PLEISTOCENE STRATIGRAPHIC UNITS of Wisconsin

Total Page:16

File Type:pdf, Size:1020Kb

PLEISTOCENE STRATIGRAPHIC UNITS of Wisconsin MISCELLANEOUS PAPER 84-1 PLEISTOCENE STRATIGRAPHIC UNITS OF WISCONSiN by David M. Mickelson, Lee Clayton, Robert W. Baker, William N. Mode and Allan F. Schneider available from Geological and Natural History Survey University of Wisconsin-Extension 1815 University Avenue Madison, Wisconsin 53705 MISCELLANEOUS PAPER 84-1 PLEISTOCENE STRATIGRAPHIC UNITS OF WISCONSIN by David M. Mickelson, Lee Clayton, Robert W. Baker, William N. Mode and Allan F. Schneider available from Geological and Natural History Survey University of Wisconsin�Extension 1815 University Avenue Madison, Wisconsin 53705 JUL 1984 CONTENTS Acknowledgements ..................... ..............It ................................................It .................. iv Abstract ............................................................................................................................ I Introduction It .. .. ........ .. .... .. ................ .. ........ .. .. .. ........ .. .. .. .. .. .... ........ .. .... .. .. ............ .. ........ I Principles of Lithostratigraphic Classification in Wisconsin •• •••••••• 2 Summary of Lithostratigraphic Units Defined in this Paper ••••••••••••• 5 Units of Probable Pre-Wisconsinan and Early Wisconsinan Age •••••••• 5 Units of Late Wisconsinan Age ............................................................................ 7 References Cited ............................................................................................................ 12 Appendix 1. Walworth Formation .. ................ ......It .... ....It ...................................................... Al-l lao Foxhollow Memb er of the Wa lworth Formation •••••••••••••••• Al-2 lb. Allens Grove Memb er of the Walworth Format ion •.••••••••••• Al-3 lc. Clinton Member of the Wa lworth Formation •••••••••••••••••• Al-4 2.. Marathon Formation .......................................................................................... A2-l 2a. Wausau Memb er of the Marathon Formation ••••••••••••••••••• A2-1 2b . Edgar Member of the Marathon Format ion •••••••••••••••••••• A2-3 3.. Lincoln Formation .. .. .. .. .. ................ .. .. .. ........ .. ........ .. .. .. .... ........It ...................... A3-1 3a. Bakerville Member of the Lincoln Formation •• •••••••••••••• A3-l 3b . Merrill Memb er of the Lincoln Formation ••••••••••••••••••• A3-3 4. Pierce Formation ............................................................................................ A4-l 4a . Hersey Member of the Pierce Formation ••••••••••••••••••••• A4-2 4b . Kinnickinnic Member of the Pierce Formation ••••••••••••••• A4-5 5. River Falls Formation .............................. .......... .......................................... A5-l 6. Zenda Formation ........ ....................................................................................... A6-1 6a. Capron Memb er of the Zenda Formation •••••••••••••••••••••• A6-2 6b. Tiskilwa Member of the Zenda Formation •••••••••••••••••••• A6-5 7. New Berlin Formation ...................................................................................... A7-1 S. Oak Creek Format ion ........................... ............................................................ AS-I 9. Horicon Formation ........................................................................................... A9-1 9a. Map leview Member of the Horicon Formation ••••••••••••••••• A9-2 9b . Liberty Grove Memb er of the Horicon Formation ••••••••••••• A9-4 10 . Kewaunee Format ion .......................................................................................... AlO-l lOa. Ozaukee Member of the Kewaunee Formation ••••••••••••••••• A10-2 lOb . Haven Member of the Kewaunee Formation ••••••••••••••••••• A10-4 lOco Valders Member of the Kewaunee Formation ••••••••••••••••• A10-6 10d. Two Rivers Member of the Kewaunee Formation •••••••••••••• AIO-9 10e. Branch River Member of the Kewaunee Formation •••••••••••• A10-ll 10f. Chilton Member of the Kewaunee Format ion •• ••••••••••••••• A10-13 109. Glenmore Memb er of the Kewaunee Formation •••••••••••••••• AlO-15 10h. Silver Cliff Member of the Kewaunee Formation •••••••••••• A10-16 10i. Kirby Lake Member of the Kewaunee Formation •••••••••••••• AIO-IS 10j. Middle Inlet Member of the Kewaunee Formation •••••••••••• A10-20 11. Copper Falls Formation .................................................................................. All-I lla. Nashville Member of the Copper Falls Formation ••••••••••• All-5 12. Miller Creek Formation .................................................................................. A12-l l2a. Hanson Creek Memb er of the Miller Creek Formation •••••••• A12-2 l2b. Douglas Member of the Miller Creek Formation ••••••••••••• A12-5 iii ACKNOWLEDGEMENTS We first acknowledge the research of all who have contributed to our knowledge of Pleistocene deposits in the state. Without the work of pioneers such as Frank Leverett, T. C. Chamberlin , R. T. Chamberlin, W. C. Alden, J. W. Goldthwait, Samuel Weidman and others this compilation would not be possible. More recent workers such as F. T. Thwaites and R. F. Black added considerably to our knowledge of Pleistocene deposits in the state. We also owe a great deal to the graduate students of University of Wisconsin at Milwaukee and Madison who have increased our knowledge of deposits in many areas. In par­ ticular, unit descriptions are modified from theses of Carl Fricke, William Simpkins, Carol McCartney, Larry Acomb, and Ed Need. Although they were not invo lved in writing this report, their ear ly descriptions were extremely useful. The basic stratigraphic scheme presented here represents the fruits of several meetings of Pleistocene workers in the state. Those who contributed but who are not writers of these reports inc lude Norman Lasca, James Knox, Louis Maher, Jr., Adam Cahow, and John Tinker. In addition, discussions with Pleistocene workers in other states , particularly John Kempton, Richard Berg, Ardith Hansel, Leon Fo llmer, W. H. Johnson, C. L. Matsch, H. E. Wright, Jr., H. B. Willman, and L. D. Taylor were of considerable help in developing our ideas. We also particu larly appreciate the comments of Howard Hobbs, Mike Mudrey, Tim Kemmis, Hilt Johnson, John Kempton, Richard Berg, Ardith Hansel, and Ed Need, all of whom reviewed part or all of the manuscript. We would also like to thank Miche lyn Hass and Ann Bauhs for typing the manuscript and Paul Dombrowski for drafting several of the figures. iv PLEISTOCENE STRATIGRAPHIC UNITS OF WISCONSIN David M. Micke1sonl , Lee Clayton2 , Robert W. Baker3 , William N. Mode4 , and Allan F. Schneider5 1 Department of Geo logy and Geophysics, University of Wisconsin--Madison, Madison, Wis. 53706 2 Wisconsin Geo logical and Natural History Survey, Madison, Wis. 53706 3 Department of Plant and Earth Science, University of Wiscons in--River Falls, Riv er Fall S, Wis 54 O22 · 4 Department of Geo 10gy , University of Wisconsin--Oshkosh, Oshkosh, Wis. 54901 5 Depar tment of Geo logy, University of Wiscons in--Parks ide, Kenosha, Wis. 53141 ABSTRACT INTRODUCTION The Pleistocene deposits of Wiscon­ During the past several years, a sin consist of a complex sequence of number of Pleistocene lithostratigraph­ deposits differing in origin, age, ic un its have been informally named in lithology, thickness, and aerial ex­ published reports and in theses. This tent. This report presents a litho­ paper is the result of several years of stratigraphic classification for many thought and discussion by the authors of these deposits and also provides and others inside and outside Wisconsin guidelines tor the forma l definition on the development of a formal litho­ and naming of lithostratigraphic un its stratigraphic classificat ion for Qua­ in Wisconsin. The classification ternary un its in the state. In addi­ scheme follows that of the American tion to forma lly defining a number of Code of Stratigraphic Nomenclature. units and discussin� some not formally Each un it definition should include a defined, we establ1Sh a framework for discussion of the following: source of future lithostratigraphic classifica­ name, type-section location and descrip­ tion. We hope that it will be a dynam­ tion, reference-section location and ic system and that it will change as description, description of unit, na­ needs arise, but we recognize the need ture of contacts, differentiation from for some fundamental decisions to be other units, reg ional extent and thick­ made at this time. nes s, origin, age, correlation, and identification of the person naming the Although other workers in the state un it. cannot be forced to fo llow the frame­ work set up here or to formally define The framework for the classification their units, a certain amount of uni­ of Pleistocene un its is based on till formity of usage will result in less strat igraphy. However , most members confus ion. The standards set in this and formations named in this paper pub lication are those that will be include not only till, but associated followed in future pub lications of the fluvial and lacustrine deposits. Wiscons in Geo logical and Natural Histo­ ry Survey. Many of the Pleistocene deposits in Although chronostratigraphic units, Wisconsin are classified in this paper. biostratigraphic units, and stratigraph­ We here name and define 11 formations ic units based on interpreted geo logic that include 28 member s. Some till even ts are needed by Pleistocene geolo­ deposits and most fluvial, lacustrine, gists, we here concentrate on litho­
Recommended publications
  • Lexicon of Pleistocene Stratigraphic Units of Wisconsin
    Lexicon of Pleistocene Stratigraphic Units of Wisconsin ON ATI RM FO K CREE MILLER 0 20 40 mi Douglas Member 0 50 km Lake ? Crab Member EDITORS C O Kent M. Syverson P P Florence Member E R Lee Clayton F Wildcat A Lake ? L L Member Nashville Member John W. Attig M S r ik be a F m n O r e R e TRADE RIVER M a M A T b David M. Mickelson e I O N FM k Pokegama m a e L r Creek Mbr M n e M b f a e f lv m m i Sy e l M Prairie b C e in Farm r r sk er e o emb lv P Member M i S ill S L rr L e A M Middle F Edgar ER M Inlet HOLY HILL V F Mbr RI Member FM Bakerville MARATHON Liberty Grove M Member FM F r Member e E b m E e PIERCE N M Two Rivers Member FM Keene U re PIERCE A o nm Hersey Member W le FM G Member E Branch River Member Kinnickinnic K H HOLY HILL Member r B Chilton e FM O Kirby Lake b IG Mbr Boundaries Member m L F e L M A Y Formation T s S F r M e H d l Member H a I o V r L i c Explanation o L n M Area of sediment deposited F e m during last part of Wisconsin O b er Glaciation, between about R 35,000 and 11,000 years M A Ozaukee before present.
    [Show full text]
  • Indiana Glaciers.PM6
    How the Ice Age Shaped Indiana Jerry Wilson Published by Wilstar Media, www.wilstar.com Indianapolis, Indiana 1 Previiously published as The Topography of Indiana: Ice Age Legacy, © 1988 by Jerry Wilson. Second Edition Copyright © 2008 by Jerry Wilson ALL RIGHTS RESERVED 2 For Aaron and Shana and In Memory of Donna 3 Introduction During the time that I have been a science teacher I have tried to enlist in my students the desire to understand and the ability to reason. Logical reasoning is the surest way to overcome the unknown. The best aid to reasoning effectively is having the knowledge and an understanding of the things that have previ- ously been determined or discovered by others. Having an understanding of the reasons things are the way they are and how they got that way can help an individual to utilize his or her resources more effectively. I want my students to realize that changes that have taken place on the earth in the past have had an effect on them. Why are some towns in Indiana subject to flooding, whereas others are not? Why are cemeteries built on old beach fronts in Northwest Indiana? Why would it be easier to dig a basement in Valparaiso than in Bloomington? These things are a direct result of the glaciers that advanced southward over Indiana during the last Ice Age. The history of the land upon which we live is fascinating. Why are there large granite boulders nested in some of the fields of northern Indiana since Indiana has no granite bedrock? They are known as glacial erratics, or dropstones, and were formed in Canada or the upper Midwest hundreds of millions of years ago.
    [Show full text]
  • Stratigraphy of Lake Michigan Lobe Deposits in Van Buren County, Michigan
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-2003 Stratigraphy of Lake Michigan Lobe Deposits in Van Buren County, Michigan Steven P. Beukema Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Geology Commons Recommended Citation Beukema, Steven P., "Stratigraphy of Lake Michigan Lobe Deposits in Van Buren County, Michigan" (2003). Master's Theses. 4445. https://scholarworks.wmich.edu/masters_theses/4445 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. f STRATIGRAPHY OF LAKE MICiflGANLOBE DEPOSITS IN VAN BUREN COUNTY, MICiflGAN by Steven P. Beukema A Thesis Submitted to the Facultyof The Graduate College in partial fulfillmentof the requirements forthe Degree of Master of Science Departmentof Geosciences WesternMichigan University Kalamazoo, Michigan June 2003 Copyright by Steven P. Beukema 2003 ACKNOWLEDGMENTS There are several people who deserve recognition for their generous support. I would first like to thank Bill Bush forsuggesting the idea of doing graduate work in geology at WMU. Two of my cohorts in the department, Andrew Kozlowski and Brian Bird, deserve special recognition for endless hours of ruminating with me about many things, in particular about the last 20,000 years in southwest Michigan. I wish also to thank Andrew forstepping out of his pessimistic outlook to offerme continual encouragement to pursue science and academia. Brian was always willing to spend time making figures and answering my constant questions about GIS, Canvas, and a host of other programs.
    [Show full text]
  • GEOLOGICAL SURVEY RESEARCH 1972 Chapter B
    GEOLOGICAL SURVEY RESEARCH 1972 Chapter B GEOLOGICAL SURVEY PROFESSIONAL PAPER 800-8 Scientific notes and summaries of investigations in geology, hydrology, and related fields UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director For sale by the Superintendent of Documents, U.S. Qovernment Printing Office, Washington, D.C., 20402 - Price $2.26 CONTENTS GEOLOGIC STUDIES Marine geology Page Structural features of the continental margin, northeastern Gulf of Mexico, by R. G. Martin, Jr. Marine geology of Yakutat Bay, Alaska, by F. F. Wright . Paleontology and stratigraphy Leiosphaeridio (Acritarcha) in the Mesozoic oil shales of northern Alaska, by R. F. Boneham and I. L. Tailleur . Quartzsand-bearing zone and Early Silurian age of upper part of the Hanson Creek Formation in Eureka County, Nev., by T. E. MullensandF.G.Poole ................................................................................... Trend-surface analysis of the thickness of the High Bridge Group (Middle Ordovician) of central Kentucky and its bearing on the nature of the post-Knox unconformity, by D. E. Wolcott, E. R. Cressman, and J. J. Connor . Glacial geology The Ingraham esker, Chazy, N.Y ., by C. S. Denny . Economic geology High-purity veins of soda-niter, NaN03, and associated saline minerals in the Chilean nitrate deposits, by G. E. Ericksen and M. E. Mrose ................................................................................................. Thorium distribution in a ganite stock near Bull Canyon, Lemhi County, Idaho, by M. H. Staatz, C. M. Bunker, and C. A. Bush . White clay deposits of Centre, Blair, Huntingdon, and Bedford Counties, Pa., by J. W. Hosterman . Reconnaissance geology and mineral potential of Thomas, Keg, and Desert calderas, central Juab County, Utah, by D.
    [Show full text]
  • Paleozoic Geology of the Dobbin Summit-Clear Creek Area, Monitor
    AN ABSTRACT OF THE THESIS OF DIANE CAROL WISE for the degree of MASTER OF SCIENCE in Geology presented on August 13, 1976 Title: PALEOZOIC GEOLOGY OF THE DOBBIN SUMMIT- CLEAR CREEK AREA, MONITOR RANGE, NYiE COUNTY, NEVADA Abstract approved: Redacted for Privacy son Paleozoic limestones, dolomites, quartz arenites, and other clastic rocks were mapped in the vicinity of Dobbin Summit and Clear Creek in the central Monitor Range. Sedimentary rock units present in this area represent the shallow-shelf eastern assemblage and basin and also the basin-slope facies of the traditional limestone- clastic assemblage. The four oldest, Ordovician, units were deposited in shallow shelf environments. The Lower Ordovician Goodwin Formation is composed of about 1200 feet of calcareous shales and thin-bedded limestones. The overlying Antelope Valley Limestone is about 500 feet thick and consists of wackestones, packstones, and rare algal grainstones.The Copenhagen Formation (135 feet thick) is the highest regressive deposit of sandstone, siltstone, and limestone below the transgressive Eureka Quartzite.The Eureka is a quartz arenite 181 feet thick, with an intercalated shallow marine dolomite member. The transition from shallow to deep water conditions can be seen in the change from algal boundstones to laminated lime mud- stones in the Hanson Creek Formation (190 feet thick).The super- jacent Roberts Mountains Formation (285 feet thick) is composed of lime mudstones and allodapic beds deposited in basinal, deep water conditions.During earliest Devonian
    [Show full text]
  • Geologic Resources Inventory Map Document for Indiana Dunes National Lakeshore
    U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Directorate Geologic Resources Division Indiana Dunes National Lakeshore GRI Ancillary Map Information Document Produced to accompany the Geologic Resources Inventory (GRI) Digital Geologic Data for Indiana Dunes National Lakeshore indu_geology.pdf Version: 3/4/2014 I Indiana Dunes National Lakeshore Geologic Resources Inventory Map Document for Indiana Dunes National Lakeshore Table of Contents Geologic R.e..s.o..u..r.c..e..s.. .I.n..v.e..n..t.o..r..y. .M...a..p.. .D..o..c..u..m...e..n..t....................................................................... 1 About the N..P..S.. .G...e..o..l.o..g..i.c. .R...e..s.o..u..r.c..e..s.. .I.n..v.e..n..t.o..r..y. .P...r.o..g..r.a..m........................................................... 2 GRI Digital .M...a..p.. .a..n..d.. .S..o..u..r.c..e.. .M...a..p.. .C..i.t.a..t.i.o..n............................................................................... 4 Map Unit Li.s..t.......................................................................................................................... 5 Map Unit De..s..c..r.i.p..t.i.o..n..s............................................................................................................. 7 Qlmm - Fille..d.. .a..n..d.. .m..o..d..i.f.i.e..d../.d..i.s..t.u..r.b..e..d.. .l.a..n..d.. .(.H..o..l.o..c..e..n..e..).................................................................................................. 7 Qlma1 - Ch.a..n..n..e..l. .a..n..d.. .f.l.o..o..d..p..l.a..in.. .(..H..o..l.o..c..e..n..e..)................................................................................................................. 7 Qlma2 - Ch.a..n..n..e..l. .a..n..d.. .f.l.o..o..d..p..l.a..in.
    [Show full text]
  • STRATIGRAPHY and STRUCTURE of the SOUTHERN SULPHUR SPRING RANGE, EUREKA COUNTY, NEVADA Redacted for Privacy Abstract Approved: U G
    AN ABSTRACT OF THE THESES OF Joseph T. Lipka IC for the degree ofMaster of Sciencein Geology presented on April 17, 1987 Title:STRATIGRAPHY AND STRUCTURE OF THE SOUTHERN SULPHUR SPRING RANGE, EUREKA COUNTY, NEVADA Redacted for Privacy Abstract approved: U G. Johnson Early Paleozoic limestones and dolomites of the shallow shelf transitional facies belt were mapped in the southern Sulphur Spring Range, Eureka County, Nevada.The four youngest units in the map area are in fault contact with the Lower Devonian rocks and wereprobably transported westward, along a low-angle normal fault. The minoirlal dolomites of the Hanson Creek Formation, dated as latest Ordovician in the map area, were deposited in a low-energy lagoon.Overlying the Hanson Creek Formation, with a gradational contact, is the lower member ofthe Lone Mountain Dolomite, a probable reef complex.The exposed thickness of the lower Lone Mountain Dolomite is estimated to be 250 feet.The Lower Devonian Old Whalen Member of the Lone Mountain Dolomite is composed of well-bedded, alternating brown and gray dolomites.The repetition of rock types in the Old Whalen Member indicates recurring shallow marine environments on a broad carbonate platform.The Old Whalen is estimated to be 1400 feet thick.Directly overlying the Old Whalen Member, is the Kobeh Member of the Mc Colley Canyon Formation.Rocks of the Mc Colley Canyon Formation were deposited on a shallow shelf under normal marine conditions.The mid-Lower Devonian Kobeh Member is sparsely to abundantly fosciliferous and varies from a peloidal wackestone to a peloidal sandy wackestone to a sandy peloidal packstone.The thickness is 276 feet.Overlying the Kobeh Member are the abundantly fossiliferous beds of the lower part of the Bartine.
    [Show full text]
  • Geology of Michigan and the Great Lakes
    35133_Geo_Michigan_Cover.qxd 11/13/07 10:26 AM Page 1 “The Geology of Michigan and the Great Lakes” is written to augment any introductory earth science, environmental geology, geologic, or geographic course offering, and is designed to introduce students in Michigan and the Great Lakes to important regional geologic concepts and events. Although Michigan’s geologic past spans the Precambrian through the Holocene, much of the rock record, Pennsylvanian through Pliocene, is miss- ing. Glacial events during the Pleistocene removed these rocks. However, these same glacial events left behind a rich legacy of surficial deposits, various landscape features, lakes, and rivers. Michigan is one of the most scenic states in the nation, providing numerous recre- ational opportunities to inhabitants and visitors alike. Geology of the region has also played an important, and often controlling, role in the pattern of settlement and ongoing economic development of the state. Vital resources such as iron ore, copper, gypsum, salt, oil, and gas have greatly contributed to Michigan’s growth and industrial might. Ample supplies of high-quality water support a vibrant population and strong industrial base throughout the Great Lakes region. These water supplies are now becoming increasingly important in light of modern economic growth and population demands. This text introduces the student to the geology of Michigan and the Great Lakes region. It begins with the Precambrian basement terrains as they relate to plate tectonic events. It describes Paleozoic clastic and carbonate rocks, restricted basin salts, and Niagaran pinnacle reefs. Quaternary glacial events and the development of today’s modern landscapes are also discussed.
    [Show full text]
  • Quaternary Geology of the Indiana Portion of the Eastern Extent of The
    Quaternary Geology of the Indiana Portion of the Eastern TODD A. THOMPSON, STATE GEOLOGIST Extent of the South Bend 30- x 60-Minute Quadrangle By José Luis Antinao and Robin F. Rupp Bloomington, Indiana OVERVIEW OF THE GEOLOGY, STRATIGRAPHY, AND MORPHOLOGY 2021 The map area is underlain by unconsolidated deposits of Pleistocene and Holocene age having thicknesses greater than 350 ft north of South Bend, and more than 450 ft -86°7'30" 580000E -86°0'00" -86°15'00" 5 575 northeast of Mishawaka, usually reaching 200 ft elsewhere. All surficial deposits are -86°22'30" 5 5 565 70 -86°30'00" 5 5 55 60 800 45 50 800 mid- to late Wisconsin Episode or younger (<50,000 years ago, or <50 ka), occurring Qma 31 Qas Qac 800 as a minor (<100 ft) cover above a thicker pre-Wisconsin package. A thin, Qml Qwv2 % Dreamwold ? Qwe1 Qwv1 Qwpp1 Heights Qwe1 Qwe1 discontinuous cover of postglacial alluvial, lacustrine, paludal, and aeolian deposits Qwv3 800 800 41°45'00" Qac5 % Qwe1 41°45'00" Qao5 % not exceeding 25 ft caps the glacial sequence. 80 Qwe2 700 800 Qwpp3 Qwe1 Qao5 % 23 Qwpp3 800 Landforms and near-surface deposits reflect the interplay between the Saginaw and I 800 ND % Qao3 I % AN Qao5 Lake Michigan Lobes of the Laurentide Ice Sheet. In the Mishawaka fan upland Qwpp2 A T Granger INDI OL ANA TOLL RD 80 L RD Qwpp2 Qwpp2 Qao4 (Bleuer and Melhorn, 1989) at the center of the map, the morphology is marked by a 31 ? Qac 46 Qml BUS 46 shallow (30–50 ft depth) pre-Wisconsin buried surface, similar to the one present in 20 Qao4 Roseland 800 20 Qao4 800 800 southwestern Elkhart County (Fleming and Karaffa, 2012).
    [Show full text]
  • A Chemostratigraphic Investigation of the Late Ordovician Greenhouse to Icehouse Transition: Oceanographic, Climatic, and Tectonic Implications
    A CHEMOSTRATIGRAPHIC INVESTIGATION OF THE LATE ORDOVICIAN GREENHOUSE TO ICEHOUSE TRANSITION: OCEANOGRAPHIC, CLIMATIC, AND TECTONIC IMPLICATIONS DISSERTATION Presented in Partial Fulfillment of the Requirements For the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Seth Allen Young, M.S. ***** The Ohio State University 2008 Dissertation Committee: Dr. Matthew R. Saltzman, Adviser Dr. Kenneth A. Foland Dr. William I. Ausich Dr. Andrea G. Grottoli ABSTRACT The latest Ordovician (444 million years ago) was a critical period in Earth history. This was a time of significant climatic global change with large-scale continental glaciation. Moreover, the end-Ordovician mass extinction is recognized as the second- most devastating mass extinction to have affected the Earth. The anomalous Late Ordovician icehouse period has perplexed many researchers because all previous model and proxy climate evidence suggest high levels of atmospheric CO2 during the Late Ordovician glaciation. Also associated with this period is a large positive carbon isotope (δ13C) excursion (up to +7‰) that represents a global perturbation of the carbon cycle. Additionally, a large decrease (0.001) in seawater 87Sr/86Sr occurs several million years prior (~460 million years ago); this could reflect an increase in atmospheric CO2 uptake due to weathering of volcanic rocks involved in uplift of the early Appalachian Mountains. To address these Ordovician anomalies, well-studied, thick, and continuous Late Ordovician limestone sequences from eastern West Virginia, south-central Oklahoma, central Nevada, Quebec (Canada), Estonia, and China have been sampled. Carbon and strontium isotopic ratios have been measured on samples from these localities of which Estonian and Chinese sample sites represent separate paleocontinents (Baltica and South ii China) and are compared with other data sets from North America.
    [Show full text]
  • Behavior of the James Lobe, South Dakota During Termination I
    Behavior of the James Lobe, South Dakota during Termination I A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Geology of the McMicken College of Arts and Sciences by Stephanie L. Heath MSc., University of Maine BSc., University of Maine July 18, 2019 Dissertation Committee: Dr. Thomas V. Lowell Dr. Aaron Diefendorf Dr. Aaron Putnam Dr. Dylan Ward i ABSTRACT The Laurentide Ice Sheet was the largest ice sheet of the last glacial period that terminated in an extensive terrestrial margin. This dissertation aims to assess the possible linkages between the behavior of the southern Laurentide margin and sea surface temperature in the adjacent North Atlantic Ocean. Toward this end, a new chronology for the westernmost lobe of the Southern Laurentide is developed and compared to the existing paradigm of southern Laurentide behavior during the last glacial period. Heath et al., (2018) address the question of whether the terrestrial lobes of the southern Laurentide Ice Sheet margin advanced during periods of decreased sea surface temperature in the North Atlantic. This study establishes the pattern of asynchronous behavior between eastern and western sectors of the southern Laurentide margin and identifies a chronologic gap in the western sector. This is the first comprehensive review of the southern Laurentide margin since Denton and Hughes (1981) and Mickelson and Colgan (2003). The results of Heath et al., (2018) also revealed the lack of chronologic data from the Lobe, South Dakota, the westernmost lobe of the southern Laurentide margin.
    [Show full text]
  • Analysis of an Interlobate Boundary in the Wisconsinan Drift of Kalamazoo County and Adjacent Areas in Southwestern Michigan
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-1977 Analysis of an Interlobate Boundary in the Wisconsinan Drift of Kalamazoo County and Adjacent Areas in Southwestern Michigan Norman A. Lovan Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Geology Commons Recommended Citation Lovan, Norman A., "Analysis of an Interlobate Boundary in the Wisconsinan Drift of Kalamazoo County and Adjacent Areas in Southwestern Michigan" (1977). Master's Theses. 2207. https://scholarworks.wmich.edu/masters_theses/2207 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. ANALYSIS OF AN INTERLOBATE BOUNDARY IN THE WISCONSINAN DRIFT OF KALAMAZOO COUNTY AND ADJACENT AREAS IN SOUTHWESTERN MICHIGAN by Norman A. Lovan A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the Degree of Master of Science Western Michigan University Kalamazoo, Michigan August 19 77 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ANALYSIS OF AN INTERLOBATE BOUNDARY IN THE WISCONSINAN DRIFT OF KALAMAZOO COUNTY AND ADJACENT AREAS IN SOUTHWESTERN MICHIGAN Norman A. Lovan, M.S. Western Michigan University, 1977 ABSTRACT A detailed investigation of selected textural and mineralogical aspects of tills in southwestern Michigan is used to define an interlobate boundary relationship be­ tween the Wisconsinan ice of the Lake Michigan and Saginaw lobes. Bedrock underlying the study area contributed lit­ tle to the bulk composition of the tills investigated.
    [Show full text]