Revisiting Ntrks As an Emerging Oncogene in Hematological Malignancies

Total Page:16

File Type:pdf, Size:1020Kb

Revisiting Ntrks As an Emerging Oncogene in Hematological Malignancies Leukemia (2019) 33:2563–2574 https://doi.org/10.1038/s41375-019-0576-8 REVIEW ARTICLE Molecular targets for therapy Revisiting NTRKs as an emerging oncogene in hematological malignancies 1,2,3 4,5 1,3,6 1,3,6 Sunil K. Joshi ● Monika A. Davare ● Brian J. Druker ● Cristina E. Tognon Received: 11 June 2019 / Accepted: 18 June 2019 / Published online: 24 September 2019 © The Author(s) 2019. This article is published with open access Abstract NTRK fusions are dominant oncogenic drivers found in rare solid tumors. These fusions have also been identified in more common cancers, such as lung and colorectal carcinomas, albeit at low frequencies. Patients harboring these fusions demonstrate significant clinical response to inhibitors such as entrectinib and larotrectinib. Although current trials have focused entirely on solid tumors, there is evidence supporting the use of these drugs for patients with leukemia. To assess the broader applicability for Trk inhibitors in hematological malignancies, this review describes the current state of knowledge about alterations in the NTRK family in these disorders. We present these findings in relation to the discovery and therapeutic targeting of BCR–ABL1 in chronic myeloid leukemia. The advent of deep sequencing technologies has shown fi 1234567890();,: 1234567890();,: that NTRK fusions and somatic mutations are present in a variety of hematologic malignancies. Ef cacy of Trk inhibitors has been demonstrated in NTRK-fusion positive human leukemia cell lines and patient-derived xenograft studies, highlighting the potential clinical utility of these inhibitors for a subset of leukemia patients. Introduction understanding of the biology contributing to malignant phenotypes. A seminal example is the identification of the Advances in technologies from chromosomal banding to BCR–ABL1 fusion protein in chronic myeloid leukemia massively parallel sequencing have enabled the identifica- (CML) [1–4]. Studies of BCR–ABL1 have not only shaped tion of oncogenic mutations, and enhanced our our understanding of the tumorigenic process but also provided insight into how cancer can be treated. The dis- covery and success of imatinib, the first FDA-approved tyrosine kinase inhibitor against BCR–ABL1, has revolu- * Brian J. Druker tionized how we approach the treatment of cancer [5, 6]. [email protected] Importantly, this paved the way for precision oncology, * Cristina E. Tognon wherein development of selective, molecularly-guided [email protected] therapeutic modalities have shown significant improve- ments in patient outcomes, as compared with nonselective 1 Knight Cancer Institute, Oregon Health & Science University, chemotherapeutics. This principle has also been shown to Portland, OR, United States be effective in the treatment of several solid and liquid 2 Department of Physiology & Pharmacology, School of Medicine, tumors [7–9], underscoring the broad value of using drugs Oregon Health & Science University, Portland, OR, United States that precisely target cancer driving lesions. 3 Division of Hematology & Medical Oncology, Department of Recently, the FDA granted accelerated approval to lar- Medicine, Oregon Health & Science University, Portland, OR, United States otrectinib (also commonly referred to as LOXO-101 or Vitrakvi™), the first selective neurotrophic tyrosine receptor 4 Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, United States kinase (NTRK) inhibitor for patients of all ages with 5 advanced solid tumors harboring NTRK gene fusions, Division of Pediatric Hematology & Oncology, Department of fi Pediatrics, Oregon Health & Science University, Portland, OR, regardless of tumor histology [10, 11]. The ef cacy and United States safety profile of larotrectinib were confirmed in three 6 Howard Hughes Medical Institute, Oregon Health & Science independent trials with patients ranging from all ages (the University, Portland, OR, United States youngest being a 1-month-old) [11–13]. Interestingly, 2564 S. K. Joshi et al. NTRK gene fusions occur at higher frequency (up to 90%) molecular events such as chromosomal rearrangements, in patients with rare cancers, such as infantile fibrosarcoma, deletions/truncations, point mutations, and changes in secretory breast carcinoma, mammary analogue secretory mRNA and protein expression. Among these mechanisms, carcinoma, and cellular or mixed congenital mesoblastic oncofusions involving NTRK receptors are the most com- nephroma, but are less prevalent in common adult tumors mon mechanism of activation. [14]. With an overall response rate of >75%, a median duration of response not reached following 18 months, and NTRK oncofusions minimal adverse effects, larotrectinib’sefficacy parallels that of imatinib, and marks another milestone for the field of In 1986, shortly after the confirmation of BCR–ABL1 in precision oncology [12]. Even more recently, entrectinib, a CML [2], the first gene fusion involving an NTRK receptor pan-Trk, ROS1, and ALK inhibitor also received acceler- was identified in a patient with colorectal cancer (Fig. 1). ated FDA approval [15]. Similar to imatinib, the approval This oncogenic translocation, TPM3-TRK, resulted from of larotrectinib and entrectinib remind us of the importance the fusion of the tropomyosin 3 gene amino terminus with of understanding the biological target as a stringently vetted the transmembrane and kinase domains of NTRK1 [19], a response biomarker, and the need to continue screening for finding that has since been confirmed [36]. Over the past other actionable targets by harnessing the rapidly amassing few years, several NTRK fusions have been reported in ‘omics data. solid tumors [34, 35, 37, 38]. Moreover, with the approval of larotrectinib and Many of these Trk fusions involve the transcription entrectinib, the Trk family of cell surface tyrosine kinase factor, E26 transformation-specific variant 6 (ETV6, also receptors have drawn considerable attention. NTRK1, 2, known as TEL) located on chromosome 12p13. Specifi- and 3 genes encode TrkA, TrkB, and TrkC receptors, cally, ETV6–NTRK3 fusions (EN; t(12;15) (p13;q25)) have respectively. These receptors signal through JAK/STAT, been previously characterized in the setting of secretory PI3K/AKT, and MEK/ERK to promote proliferation, dif- breast carcinoma [24, 39], congenital fibrosarcoma [40], ferentiation, and survival [16, 17]. Although much of the thyroid carcinoma [41], and pontine gliomas [23]. Inter- literature has focused on the importance of these receptors estingly, the EN fusion is the first oncogenic fusion to be in central and peripheral nervous system development and identified in cancers that are derived from all three cell function [18], alterations in the NTRK family have been lineages [35]. In the most common version of the EN described in colon [19], thyroid [20, 21], lung [22], glial fusion, the amino terminus of the ETV6 transcription factor, [23], and breast [24] cancers. These alterations are found at containing the helix-loop-helix (HLH) domain (exons 1–5; relatively low frequencies (<1%) within each of these also commonly referred to as the sterile alpha motif or individual solid tumors but collectively, when considering pointed domain), fuses with the kinase domain of the all tissues, NTRK-driven cancers constitute a significant partnering protein resulting in constitutive kinase activity number of patients, making them an important therapeutic [42, 43]. The ETV6 HLH domain has been shown to be target [22, 25–28]. Notably, NTRK fusions are pathogno- essential for mediating protein activity of the EN fusion. Its monic for several rare solid tumor malignancies deletion results in the loss of dimer formation and ability to [24, 26, 29–33]. A number of excellent reviews have transform mutant cells [44]. Substituting the ETV6 HLH summarized recent work on Trk signaling in solid tumors domain with an inducible FK506 binding protein dimer- [14, 16, 34, 35]. Despite the emerging success of NTRK ization domain does not inhibit catalytic activation of the inhibition in solid tumors, the role of these receptors in fusion, but abrogates its transformative capacity. These data hematologic malignancies remains under investigated. suggested that the ETV6 HLH domain provides specific Therefore, this review provides a comprehensive overview signaling or polymerization capabilities required for full of our current understanding of NTRK-mediated tumor- activation of the fusion protein [45–47]. igenesis in hematological malignancies and links recent Although other, non-NTRK ETV6-based fusions have successes in NTRK-targeted therapy to historical milestones been long reported to play a role in leukemogenesis achieved by the targeting of BCR–ABL1 in CML. [42, 48–51], an EN fusion was first reported in 1999 by Eguchi et al. [52, 53] in a 59-year-old female with AML- M2 using fluorescence in situ hybridization (FISH). They NTRK receptor alterations and their role in identified two variants of the fusion with FISH (Fig. 2a). In cancer development each case, exons 1–4 of the ETV6 HLH domain were fused in-frame with exons 13–18 of NTRK3 that encoded the To date the BCR–ABL1 fusion remains the most prevalent protein-tyrosine kinase (PTK) domain. These fusions dif- mechanism of oncogenic ABL activation. In contrast acti- fered from the EN fusions described in solid tumors as only vation of NTRK receptors can result from a wider range of the first four exons of ETV6 were fused with the kinase Revisiting NTRKs as an emerging oncogene in hematological malignancies 2565
Recommended publications
  • Australian Public Assessment Report for Larotrectinib
    Australian Public Assessment Report for Larotrectinib Proprietary Product Name: Vitrakvi Sponsor: Bayer Australia Limited December 2020 Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) • The Therapeutic Goods Administration (TGA) is part of the Australian Government Department of Health and is responsible for regulating medicines and medical devices. • The TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance) when necessary. • The work of the TGA is based on applying scientific and clinical expertise to decision- making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. • The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. TGA investigates reports received by it to determine any necessary regulatory action. • To report a problem with a medicine or medical device, please see the information on the TGA website <https://www.tga.gov.au>. About AusPARs • An Australian Public Assessment Report (AusPAR) provides information about the evaluation of a prescription medicine and the considerations that led the TGA to approve or not approve a prescription medicine submission. • AusPARs are prepared and published by the TGA. • An AusPAR is prepared for submissions that relate to new chemical entities, generic medicines, major variations and extensions of indications. • An AusPAR is a static document; it provides information that relates to a submission at a particular point in time. • A new AusPAR will be developed to reflect changes to indications and/or major variations to a prescription medicine subject to evaluation by the TGA.
    [Show full text]
  • Entrectinib (Interim Monograph)
    Entrectinib (interim monograph) DRUG NAME: Entrectinib SYNONYM(S): RXDX-1011, NMS-E6282 COMMON TRADE NAME(S): ROZLYTREK® CLASSIFICATION: molecular targeted therapy Special pediatric considerations are noted when applicable, otherwise adult provisions apply. MECHANISM OF ACTION: Entrectinib is an orally administered, small molecule, multi-target tyrosine kinase inhibitor which targets tropomyosin- related kinase (Trk) proteins TrkA, TrkB, and TrkC, proto-oncogene tyrosine-protein kinase ROS (ROS1) and anaplastic lymphoma kinase (ALK). TrkA, TrkB, and TrkC are receptor tyrosine kinases encoded by the neurotrophic tyrosine receptor kinase (NTRK) genes NTRK1, NTRK2, and NTRK3, respectively. Fusion proteins that include Trk, ROS1, or ALK kinase domains drive tumorigenic potential through hyperactivation of downstream signalling pathways leading to unconstrained cell proliferation. By potently inhibiting the Trk kinases, ROS1, and ALK, entrectinib inhibits downstream signalling pathways, cell proliferation and induces tumour cell apoptosis.3-5 PHARMACOKINETICS: Oral Absorption bioavailability = 55%; Tmax = 4-6 hours; Tmax delayed 2 h by high-fat, high-calorie food intake Distribution highly bound to human plasma proteins cross blood brain barrier? yes volume of distribution 551 L (entrectinib); 81.1 L (M5) plasma protein binding >99% (entrectinib and M5) Metabolism primarily metabolized by CYP 3A4 active metabolite(s) M5 inactive metabolite(s) M11 Excretion primarily via hepatic clearance urine 3.06% feces 82.9% (36% as unchanged entrectinib, 22% as M5) terminal half life 20 h (entrectinib); 40 h (M5) clearance 19.6 L/h (entrectinib); 52.4 L/h (M5) Elderly no clinically significant difference Children comparable pharmacokinetics of entrectinib and M5 in adults and children Ethnicity no clinically significant difference Adapted from standard reference3,4 unless specified otherwise.
    [Show full text]
  • 07052020 MR ASCO20 Curtain Raiser
    Media Release New data at the ASCO20 Virtual Scientific Program reflects Roche’s commitment to accelerating progress in cancer care First clinical data from tiragolumab, Roche’s novel anti-TIGIT cancer immunotherapy, in combination with Tecentriq® (atezolizumab) in patients with PD-L1-positive metastatic non- small cell lung cancer (NSCLC) Updated overall survival data for Alecensa® (alectinib), in people living with anaplastic lymphoma kinase (ALK)-positive metastatic NSCLC Key highlights to be shared on Roche’s ASCO virtual newsroom, 29 May 2020, 08:00 CEST Basel, 7 May 2020 - Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced that new data from clinical trials of 19 approved and investigational medicines across 21 cancer types, will be presented at the ASCO20 Virtual Scientific Program organised by the American Society of Clinical Oncology (ASCO), which will be held 29-31 May, 2020. A total of 120 abstracts that include a Roche medicine will be presented at this year's meeting. "At ASCO, we will present new data from many investigational and approved medicines across our broad oncology portfolio," said Levi Garraway, M.D., Ph.D., Roche's Chief Medical Officer and Head of Global Product Development. “These efforts exemplify our long-standing commitment to improving outcomes for people with cancer, even during these unprecedented times. By integrating our medicines and diagnostics together with advanced insights and novel platforms, Roche is uniquely positioned to deliver the healthcare solutions of the future." Together with its partners, Roche is pioneering a comprehensive approach to cancer care, combining new diagnostics and treatments with innovative, integrated data and access solutions for approved medicines that will both personalise and transform the outcomes of people affected by this deadly disease.
    [Show full text]
  • Cogent Biosciences Announces Creation of Cogent Research Team
    Cogent Biosciences Announces Creation of Cogent Research Team April 6, 2021 Names industry veteran John Robinson, PhD as Chief Scientific Officer New Boulder-based team with exceptional track record of drug discovery and development focused on creating novel small molecule therapies for rare, genetically driven diseases Strong year-end cash position of $242.2 million supports company goals into 2024, including three CGT9486 clinical trials on-track to start this year, beginning with ASM in 1H21 BOULDER, Colo. and CAMBRIDGE, Mass., April 6, 2021 /PRNewswire/ -- Cogent Biosciences, Inc. (Nasdaq: COGT), a biotechnology company focused on developing precision therapies for genetically defined diseases, today announced the formation of the Cogent Research Team led by newly appointed Chief Scientific Officer, John Robinson, PhD. "Today marks an important step forward for Cogent Biosciences as we announce the formation of the Cogent Research Team with a focus on discovering and developing new small molecule therapies for patients fighting rare, genetically driven diseases," said Andrew Robbins, President and Chief Executive Officer of Cogent Biosciences. "I am thrilled to welcome John onboard as Cogent Biosciences' Chief Scientific Officer. John's expertise and seasoned leadership make him ideally suited to lead this new team of world class scientists. Given the team's impressive experience and accomplishments, we are excited for Cogent Biosciences' future and the opportunity to expand our pipeline and deliver novel precision therapies for patients." With an exceptional track record of innovation, the Cogent Research Team will focus on pioneering best-in-class, small molecule therapeutics to both improve upon existing drugs with clear limitations, as well as create new breakthroughs for diseases where others have been unable to find solutions.
    [Show full text]
  • Phase II Study of Selumetinib, an Orally Active Inhibitor of MEK1 and MEK2 Kinases, in KRASG12R-Mutant Pancreatic Ductal Adenocarcinoma
    UC Davis UC Davis Previously Published Works Title Phase II study of selumetinib, an orally active inhibitor of MEK1 and MEK2 kinases, in KRASG12R-mutant pancreatic ductal adenocarcinoma. Permalink https://escholarship.org/uc/item/3520819s Journal Investigational new drugs, 39(3) ISSN 0167-6997 Authors Kenney, Cara Kunst, Tricia Webb, Santhana et al. Publication Date 2021-06-01 DOI 10.1007/s10637-020-01044-8 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Investigational New Drugs (2021) 39:821–828 https://doi.org/10.1007/s10637-020-01044-8 SHORT REPORT Phase II study of selumetinib, an orally active inhibitor of MEK1 and MEK2 kinases, in KRASG12R-mutant pancreatic ductal adenocarcinoma Cara Kenney1 & Tricia Kunst1 & Santhana Webb1 & Devisser Christina Jr2 & Christy Arrowood3 & Seth M. Steinberg4 & Niharika B. Mettu3 & Edward J. Kim2 & Udo Rudloff1,5 Received: 5 November 2020 /Accepted: 3 December 2020 / Published online: 6 January 2021 # This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020 Summary Background Preclinical evidence has suggested that a subset of pancreatic cancers with the G12R mutational isoform of the KRAS oncogene is more sensitive to MAPK pathway blockade than pancreatic tumors with other KRAS isoforms. We con- ducted a biomarker-driven trial of selumetinib (KOSELUGO™; ARRY-142886), an orally active, allosteric mitogen-activated protein kinase 1 and 2 (MEK1/2) inhibitor, in pancreas cancer patients with somatic KRASG12R mutations. Methods In this two- stage, phase II study (NCT03040986) patients with advanced pancreas cancer harboring somatic KRASG12R variants who had received at least one standard-of-care systemic therapy regimen received 75 mg selumetinib orally twice a day until disease progression or unacceptable toxicity occurred.
    [Show full text]
  • Patient Group Input Submissions
    CBCN’s 2012 Metastatic Breast Cancer Patient and Caregiver Survey Report: An online survey was distributed to patients living with metastatic breast cancer and their caregivers. No patients surveyed had experience with the treatment under review. Survey questions comprised of a combination of scoring options and free form commentary. Patients were contacted through the membership databases of CBCN and other patient organizations. -71 patients participated in the survey -16 caregivers participated in the survey Printed sources: A review was conducted of current studies and grey literature to identify issues and experiences that are commonly shared among many women living with metastatic breast cancer. 3. Disease Experience Metastatic breast cancer is the spread of cancerous cell growth to areas of the body other than where the cancer first formed. It is most commonly spread to the bones, but can include the lungs, liver, brain and skin. Triple-negative breast cancer (TNBC) is breast cancer that is estrogen-receptor-negative, progesterone-receptor-negative and HER2-negative. Accounting for 12-17% of breast cancers, TNBC’s have been shown to be relatively aggressive and display a high risk of metastasis and death within 5 years after diagnosis. TNBC is considered to be vastly heterogeneous and is often used as an umbrella term, encompassing a wide spectrum of entities with marked genetic, transcriptional, histological, and clinical differences. 1 A rare cancer that is more commonly associated with TNBC, is secretory breast carcinomas- a cancer that occurs due to an over secretion of mucin in the tumor. It is considered a subtype of invasive ductal carcinoma but is prone to metastasis and local recurrence.
    [Show full text]
  • 2020 Master Class Course Best Practices and Expanding Treatment Options in Soft Tissue Sarcomas Including GIST George D
    2020 Master Class Course Best Practices and Expanding Treatment Options in Soft Tissue Sarcomas including GIST George D. Demetri, MD FACP FASCO 1 George D. Demetri, MD Faculty Disclosure • Scientific consultant with sponsored research to Dana-Farber: Bayer, Pfizer, Novartis, Epizyme, Roche/Genentech, Epizyme, LOXO Oncology, AbbVie, GlaxoSmithKline, Janssen, PharmaMar, Daiichi-Sankyo, AdaptImmune • Scientific consultant: GlaxoSmithKline, EMD-Serono, Sanofi, ICON plc, MEDSCAPE, Mirati, WCG/Arsenal Capital, Polaris, MJ Hennessey/OncLive, C4 Therapeutics, Synlogic, McCann Health • Consultant/SAB member with minor equity holding: G1 Therapeutics, Caris Life Sciences, Erasca Pharmaceuticals, RELAY Therapeutics, Bessor Pharmaceuticals, Champions Biotechnology, Caprion/HistoGeneX • Board of Directors member and Scientific Advisory Board Consultant with minor equity holding: Blueprint Medicines, Translate BIO • Patents/Royalties: Novartis royalty to Dana-Farber for use patent of imatinib in GIST • Non-Financial Interests: AACR Science Policy and Government Affairs Committee Chair, Alexandria Real Estate Equities, Faculty of this CE activity may include discussions of products or devices that are not currently labeled for use by the FDA. The faculty have been informed of their responsibility to disclose to the audience if they will be discussing off label or investigational uses (any uses not approved by the FDA) of products or devices. 2 Soft Tissue Sarcomas: Approximate Anatomic Distribution Head and Neck 10% Upper extremities 15% Trunk 10% Retroperitoneal, pelvic and visceral Lower extremities 15% 50% (includes GIST and GYN sarcomas) Modified from Clark MA et al. NEJM 2005;353:701-11 3 Sarcomas represent an exceedingly diverse set of diseases Bone Sarcomas 10% GIST Un- differentiated Liposarcomas Leiomyo- Sarcomas 4 Ducimetiere et al.
    [Show full text]
  • And Salivary Gland Cancers
    Larotrectinib is highly active in patients with advanced recurrent TRK fusion thyroid (TC) and salivary gland cancers (SGC) Wirth L, 1 Drilon A, 2 Albert CM, 3 Farago A, 1 el-Diery W, 4 Ma P, 5 Sohal D, 6 Raez L, 7 Baik C, 8 Brose MS, 9 Doebele R, 10 Cox MC, 11 Ku N, 11 Hong D 12 1Massachusetts General Hospital, Boston, MA; 2Memorial Sloan Kettering Cancer Center, New York, NY; 3Seattle Children’s Hospital, Seattle, WA; 4Fox Chase Cancer Center, Philadelphia, PA; 5West Virginia University, Morgantown, WV; 6Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 7Memorial Cancer Institute, Pembroke Pines, FL; 8University of Washington/Seattle Cancer Care Alliance, Seattle, WA; 9University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA; 10 University of Colorado, Aurora, CO; 11 Loxo Oncology, South San Francisco, CA; 12 M.D. Anderson Cancer Center, Houston, TX Abstract # 20570 Introduction Patient and disease characteristics Adverse events with larotrectinib: ≥15% in safety database (n=125) n TRK fusions, involving the genes NTRK1, NTRK2, and NTRK3 , occur in a broad range of solid Characteristic Total N=19 Treatment-emergent AEs (%) Treatment-related AEs (%) tumors and are oncogenic: Median age (range), years 59 (15 –75) Grade 1 Grade 2 Grade 3 Grade 4 Total Grade 3 Grade 4 Total – Targeted inhibition of TRK can be an effective antitumor approach Female, n 7 (37%) Fatigue 15 18 5–38 1–18 ECOG 0 –1 19 (100%) n Larotrectinib is the first selective pan-TRK inhibitor in clinical development and has demonstrated Dizziness 22 42–27
    [Show full text]
  • Presentación De Powerpoint
    Molecular Tumor Board in Non-Small Cell Lung Cancer Jordi Remon Masip CIOCC Barcelona – HM Delfos @JordiRemon #SEOM20 Disclosure Information I do not have COI related to this specific presentation Why do we need a MTB in NSCLC? • Introduction • To understand the genomic profile from NGS reports • To prioritize the druggable genomic alteration: baseline / resistant • Increasing the detection of potential druggable genomic alterations • To include patients in basket trials • NGS is a reality but MTB and precision approach have challenges MTB is included in one equation MOLECULAR TUMOR BOARD Y MTB is included in one equation GENOMIC MOLECULAR TUMOR PROFILE BOARD X + Y MTB is included in one equation GENOMIC MOLECULAR TUMOR PERSONALISED PROFILE BOARD TREATMENT X + Y = Z Precision oncology in practice EGFR TKI Find actionable gens with ALK/ROS1 TKI approved therapy BRAF TKI Find actionable genes for RET / NTRK TKI clinical trials MET TKI Precision oncology in practice EGFR TKI Find actionable gens with ALK/ROS1 TKI approved therapy BRAF TKI Find actionable genes for RET / NTRK TKI clinical trials MET TKI Additional information about non-actionable gene mutations prognostic markers of sensitivity Two major steps in NSCLC outcome Immunotherapy Personalised treatment, ALK+: 5-y OS, KEYNOTE 024 Trial 5-y OS, ALEX trial Median OS, HR, (95%CI) 5-Year OS Rate, Median OS, HR, (95%CI) 5-Year OS Rate, mo % mo % 26.3 0.62 31.9 Not reached 0.67 63 13.4 (0.48-0.81) 16.7 57.4 (0.46-0.98) 46 Alectinib 26.4% Crizotinib Pembrolizumab Chemotherapy Brahmer – ESMO 2020 Mok – Annls of Oncology 2020 Number of oncogenes increases over time NTRK rearrangement Figure from Garrido – CTO 2019 (modified based on updated ESMO guidelines 2020 by Planchard et al.) Number of oncogenes increases over time NRG1 KRAS RET MET HER2 UN NTRK rearrangement Coming Future….
    [Show full text]
  • TRK Inhibitors: Tissue-Agnostic Anti-Cancer Drugs
    pharmaceuticals Review TRK Inhibitors: Tissue-Agnostic Anti-Cancer Drugs Sun-Young Han Research Institute of Pharmaceutical Sciences and College of Pharmacy, Gyeongsang National University, Jinju-si 52828, Korea; [email protected] Abstract: Recently, two tropomycin receptor kinase (Trk) inhibitors, larotrectinib and entrectinib, have been approved for Trk fusion-positive cancer patients. Clinical trials for larotrectinib and entrectinib were performed with patients selected based on the presence of Trk fusion, regardless of cancer type. This unique approach, called tissue-agnostic development, expedited the process of Trk inhibitor development. In the present review, the development processes of larotrectinib and entrectinib have been described, along with discussion on other Trk inhibitors currently in clinical trials. The on-target effects of Trk inhibitors in Trk signaling exhibit adverse effects on the central nervous system, such as withdrawal pain, weight gain, and dizziness. A next generation sequencing-based method has been approved for companion diagnostics of larotrectinib, which can detect various types of Trk fusions in tumor samples. With the adoption of the tissue-agnostic approach, the development of Trk inhibitors has been accelerated. Keywords: Trk; NTRK; tissue-agnostic; larotrectinib; entrectinib; Trk fusion 1. Introduction Citation: Han, S.-Y. TRK Inhibitors: Tropomyosin receptor kinases (Trk) are tyrosine kinases encoded by neurotrophic Tissue-Agnostic Anti-Cancer Drugs. tyrosine/tropomyosin receptor kinase (NTRK) genes [1]. Chromosomal rearrangement of Pharmaceuticals 2021, 14, 632. https:// NTRK genes is found in cancer tissues [2]. The resulting fusion proteins containing part of doi.org/10.3390/ph14070632 the Trk protein have a constitutively active form of kinase that transduces deregulating signals.
    [Show full text]
  • Acquired Resistance to the TRK Inhibitor Entrectinib in Colorectal Cancer
    Published OnlineFirst November 6, 2015; DOI: 10.1158/2159-8290.CD-15-0940 RESEARCH BRIEF Acquired Resistance to the TRK Inhibitor Entrectinib in Colorectal Cancer Mariangela Russo 1,2,3 , Sandra Misale 2 , G e W e i 4 , Giulia Siravegna 1,2 , Giovanni Crisafulli 2 , Luca Lazzari 1,2 , Giorgio Corti 2 , Giuseppe Rospo 2 , Luca Novara 2 , Benedetta Mussolin 2 , Alice Bartolini 2 , Nicholas Cam 4 , Roopal Patel 4 , Shunqi Yan 4 , Robert Shoemaker 4 , Robert Wild 4 , Federica Di Nicolantonio1,2 , Andrea Sartore - Bianchi 5 , Gang Li 4 , Salvatore Siena 5,6 , and Alberto Bardelli 1,2 ABSTRACT Entrectinib is a fi rst-in-class pan-TRK kinase inhibitor currently undergoing clini- cal testing in colorectal cancer and other tumor types. A patient with metastatic colorectal cancer harboring an LMNA–NTRK1 rearrangement displayed a remarkable response to treatment with entrectinib, which was followed by the emergence of resistance. To characterize the molecular bases of the patient’s relapse, circulating tumor DNA (ctDNA) was collected longitudinally during treatment, and a tissue biopsy, obtained before entrectinib treatment, was transplanted in mice (xenopatient), which then received the same entrectinib regimen until resistance developed. Genetic profi ling of ctDNA and xenopatient samples showed acquisition of two point mutations in the catalytic domain of NTRK1 , p.G595R and p.G667C. Biochemical and pharmacologic analysis in multiple preclini- cal models confi rmed that either mutation renders the TRKA kinase insensitive to entrectinib. These fi ndings can be immediately exploited to design next-generation TRKA inhibitors. SIGNIFICANCE: We provide proof of principle that analyses of xenopatients (avatar) and liquid biopsies allow the identifi cation of drug resistance mechanisms in parallel with clinical treatment of an individual patient.
    [Show full text]
  • Oncology Oral, Lung Cancer Therapeutic Class Review (TCR)
    Oncology Oral, Lung Cancer Therapeutic Class Review (TCR) April 14, 2020 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management. All requests for permission should be mailed to: Magellan Rx Management Attention: Legal Department 6950 Columbia Gateway Drive Columbia, Maryland 21046 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to [email protected]. April 2020 Proprietary Information. Restricted Access – Do not disseminate or copy without approval. © 2010–2020 Magellan Rx Management. All rights reserved. FDA-APPROVED INDICATIONS Drug Manufacturer Indication(s) Anaplastic Lymphoma Kinase (ALK) Tyrosine Kinase Inhibitors alectinib Genentech .
    [Show full text]