Acquired Resistance to the TRK Inhibitor Entrectinib in Colorectal Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Acquired Resistance to the TRK Inhibitor Entrectinib in Colorectal Cancer Published OnlineFirst November 6, 2015; DOI: 10.1158/2159-8290.CD-15-0940 RESEARCH BRIEF Acquired Resistance to the TRK Inhibitor Entrectinib in Colorectal Cancer Mariangela Russo 1,2,3 , Sandra Misale 2 , G e W e i 4 , Giulia Siravegna 1,2 , Giovanni Crisafulli 2 , Luca Lazzari 1,2 , Giorgio Corti 2 , Giuseppe Rospo 2 , Luca Novara 2 , Benedetta Mussolin 2 , Alice Bartolini 2 , Nicholas Cam 4 , Roopal Patel 4 , Shunqi Yan 4 , Robert Shoemaker 4 , Robert Wild 4 , Federica Di Nicolantonio1,2 , Andrea Sartore - Bianchi 5 , Gang Li 4 , Salvatore Siena 5,6 , and Alberto Bardelli 1,2 ABSTRACT Entrectinib is a fi rst-in-class pan-TRK kinase inhibitor currently undergoing clini- cal testing in colorectal cancer and other tumor types. A patient with metastatic colorectal cancer harboring an LMNA–NTRK1 rearrangement displayed a remarkable response to treatment with entrectinib, which was followed by the emergence of resistance. To characterize the molecular bases of the patient’s relapse, circulating tumor DNA (ctDNA) was collected longitudinally during treatment, and a tissue biopsy, obtained before entrectinib treatment, was transplanted in mice (xenopatient), which then received the same entrectinib regimen until resistance developed. Genetic profi ling of ctDNA and xenopatient samples showed acquisition of two point mutations in the catalytic domain of NTRK1 , p.G595R and p.G667C. Biochemical and pharmacologic analysis in multiple preclini- cal models confi rmed that either mutation renders the TRKA kinase insensitive to entrectinib. These fi ndings can be immediately exploited to design next-generation TRKA inhibitors. SIGNIFICANCE: We provide proof of principle that analyses of xenopatients (avatar) and liquid biopsies allow the identifi cation of drug resistance mechanisms in parallel with clinical treatment of an individual patient. We describe for the fi rst time that p.G595R and p.G667C TRKA mutations drive acquired resistance to entrectinib in colorectal cancers carrying NTRK1 rearrangements. Cancer Discov; 6(1); 36–44. ©2015 AACR. See related commentary by Okimoto and Bivona, p. 14. INTRODUCTION ment is the most common mechanism of oncogenic acti- vation for this family of receptors, resulting in sustained TRK receptors are a family of tyrosine kinases that com- cancer cell proliferation through activation of MAPK and prises three members: TRKA, TRKB, and TRKC, encoded by AKT downstream pathways ( 1 ). Rearrangements of the the neurotrophic tyrosine kinase receptor, type 1 ( NTRK1 ), NTRK1 , NTRK2 , and NTRK3 genes occur across different NTRK2 , and NTRK3 genes, respectively. Genomic rearrange- tumors, including colorectal cancers ( 2 ). 1 Department of Oncology, University of Torino, Torino, Italy. 2 Candiolo Can- A. Bardelli and S. Siena share senior authorship of this article. 3 cer Institute, FPO, IRCCS, Torino, Italy. FIRC Institute of Molecular Oncol- Corresponding Author: Alberto Bardelli, Department of Oncology, Univer- 4 5 ogy (IFOM), Milano, Italy. Ignyta, Inc., San Diego, California. Department of sity of Torino, Candiolo Cancer Institute, FPO, IRCCS, strada provinciale Hematology and Oncology, Niguarda Cancer Center, Ospedale Niguarda Ca’ 142, km 3.95, Candiolo 10060, Torino, Italy. Phone: 39-011-9933235; 6 Granda, Milan, Italy. Università degli Studi di Milano, Milan, Italy. Fax: 39-011-9933225; E-mail: [email protected] Note: Supplementary data for this article are available at Cancer Discovery doi: 10.1158/2159-8290.CD-15-0940 Online (http://cancerdiscovery.aacrjournals.org/). © 2015 American Association for Cancer Research. M. Russo, S. Misale, and G. Wei contributed equally to this article. 36 | CANCER DISCOVERYJANUARY 2016 www.aacrjournals.org Downloaded from cancerdiscovery.aacrjournals.org on October 2, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst November 6, 2015; DOI: 10.1158/2159-8290.CD-15-0940 TRKA Mutations and Resistance to Entrectinib in Colorectal Cancer RESEARCH BRIEF Figure 1. Tracking resistance to TRKA inhibition in ctDNA of a patient with colorectal cancer. Top, CT scans of a patient with metastatic colorectal cancer harboring an LMNA–NTRK1 rearrangement were recorded at baseline (March 2014), at the time of partial response to the pan-TRK March 2014 April 2014 July 2014 inhibitor entrectinib (April 2014), and Entrectinib upon disease progression (July 2014). Bottom, longitudinal analysis of plasma ctDNA collected at different time Copies/mL LMNA–NTRK1 points throughout the treatment. Red 40,000 NTRK1 p.G595R 50 bars, absolute LMNA–NTRK1 copies in 1 mL of plasma; blue and black lines, 30,000 NTRK1 p.G667C NTRK1 p.G595R- and p.G667C-mutated 20,000 alleles (%), respectively. Average ± 40 SD of 3 independent experiments is 10,000 reported. Mutated alleles (%) 4,000 30 3,000 LMNA–NTRK1 2,000 20 1,000 Copies/mL 400 300 10 200 100 0 0 19 MAR 9 APR 23 APR 7 MAY 21 MAY 18 JUN 14 JUL 2014 2014 2014 2014 2014 2014 2014 Entrectinib (RXDX-101, previously known as NMS-E628) entrectinib on an intermittent dosing schedule of 4 days on/3 is a potent pan-TRK, ALK, and ROS1 inhibitor, currently days off for 3 weeks followed by a week break in every 28-day undergoing phase I clinical trials ( 3 ). During treatment with cycle ( 4 ). Treatment was remarkably effective and well tolerated, entrectinib, a patient with metastatic colorectal cancer har- leading to a partial response (PR) with 30% tumor shrinkage boring an LMNA–NTRK1 rearrangement showed a remarka- of multiple liver metastases that was demonstrated by an early ble response. We reasoned that, as it has been shown for most CT scan assessment performed after 30 days of treatment. The targeted agents, response to entrectinib might be limited in clinical response lasted 4 months, followed by the emergence of time due to the emergence of acquired resistance. Nothing drug resistance as evaluated by Response Evaluation Criteria in is presently known about the mechanisms of resistance to Solid Tumor (RECIST) progression ( Fig. 1 , top). entrectinib and consequently further lines of treatment are not available. We postulated that it might be possible to Emergence of NTRK1 Mutations in ctDNA during identify the resistance mechanism(s) while the patient was Entrectinib Treatment being treated by analyzing circulating tumor DNA (ctDNA) To unveil the molecular basis of acquired resistance to and developing a xenopatient (avatar). TRKA inhibition, we analyzed ctDNA, a form of liquid biopsy ( 8 ) we previously optimized to detect and monitor drug RESULTS resistance in patients treated with targeted agents ( 9, 10 ). ctDNA extracted from plasma samples collected before treat- Acquired Resistance to TRKA Inhibition in a ment initiation and at clinical relapse was subjected to molecu- Patient with Colorectal Cancer lar profi ling using the IRCC-TARGET panel, a next-generation A molecular screen identifi ed a genetic rearrangement sequencing (NGS) platform based on 226 cancer-related genes involving exon 10 of NTRK1 and exon 11 of the LMNA genes which we optimized to detect with high sensitivity mutations ( 4 ) in a patient with metastatic colorectal cancer whose dis- in ctDNA ( 10 ). Profi ling of ctDNA at entrectinib resistance ease was intrinsically resistant to fi rst-line FOLFOX, second- revealed two novel NTRK1 genetic alterations in the kinase line FOLFIRI/cetuximab, and third-line irinotecan. We and oth- domain of the protein, p.G595R and p.G667C, which were ers have previously reported that colorectal cancer cell models not detected in ctDNA obtained before initiation of therapy harboring NTRK1 translocations are sensitive to NTRK1 silenc- (Supplementary Tables S1 and S2). To monitor the NTRK1 - ing and to TRKA (protein encoded by the NTRK1 gene) kinase mutated alleles in the patient’s plasma collected throughout inhibition ( 5–7 ). Based on this, the patient was enrolled in the the treatment, droplet digital PCR (ddPCR; refs. 11, 12 ) assays phase I ALKA clinical trial (EudraCT Number 2012-000148-88) were designed for both mutations. As a means of tracking the of the pan-TRK kinase inhibitor entrectinib, a fi rst-in-class drug overall disease, a ddPCR assay was also optimized to detect the currently undergoing clinical testing ( 3 ). The patient received LMNA–NTRK1 rearrangement in ctDNA. JANUARY 2016CANCER DISCOVERY | 37 Downloaded from cancerdiscovery.aacrjournals.org on October 2, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst November 6, 2015; DOI: 10.1158/2159-8290.CD-15-0940 RESEARCH BRIEF Russo et al. A 4,000 Figure 2. Resistance to entrectinib in xenopatient and colorectal cancer cell models carrying NTRK1 Entrectinib translocations. A, bioptic specimen obtained from a thin needle biopsy of a patient with metastatic colorec- Vehicle 60 mg/kg tal cancer harboring an LMNA–NTRK1 rearrangement 3,000 #1 #1 was fi rst implanted subcutaneously in an immunocom- ) 3 #2 #4 promised mouse and then expanded in multiple mice upon successful engraftment. Mice were treated with #3 #5 dosage levels and schedules (60 mg/kg, 4 days/week) #6 2,000 that yielded clinically relevant exposure achievable Treatment #7 in patients. After 3 weeks of treatment, a mouse (#4) in the treated arm relapsed. Blue and red lines, start vehicle- and entrectinib-treated mice, respectively. B, proliferation assay of KM12 (carrying a TPM3– Tumor volume (mm volume Tumor 1,000 NTRK1 rearrangement) R1 cells made resistant to a low dose of entrectinib (300 nmol/L). Cell viability was assessed by measuring ATP content after 5 days
Recommended publications
  • Entrectinib (Interim Monograph)
    Entrectinib (interim monograph) DRUG NAME: Entrectinib SYNONYM(S): RXDX-1011, NMS-E6282 COMMON TRADE NAME(S): ROZLYTREK® CLASSIFICATION: molecular targeted therapy Special pediatric considerations are noted when applicable, otherwise adult provisions apply. MECHANISM OF ACTION: Entrectinib is an orally administered, small molecule, multi-target tyrosine kinase inhibitor which targets tropomyosin- related kinase (Trk) proteins TrkA, TrkB, and TrkC, proto-oncogene tyrosine-protein kinase ROS (ROS1) and anaplastic lymphoma kinase (ALK). TrkA, TrkB, and TrkC are receptor tyrosine kinases encoded by the neurotrophic tyrosine receptor kinase (NTRK) genes NTRK1, NTRK2, and NTRK3, respectively. Fusion proteins that include Trk, ROS1, or ALK kinase domains drive tumorigenic potential through hyperactivation of downstream signalling pathways leading to unconstrained cell proliferation. By potently inhibiting the Trk kinases, ROS1, and ALK, entrectinib inhibits downstream signalling pathways, cell proliferation and induces tumour cell apoptosis.3-5 PHARMACOKINETICS: Oral Absorption bioavailability = 55%; Tmax = 4-6 hours; Tmax delayed 2 h by high-fat, high-calorie food intake Distribution highly bound to human plasma proteins cross blood brain barrier? yes volume of distribution 551 L (entrectinib); 81.1 L (M5) plasma protein binding >99% (entrectinib and M5) Metabolism primarily metabolized by CYP 3A4 active metabolite(s) M5 inactive metabolite(s) M11 Excretion primarily via hepatic clearance urine 3.06% feces 82.9% (36% as unchanged entrectinib, 22% as M5) terminal half life 20 h (entrectinib); 40 h (M5) clearance 19.6 L/h (entrectinib); 52.4 L/h (M5) Elderly no clinically significant difference Children comparable pharmacokinetics of entrectinib and M5 in adults and children Ethnicity no clinically significant difference Adapted from standard reference3,4 unless specified otherwise.
    [Show full text]
  • 07052020 MR ASCO20 Curtain Raiser
    Media Release New data at the ASCO20 Virtual Scientific Program reflects Roche’s commitment to accelerating progress in cancer care First clinical data from tiragolumab, Roche’s novel anti-TIGIT cancer immunotherapy, in combination with Tecentriq® (atezolizumab) in patients with PD-L1-positive metastatic non- small cell lung cancer (NSCLC) Updated overall survival data for Alecensa® (alectinib), in people living with anaplastic lymphoma kinase (ALK)-positive metastatic NSCLC Key highlights to be shared on Roche’s ASCO virtual newsroom, 29 May 2020, 08:00 CEST Basel, 7 May 2020 - Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced that new data from clinical trials of 19 approved and investigational medicines across 21 cancer types, will be presented at the ASCO20 Virtual Scientific Program organised by the American Society of Clinical Oncology (ASCO), which will be held 29-31 May, 2020. A total of 120 abstracts that include a Roche medicine will be presented at this year's meeting. "At ASCO, we will present new data from many investigational and approved medicines across our broad oncology portfolio," said Levi Garraway, M.D., Ph.D., Roche's Chief Medical Officer and Head of Global Product Development. “These efforts exemplify our long-standing commitment to improving outcomes for people with cancer, even during these unprecedented times. By integrating our medicines and diagnostics together with advanced insights and novel platforms, Roche is uniquely positioned to deliver the healthcare solutions of the future." Together with its partners, Roche is pioneering a comprehensive approach to cancer care, combining new diagnostics and treatments with innovative, integrated data and access solutions for approved medicines that will both personalise and transform the outcomes of people affected by this deadly disease.
    [Show full text]
  • 2020 Master Class Course Best Practices and Expanding Treatment Options in Soft Tissue Sarcomas Including GIST George D
    2020 Master Class Course Best Practices and Expanding Treatment Options in Soft Tissue Sarcomas including GIST George D. Demetri, MD FACP FASCO 1 George D. Demetri, MD Faculty Disclosure • Scientific consultant with sponsored research to Dana-Farber: Bayer, Pfizer, Novartis, Epizyme, Roche/Genentech, Epizyme, LOXO Oncology, AbbVie, GlaxoSmithKline, Janssen, PharmaMar, Daiichi-Sankyo, AdaptImmune • Scientific consultant: GlaxoSmithKline, EMD-Serono, Sanofi, ICON plc, MEDSCAPE, Mirati, WCG/Arsenal Capital, Polaris, MJ Hennessey/OncLive, C4 Therapeutics, Synlogic, McCann Health • Consultant/SAB member with minor equity holding: G1 Therapeutics, Caris Life Sciences, Erasca Pharmaceuticals, RELAY Therapeutics, Bessor Pharmaceuticals, Champions Biotechnology, Caprion/HistoGeneX • Board of Directors member and Scientific Advisory Board Consultant with minor equity holding: Blueprint Medicines, Translate BIO • Patents/Royalties: Novartis royalty to Dana-Farber for use patent of imatinib in GIST • Non-Financial Interests: AACR Science Policy and Government Affairs Committee Chair, Alexandria Real Estate Equities, Faculty of this CE activity may include discussions of products or devices that are not currently labeled for use by the FDA. The faculty have been informed of their responsibility to disclose to the audience if they will be discussing off label or investigational uses (any uses not approved by the FDA) of products or devices. 2 Soft Tissue Sarcomas: Approximate Anatomic Distribution Head and Neck 10% Upper extremities 15% Trunk 10% Retroperitoneal, pelvic and visceral Lower extremities 15% 50% (includes GIST and GYN sarcomas) Modified from Clark MA et al. NEJM 2005;353:701-11 3 Sarcomas represent an exceedingly diverse set of diseases Bone Sarcomas 10% GIST Un- differentiated Liposarcomas Leiomyo- Sarcomas 4 Ducimetiere et al.
    [Show full text]
  • TRK Inhibitors: Tissue-Agnostic Anti-Cancer Drugs
    pharmaceuticals Review TRK Inhibitors: Tissue-Agnostic Anti-Cancer Drugs Sun-Young Han Research Institute of Pharmaceutical Sciences and College of Pharmacy, Gyeongsang National University, Jinju-si 52828, Korea; [email protected] Abstract: Recently, two tropomycin receptor kinase (Trk) inhibitors, larotrectinib and entrectinib, have been approved for Trk fusion-positive cancer patients. Clinical trials for larotrectinib and entrectinib were performed with patients selected based on the presence of Trk fusion, regardless of cancer type. This unique approach, called tissue-agnostic development, expedited the process of Trk inhibitor development. In the present review, the development processes of larotrectinib and entrectinib have been described, along with discussion on other Trk inhibitors currently in clinical trials. The on-target effects of Trk inhibitors in Trk signaling exhibit adverse effects on the central nervous system, such as withdrawal pain, weight gain, and dizziness. A next generation sequencing-based method has been approved for companion diagnostics of larotrectinib, which can detect various types of Trk fusions in tumor samples. With the adoption of the tissue-agnostic approach, the development of Trk inhibitors has been accelerated. Keywords: Trk; NTRK; tissue-agnostic; larotrectinib; entrectinib; Trk fusion 1. Introduction Citation: Han, S.-Y. TRK Inhibitors: Tropomyosin receptor kinases (Trk) are tyrosine kinases encoded by neurotrophic Tissue-Agnostic Anti-Cancer Drugs. tyrosine/tropomyosin receptor kinase (NTRK) genes [1]. Chromosomal rearrangement of Pharmaceuticals 2021, 14, 632. https:// NTRK genes is found in cancer tissues [2]. The resulting fusion proteins containing part of doi.org/10.3390/ph14070632 the Trk protein have a constitutively active form of kinase that transduces deregulating signals.
    [Show full text]
  • Oncology Oral, Lung Cancer Therapeutic Class Review (TCR)
    Oncology Oral, Lung Cancer Therapeutic Class Review (TCR) April 14, 2020 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management. All requests for permission should be mailed to: Magellan Rx Management Attention: Legal Department 6950 Columbia Gateway Drive Columbia, Maryland 21046 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to [email protected]. April 2020 Proprietary Information. Restricted Access – Do not disseminate or copy without approval. © 2010–2020 Magellan Rx Management. All rights reserved. FDA-APPROVED INDICATIONS Drug Manufacturer Indication(s) Anaplastic Lymphoma Kinase (ALK) Tyrosine Kinase Inhibitors alectinib Genentech .
    [Show full text]
  • (NCCN) Breast Cancer Clinical Practice Guidelines
    NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Breast Cancer Version 5.2020 — July 15, 2020 NCCN.org NCCN Guidelines for Patients® available at www.nccn.org/patients Continue Version 5.2020, 07/15/20 © 2020 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN. NCCN Guidelines Index NCCN Guidelines Version 5.2020 Table of Contents Breast Cancer Discussion *William J. Gradishar, MD/Chair ‡ † Sharon H. Giordano, MD, MPH † Sameer A. Patel, MD Ÿ Robert H. Lurie Comprehensive Cancer The University of Texas Fox Chase Cancer Center Center of Northwestern University MD Anderson Cancer Center Lori J. Pierce, MD § *Benjamin O. Anderson, MD/Vice-Chair ¶ Matthew P. Goetz, MD ‡ † University of Michigan Fred Hutchinson Cancer Research Mayo Clinic Cancer Center Rogel Cancer Center Center/Seattle Cancer Care Alliance Lori J. Goldstein, MD † Hope S. Rugo, MD † Jame Abraham, MD ‡ † Fox Chase Cancer Center UCSF Helen Diller Family Case Comprehensive Cancer Center/ Comprehensive Cancer Center Steven J. Isakoff, MD, PhD † University Hospitals Seidman Cancer Center Massachusetts General Hospital Amy Sitapati, MD Þ and Cleveland Clinic Taussig Cancer Institute Cancer Center UC San Diego Moores Cancer Center Rebecca Aft, MD, PhD ¶ Jairam Krishnamurthy, MD † Karen Lisa Smith, MD, MPH † Siteman Cancer Center at Barnes- Fred & Pamela Buffet Cancer Center The Sidney Kimmel Comprehensive Jewish Hospital and Washington Cancer Center at Johns Hopkins University School of Medicine Janice Lyons, MD § Case Comprehensive Cancer Center/ Mary Lou Smith, JD, MBA ¥ Doreen Agnese, MD ¶ University Hospitals Seidman Cancer Center Research Advocacy Network The Ohio State University Comprehensive and Cleveland Clinic Taussig Cancer Institute Cancer Center - James Cancer Hospital Hatem Soliman, MD † and Solove Research Institute P.
    [Show full text]
  • Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies
    cancers Review Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies Alberto D’Angelo 1,* , Navid Sobhani 2 , Robert Chapman 3 , Stefan Bagby 1, Carlotta Bortoletti 4, Mirko Traversini 5, Katia Ferrari 6, Luca Voltolini 7, Jacob Darlow 1 and Giandomenico Roviello 8 1 Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK; [email protected] (S.B.); [email protected] (J.D.) 2 Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] 3 University College London Hospitals NHS Foundation Trust, 235 Euston Rd, London NW1 2BU, UK; [email protected] 4 Department of Dermatology, University of Padova, via Vincenzo Gallucci 4, 35121 Padova, Italy; [email protected] 5 Unità Operativa Anatomia Patologica, Ospedale Maggiore Carlo Alberto Pizzardi, AUSL Bologna, Largo Bartolo Nigrisoli 2, 40100 Bologna, Italy; [email protected] 6 Respiratory Medicine, Careggi University Hospital, 50139 Florence, Italy; [email protected] 7 Thoracic Surgery Unit, Careggi University Hospital, Largo Brambilla, 1, 50134 Florence, Italy; luca.voltolini@unifi.it 8 Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy; [email protected] * Correspondence: [email protected] Received: 22 September 2020; Accepted: 5 November 2020; Published: 6 November 2020 Simple Summary: Genetic rearrangements of the ROS1 gene account for up to 2% of NSCLC patients who sometimes develop brain metastasis, resulting in poor prognosis. This review discusses the tyrosine kinase inhibitor crizotinib plus updates and preliminary results with the newer generation of tyrosine kinase inhibitors, which have been specifically conceived to overcome crizotinib resistance, including brigatinib, cabozantinib, ceritinib, entrectinib, lorlatinib and repotrectinib.
    [Show full text]
  • Tyrosine Kinase Inhibitors for Solid Tumors in the Past 20 Years (2001–2020) Liling Huang†, Shiyu Jiang† and Yuankai Shi*
    Huang et al. J Hematol Oncol (2020) 13:143 https://doi.org/10.1186/s13045-020-00977-0 REVIEW Open Access Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020) Liling Huang†, Shiyu Jiang† and Yuankai Shi* Abstract Tyrosine kinases are implicated in tumorigenesis and progression, and have emerged as major targets for drug discovery. Tyrosine kinase inhibitors (TKIs) inhibit corresponding kinases from phosphorylating tyrosine residues of their substrates and then block the activation of downstream signaling pathways. Over the past 20 years, multiple robust and well-tolerated TKIs with single or multiple targets including EGFR, ALK, ROS1, HER2, NTRK, VEGFR, RET, MET, MEK, FGFR, PDGFR, and KIT have been developed, contributing to the realization of precision cancer medicine based on individual patient’s genetic alteration features. TKIs have dramatically improved patients’ survival and quality of life, and shifted treatment paradigm of various solid tumors. In this article, we summarized the developing history of TKIs for treatment of solid tumors, aiming to provide up-to-date evidence for clinical decision-making and insight for future studies. Keywords: Tyrosine kinase inhibitors, Solid tumors, Targeted therapy Introduction activation of tyrosine kinases due to mutations, translo- According to GLOBOCAN 2018, an estimated 18.1 cations, or amplifcations is implicated in tumorigenesis, million new cancer cases and 9.6 million cancer deaths progression, invasion, and metastasis of malignancies. occurred in 2018 worldwide [1]. Targeted agents are In addition, wild-type tyrosine kinases can also func- superior to traditional chemotherapeutic ones in selec- tion as critical nodes for pathway activation in cancer.
    [Show full text]
  • Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy
    cancers Review Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy 1,2, 3,4 1 2 3, Charles Pottier * , Margaux Fresnais , Marie Gilon , Guy Jérusalem ,Rémi Longuespée y 1, and Nor Eddine Sounni y 1 Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; [email protected] (M.G.); [email protected] (N.E.S.) 2 Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium; [email protected] 3 Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, 69120 Heidelberg, Germany; [email protected] (M.F.); [email protected] (R.L.) 4 German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany * Correspondence: [email protected] Equivalent contribution. y Received: 17 January 2020; Accepted: 16 March 2020; Published: 20 March 2020 Abstract: Receptor tyrosine kinases (RTKs) are key regulatory signaling proteins governing cancer cell growth and metastasis. During the last two decades, several molecules targeting RTKs were used in oncology as a first or second line therapy in different types of cancer. However, their effectiveness is limited by the appearance of resistance or adverse effects. In this review, we summarize the main features of RTKs and their inhibitors (RTKIs), their current use in oncology, and mechanisms of resistance. We also describe the technological advances of artificial intelligence, chemoproteomics, and microfluidics in elaborating powerful strategies that could be used in providing more efficient and selective small molecules inhibitors of RTKs.
    [Show full text]
  • Kinase Drug Discovery 20 Years After Imatinib: Progress and Future Directions
    REVIEWS Kinase drug discovery 20 years after imatinib: progress and future directions Philip Cohen 1 ✉ , Darren Cross 2 ✉ and Pasi A. Jänne 3 ✉ Abstract | Protein kinases regulate nearly all aspects of cell life, and alterations in their expression, or mutations in their genes, cause cancer and other diseases. Here, we review the remarkable progress made over the past 20 years in improving the potency and specificity of small-molecule inhibitors of protein and lipid kinases, resulting in the approval of more than 70 new drugs since imatinib was approved in 2001. These compounds have had a significant impact on the way in which we now treat cancers and non- cancerous conditions. We discuss how the challenge of drug resistance to kinase inhibitors is being met and the future of kinase drug discovery. Protein kinases In 2001, the first kinase inhibitor, imatinib, received FDA entered clinical trials in 1998, changed the perception Enzymes that catalyse transfer approval, providing the catalyst for an article with the of protein kinases as drug targets, which had previously of the γ- phosphate of ATP provocative title ‘Protein kinases — the major drug tar- received scepticism from many pharmaceutical com- to amino acid side chains in gets of the twenty- first century?’1. Imatinib inhibits the panies. Since then, hundreds of protein kinase inhibi- substrate proteins, such as serine, threonine and tyrosine Abelson (ABL) tyrosine kinase, which is expressed as a tors have been developed and tested in humans and, at residues. deregulated fusion protein, termed BCR–ABL, in nearly the time of writing, 76 have been approved for clinical all cases of chronic myeloid leukaemia (CML)2 and is use, mainly for the treatment of various cancers (FiG.
    [Show full text]
  • November 18 - 21, 2020
    November 18 - 21, 2020 ALL TIMES ARE EASTERN STANDARD TIME (EST) Wednesday, 18 November, 2020 8:00 am - 11:00 am TARPSWG Meeting (email: [email protected]) – Chair: Alessandro Gronchi 11:00 am - 1:00 pm Ultra Rare Sarcoma Meeting – Chair: Silvia Stacchiotti 1:00 pm - 3:00 pm SARC Meeting 3:00 pm - 5:00 pm SELNET Meeting: State of Art of Management for Localized STS in Limbs and Retroperitoneum – Chair: Javier Martin-Broto Thursday, 19 November, 2020 8:00 am - 9:00 am – Session 1 – OPENING CEREMONY INTRODUCTION TO CTOS 2020 President: Kirsten Sundby Hall Program Chairs: Silvia Stacchiotti, Margaret von Mehren, Inga-Marie Schaefer 25 YEAR RETROSPECTIVE Presenter: Shreyas Patel 9:00 am - 10:00 am – Session 2 – IMMUNOTHERAPY IN SARCOMA: ALVEOLAR SOFT PART SARCOMA, CLEAR CELL SARCOMA, SYNOVIAL SARCOMA Chair: Seth Pollack Discussant: Breelyn Wilky Panelists: Armelle Dufresne, Bob Maki, Enrico Grignani Presenters: Akira Kawai, Nadia Hindi, Sandra d'Angelo, Brian van Tine Paper #01 3421748 EFFICACY AND SAFETY OF NIVOLUMAB MONOTHERAPY IN PATIENTS WITH UNRESECTABLE CLEAR CELL SARCOMA AND ALVEOLAR SOFT PART SARCOMA (OSCAR TRIAL, NCCH1510): A MULTICENTER, PHASE 2 CLINICAL TRIAL Akira Kawai2, Tadaaki Nishikawa1, Mamiko Kawasaki3, Sawako Tomatsuri3, Nobuko Okamura3, Gakuto Ogawa3, Akihiro Hirakawa4, Taro Shibata3, Kenichi Nakamura3, Shigeki Kakunaga5, Kenji Tamura1, Masashi Ando6, Toshifumi Ozaki7, Takafumi Ueda5, Kan Yonemori1 1Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, JAPAN; 2Oncology and Rehabilitation Medicine, National
    [Show full text]
  • NCCN Guidelines for Central Nervous System Cancers Cancer V.1.2021 – Annual 10/23/2020
    NCCN Guidelines for Central Nervous System Cancers Cancer v.1.2021 – Annual 10/23/2020 Guideline Page Institution Vote Panel Discussion/References and Request YES NO ABSTAIN ABSENT GLIO-1, GLIO-5 Based on a review of the data and discussion, the 0 24 0 5 External request: panel consensus did not support the addition of these specific recommendations into the Guidelines as they Submission/NX Development Corp (06/02/20): agree that this is already covered in the Guideline. For the Anaplastic Oligodendroglioma, Anaplastic Oligoastrocytoma, Anaplastic Astrocytoma, Anaplastic Gliomas and Glioblastoma (GLIO-1) workflow, under surgery, we recommend inclusion of Aminolevulinic acid hydrochloride (ALA, Brand Name Gleolan™) as an adjunct for the visualization of malignant tissue and to improve the completeness of resection during fluorescence guided glioma surgery. For the Anaplastic Oligodendroglioma, Anaplastic Oligoastrocytoma, Anaplastic Astrocytoma, Anaplastic Gliomas and Glioblastoma (GLIO-5) workflow, under recurrence resection, we recommend inclusion of Aminolevulinic acid hydrochloride (ALA, Brand Name Gleolan™) as an adjunct for the visualization of malignant tissue and to improve the completeness of resection during fluorescence guided glioma surgery. GLIO-2 The panel consensus supported the removal of 24 0 0 5 Internal request: “Standard RT + neoadjuvant or adjuvant PCV” for adjuvant treatment of anaplastic astrocytoma Consider removal of “Standard RT ÷ neoadjuvant or adjuvant PCV” for adjuvant treatment of anaplastic astrocytoma BRAIN-D (1 of 15, 2 of 15, 3 of 15) The panel consensus supported the inclusion of 24 0 0 5 Internal request: larotrectinib and entrectinib for tumors with NTRK gene fusion for recurrent or progressive disease Consider including larotrectinib and entrectinib for under useful in certain circumstances for low-grade NTRK gene fusion tumors.
    [Show full text]