²Department of Emergency Medicine, SAMU 97.3, Centre Hospitalier Andrée Rosemon, Cayenne; 3Bacteriology, Pontchaillou University Hospital, Rennes, France †Author for correspondence: Prof. Pierre Tattevin, Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2, rue Henri Le Guilloux, 35033 Rennes Cedex 9, France Tel.: +33 299289564 Fax.: + 33 299282452 [email protected] Abstract The HACEK group of bacteria – Haemophilus parainfluenzae, Aggregatibacter spp. (A. actinomycetemcomitans, A. aphrophilus, A. paraphrophilus, and A. segnis), Cardiobacterium spp. (C. hominis, C. valvarum), Eikenella corrodens, and Kingella spp. -
A. Fastidious Organisms MCQ 1 Explanation: the Most Common
MCQ Answer 1: A. Fastidious organisms MCQ 1 Explanation: The most common cause of culture-negative infective endocarditis in patients who have not been treated previously with antibiotics is fastidious organisms (1). In our patient, serology for Bartonella, Pasteurella and Coxiella was negative, but the Brucella antibody titer was 1:160 (reference range <1:20). Brucella titers higher than 1:160 in conjunction with a compatible clinical presentation are considered highly suggestive of infection especially in a non-endemic area (2), (3). Brucellosis can affect any organ system and cardiac involvement is rare, but endocarditis is the main cause of death due to brucellosis. Ideally, the diagnosis should be made by culture, however this test has a low sensitivity, is time-consuming, and poses a health risk for laboratory staff (4). HACEK organisms used to be considered the most common agent of culture-negative endocarditis, but with the current blood culture techniques, they can be easily isolated when incubated for at least five days. In our patient, the HACEK organism culture was negative at 5 days (5). Antibacterial therapy prior to blood culture sampling is a common cause of culture negative endocarditis. Our patient received empiric antibiotic therapy after the blood cultures were drawn. Valvular vegetations can be caused by noninfectious conditions and should be considered in the differential diagnoses of any patient with endocarditis. Nonbacterial thrombotic endocarditis (NBTE), such as marantic or Libman-Sachs endocarditis, happens in the setting of systemic lupus erythematosus, malignancy, or hypercoagulable state. The vegetations of NBTE are composed of fibrin thrombi that usually deposit on normal or minimally degenerated valves.