Acute and Longterm Effects of Selective Insecticides on Micromus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Homoptera: Aphididae) Associated with Brassicaceae Crops in Iraq
Available online freely at www.isisn.org Bioscience Research Print ISSN: 1811-9506 Online ISSN: 2218-3973 Journal by Innovative Scientific Information & Services Network RESEARCH ARTICLE BIOSCIENCE RESEARCH, 2018 15(2): 975-979. OPEN ACCESS Abundance of aphids (Homoptera: Aphididae) associated with Brassicaceae crops in Iraq Hayder Badry Ali Department of Biology, College of Science, University of Baghdad, Al-Jadiria Baghdad, Iraq *Correspondence: [email protected] Accepted: 06 May 2018 Published online: 09 June 2018 This study was based on the collection and determination of aphid species that colonize leaves of Brassicaceae crops in Iraq. Population abundance of these aphid species was studied during crops season. (Nov. 2016 – Apr. 2017). Five aphid species belongs to family Aphididae: Brevicoryne brassica (Linnaeus, 1758), Lipaphis lepidii (Nevsky, 1929), Lipaphis pseudobrassicae (Davis, 1914), Lipaphis erysimi (Kaltenbach, 1843), Myzus persicae (Sulzer, 1776) were included in the this study. The results indicated that the temperatures and precipitation had clear effect on the abundance of aphids associated with Brassicaceae crops. B. brassicae and L. pseudobrassicae were the most abundant aphid species detected on on Brassicaceae crops. Keywords: Brassicaceae aphids, population abundance, Aphid Fauna of Iraq INTRODUCTION temperature, relative humidity and rainfall in not The family Brassicaceae includes 350 genera and much than other factors, temperature is an about 3000 species which are cultivated mainly in important environmental variable that affects the the Northern Hemisphere (Hegi, 1986). The rate of aphid development, reproduction, mortality, brassicaceous crops are very common and survival and subsequently its population increase considered important hosts of many (Dixon, 1987). According to Cividanes and phytophagous insects. -
Occurrence of Arthropod Pests Associated with Brassica Carinata and Impact of Defoliation on Yield
Received: 1 October 2020 | Accepted: 18 November 2020 DOI: 10.1111/gcbb.12801 ORIGINAL RESEARCH Occurrence of arthropod pests associated with Brassica carinata and impact of defoliation on yield Jessica M. Baldwin1 | Silvana V. Paula-Moraes1 | Michael J. Mulvaney2 | Robert L. Meagher3 1West Florida Research and Education Center, Department of Entomology and Abstract Nematology, University of Florida, Jay, Brassica carinata has the potential to become an economical biofuel winter crop FL, USA 2 in the Southeast U.S. An IPM program is needed to provide management recom- West Florida Research and Education B. carinata Center, Department of Agronomy, mendations for in the region. This study serves as the first steps in the University of Florida, Jay, FL, USA developing IPM tactics documenting pest occurrence, pest position within the can- 3Agricultural Research Service, United opy, and the impact of defoliation on B. carinata yield. The study was performed States Department of Agriculture, in Jay, FL, during the 2017–2018 and 2018–2019 winter/spring crop seasons. Pest Gainesville, FL, USA species in B. carinata were documented by plant inspection within 16 genotypes Correspondence of B. carinata, and the presence of insect pests in three canopy zones (upper, me- Silvana V. Paula-Moraes, West Florida dium, and lower canopy) was documented. The defoliation impact on B. carinata Research and Education Center/IFAS/ University of Florida, 4253 Experiment was evaluated by artificial defoliation. Five levels of defoliation (2017–2018 crop Dr., Hwy. 182, Jay, FL 32565, USA. season: 0%, 5%, 25%, 50%, and 100%; 2018–2019 crop season: 0%, 50%, 75%, 90%, Email: [email protected] and 100%) were artificially applied during vegetative, flowering, and pod formation Funding information stages of the commercial cultivar “Avanza64.” During the 2018–2019 crop season, National Institute of Food and two experiments were performed, a one-time defoliation event and continuous defo- Agriculture, U.S. -
Leaf Extract Against the Turnip Aphid Lipaphis Pseudobrassicae (Davis) (Hemiptera: Aphididae)
九州大学学術情報リポジトリ Kyushu University Institutional Repository Control Efficacy of Pongam (Pongamia pinnata L.) Leaf Extract against the Turnip Aphid Lipaphis pseudobrassicae (Davis) (Hemiptera: Aphididae) Tran, Dang Hoa Department of Plant Protection, Faculty of Agronomy, College of Agriculture and Forestry–Hue University Le, Khac Phuc Department of Plant Protection, Faculty of Agronomy, College of Agriculture and Forestry–Hue University Tran, Hoang Dong Thi Department of Plant Protection, Faculty of Agronomy, College of Agriculture and Forestry–Hue University Ueno, Takatoshi Laboratory of Insect Natural Enemies, Division of Biological Control, Department of Applied Genetics and Pest Management, Faculty of Agriculture, Kyushu University https://doi.org/10.5109/1564095 出版情報:九州大学大学院農学研究院紀要. 61 (1), pp.141-145, 2016-02-29. 九州大学大学院農学研究 院 バージョン: 権利関係: J. Fac. Agr., Kyushu Univ., 61 (1), 141–145 (2016) Control Efficacy of Pongam (Pongamia pinnata L.) Leaf Extract against the Turnip Aphid Lipaphis pseudobrassicae (Davis) (Hemiptera: Aphididae) Dang Hoa TRAN1, Khac Phuc LE1, Hoang Dong Thi TRAN1 and Takatoshi UENO* Laboratory of Insect Natural Enemies, Division of Biological Control, Department of Applied Genetics and Pest Management, Faculty of Agriculture, Kyushu University, Fukuoka 812–8581, Japan (Received November 13, 2015 and accepted November 19, 2015) The turnip aphid Lipaphis pseudobrassicae (Davis) is considered a cosmopolitan pest of cruciferous crops. It removes photoassimilates from the crops and is responsible for transmitting a number of plans viruses. Control of the turnip aphid is important in stable production of cruciferous crops. The present study was carried out to determine the efficacy of leaf extract from the pongam tree Pongamia pinnata L. against the turnip aphid. -
First Identifications of Aphid and Diamondback Moth Populations on Wasabi in British Columbia
J. ENTOMOL. SOC. BRIT. COLUMBIA 114, DECEMBER 2017 !93 NATURAL HISTORY AND OBSERVATIONS First identifications of aphid and diamondback moth populations on wasabi in British Columbia JESSE L. MACDONALD1,2, ERIC MAW3, and PEGGY CLARKE4 ABSTRACT Wasabi is a highly valued crop in the Pacific Northwest where commercial production is increasing. To date, little attention has been paid to its invertebrate pests. Two wasabi polyhouses in Agassiz, BC, were monitored for insect pests for 15 months. Pemphigus populitransversus Riley (poplar petiole gall aphid) recurred annually in winter months on roots throughout the polyhouses. Lipaphis pseudobrassicae Davis (turnip aphid) infested the leaves of a large number of plants. Myzus persicae Sulzer (green peach aphid) and Macrosiphum euphorbiae Thomas (potato aphid) were noted in very low numbers. Plutella xylostella Linnaeus (diamondback moth) caused shot-hole damage of the leaves. Further investigation into the role of insects as vectors and their role in pathogen pathways on this unique crop is needed. Key words: wasabi, Pemphigus populitransversus, Lipaphis pseudobrassicae, Plutella xylostella INTRODUCTION Wasabi (Wasabia japonica (Miq.) Matsumura) (Brassicaceae) is native to Japan, where it grows in shaded stream environments (Adachi 1987). It is currently cultivated in Asia, Australasia, and North America for its valuable rhizome, which is used as a freshly- ground condiment eaten with traditional Japanese meals (Hodge 1974; Chadwick et al. 1993). It can fetch US$150-300/kg on the international market. Although the rhizome is the primary plant part for culinary use, the leaves can also be used to flavour soups or salads (Chadwick et al. 1993). In B.C., there is an estimated 5-10 acres of commercial wasabi in production using hydroponic or similar systems in polyethylene tunnels (polyhouses) or traditional glass greenhouses. -
Cabbage Production in West Africa and IPM with a Focus on Plant-Based Extracts and a Complementary Worldwide Vision
plants Review Cabbage Production in West Africa and IPM with a Focus on Plant-Based Extracts and a Complementary Worldwide Vision Abla Déla Mondédji 1,2,*, Pierre Silvie 2,3,4 , Wolali Seth Nyamador 1, Pierre Martin 2,4 , Lakpo Koku Agboyi 5, Komina Amévoin 1, Guillaume Koffivi Ketoh 1 and Isabelle Adolé Glitho 1 1 Laboratoire d’Ecologie et d’Ecotoxicologie, Faculté des Sciences, Université de Lomé, Lomé 1 01B.P. 1515, Togo; [email protected] (W.S.N.); [email protected] (K.A.); [email protected] (G.K.K.); [email protected] (I.A.G.) 2 CIRAD, Agroécologie et Intensification Durable Des Cultures Annuelles (AIDA), 34398 Montpellier, France; [email protected] (P.S.); [email protected] (P.M.) 3 Institut de Recherche Pour le Développement, UMR IPME, 34AA001 Montpellier, France 4 AIDA, CIRAD, Montpellier University, CEDEX 05, 34398 Montpellier, France 5 CABI West Africa, PO Box CT 8630, Cantonments, Accra GA 0376800, Ghana; [email protected] * Correspondence: [email protected]; Tel.: +228-90109317 Abstract: In urban and peri-urban areas in West Africa, the cabbage Brassica oleracea L. (Brassicaceae) is protected using repeated high doses of synthetic insecticides. After a brief description of available IPM components, this paper presents a literature review focused on the botanical extracts that have been experimented with at the laboratory or in the field in West Africa against major cabbage pests. The literature reviewed mentions 19 plant species from 12 families used for cabbage protection in the subregion. The species most used are Azadirachta indica, Capsicum frutescens, Ocimum gratissimum Citation: Mondédji, A.D.; Silvie, P.; and Ricinus communis. -
Species Identification of Aphids (Insecta: Hemiptera: Aphididae) Through DNA Barcodes
Molecular Ecology Resources (2008) 8, 1189–1201 doi: 10.1111/j.1755-0998.2008.02297.x DNABlackwell Publishing Ltd BARCODING Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes R. G. FOOTTIT,* H. E. L. MAW,* C. D. VON DOHLEN† and P. D. N. HEBERT‡ *National Environmental Health Program, Invertebrate Biodiversity, Agriculture and Agri-Food Canada, K. W. Neatby Bldg., 960 Carling Ave., Ottawa, ON, Canada K1A 0C6, †Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA, ‡Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1 Abstract A 658-bp fragment of mitochondrial DNA from the 5′ region of the mitochondrial cytochrome c oxidase 1 (COI) gene has been adopted as the standard DNA barcode region for animal life. In this study, we test its effectiveness in the discrimination of over 300 species of aphids from more than 130 genera. Most (96%) species were well differentiated, and sequence variation within species was low, averaging just 0.2%. Despite the complex life cycles and parthenogenetic reproduction of aphids, DNA barcodes are an effective tool for identification. Keywords: Aphididae, COI, DNA barcoding, mitochondrial DNA, parthenogenesis, species identification Received 28 December 2007; revision accepted 3 June 2008 of numerous plant diseases (Eastop 1977; Harrewijn & Introduction Minks 1987; Blackman & Eastop 2000; Harrington & van The aphids (Insecta: Hemiptera: Aphididae) and related Emden 2007). Aphids are also an important invasive risk families Adelgidae and Phylloxeridae are a group of because their winged forms are easily dispersed by wind approximately 5000 species of small, soft-bodied insects that and because feeding aphids are readily transported with feed on plant phloem using piercing/sucking mouthparts. -
Toxicity of Insecticides and Miticides to Natural Enemies in Australian Grains: a Review
insects Review Toxicity of Insecticides and Miticides to Natural Enemies in Australian Grains: A Review Kathy Overton 1,*, Ary A. Hoffmann 2 , Olivia L. Reynolds 1 and Paul A. Umina 1,2 1 Cesar Australia, 293 Royal Parade, Parkville, VIC 3052, Australia; [email protected] (O.L.R.); [email protected] (P.A.U.) 2 Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3052, Australia; [email protected] * Correspondence: [email protected] Simple Summary: Controlling invertebrate pests in crop fields using chemicals has been the main management strategy within the Australian grains industry for decades. However, chemical use can have unintended effects on natural enemies, which can play a key role in suppressing and controlling pest outbreaks within crops. We undertook a literature review of studies that have conducted chemical toxicity testing against arthropod natural enemies relevant to the Australian grains industry to examine trends and highlight research gaps and priorities. Most toxicity trials have been conducted in the laboratory, with few at larger, and hence, industry-relevant scales. Researchers have used a variety of methods when conducting toxicity testing, making it difficult to compare within and across different species of natural enemies. Furthermore, we found many gaps in testing, leading to unknown toxicity effects for several key natural enemies, some of which are economically important predators and parasitoids. Through our review, we make several key recommendations for future areas of research that could arm farmers and their advisors with the knowledge they need to make informed decisions when it comes to controlling crop pests. -
BIN Overlap Confirms Transcontinental Distribution of Pest Aphids (Hemiptera: Aphididae)
RESEARCH ARTICLE BIN overlap confirms transcontinental distribution of pest aphids (Hemiptera: Aphididae) 1,2 3 1,4 Muhammad Tayyib NaseemID , Muhammad AshfaqID *, Arif Muhammad Khan , Akhtar Rasool1,5, Muhammad Asif1, Paul D. N. Hebert3 1 National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan, 2 Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan, 3 Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, 4 Department of Biotechnology, University of Sargodha, Sargodha, Pakistan, 5 Department of Zoology, University of Swat, Swat, Pakistan a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract DNA barcoding is highly effective for identifying specimens once a reference sequence library is available for the species assemblage targeted for analysis. Despite the great need OPEN ACCESS for an improved capacity to identify the insect pests of crops, the use of DNA barcoding is Citation: Naseem MT, Ashfaq M, Khan AM, Rasool constrained by the lack of a well-parameterized reference library. The current study begins A, Asif M, Hebert PDN (2019) BIN overlap confirms to address this limitation by developing a DNA barcode reference library for the pest aphids transcontinental distribution of pest aphids of Pakistan. It also examines the affinities of these species with conspecific populations (Hemiptera: Aphididae). PLoS ONE 14(12): from other geographic regions based on both conventional taxonomy and Barcode Index e0220426. https://doi.org/10.1371/journal. pone.0220426 Numbers (BINs). A total of 809 aphids were collected from a range of plant species at sites across Pakistan. Morphological study and DNA barcoding allowed 774 specimens to be Editor: Feng ZHANG, Nanjing Agricultural University, CHINA identified to one of 42 species while the others were placed to a genus or subfamily. -
Hemiptera: Heteroptera)
ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.vi.2010 Volume 50(1), pp. 33–44 ISSN 0374-1036 An annotated catalogue of the Iranian Nabidae (Hemiptera: Heteroptera) Hassan GHAHARI1), Rauno E. LINNAVUORI2), Pierre MOULET3) & Hadi OSTOVAN4) 1) Department of Agriculture, Islamic Azad University, Shahre Rey Branch, Tehran, Iran; e-mail: [email protected] 2) Saukkokuja 10, FIN-21220 Raisio, Finland; e-mail: rauno.linnavuori@kolumbus.fi 3) Museum Requien, 67 rue Joseph Vernet, F-84000 Avignon, France; e-mail: [email protected] 4) Department of Entomology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran; e-mail: [email protected] Abstract. The Iranian fauna of the Nabidae is summarized in this paper. In total, four genera (Alloeorhynchus Fieber, 1860, Himacerus Wolff, 1811, Nabis Lat- reille, 1802 and Prostemma Laporte, 1832), 22 species and subspecies are listed from Iran. Three of these species are new for the Iranian fauna: Nabis (Nabicula) fl avomarginatus Scholtz, 1847, Nabis (Nabis) rugosus (Linnaeus, 1758) and Prostemma carduelis Dohrn, 1858. Key words. Heteroptera, Nabidae, catalogue, Iran, Palaearctic Region Introduction Damsel bugs (Heteroptera: Nabidae) have a worldwide distribution and include approxi- mately 400 species in about 20 genera (KERZHNER 1981, 1996; KERZHNER & HENRY 2008). All known species are predators of adults and larvae of various stages and groups of insects, e.g., aphids, leafhoppers and lepidopteran eggs and young caterpillars. They may be commonly found on low herbaceous vegetation, shrubs and grasses (LATTIN 1989). They have not been used as biological control agents but are considered benefi cial in natural biological control. The classifi cation of the Nabidae is conjectural. -
The Hemiptera-Sternorrhyncha (Insecta) of Hong Kong, China—An Annotated Inventory Citing Voucher Specimens and Published Records
Zootaxa 2847: 1–122 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2847 The Hemiptera-Sternorrhyncha (Insecta) of Hong Kong, China—an annotated inventory citing voucher specimens and published records JON H. MARTIN1 & CLIVE S.K. LAU2 1Corresponding author, Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, U.K., e-mail [email protected] 2 Agriculture, Fisheries and Conservation Department, Cheung Sha Wan Road Government Offices, 303 Cheung Sha Wan Road, Kowloon, Hong Kong, e-mail [email protected] Magnolia Press Auckland, New Zealand Accepted by C. Hodgson: 17 Jan 2011; published: 29 Apr. 2011 JON H. MARTIN & CLIVE S.K. LAU The Hemiptera-Sternorrhyncha (Insecta) of Hong Kong, China—an annotated inventory citing voucher specimens and published records (Zootaxa 2847) 122 pp.; 30 cm. 29 Apr. 2011 ISBN 978-1-86977-705-0 (paperback) ISBN 978-1-86977-706-7 (Online edition) FIRST PUBLISHED IN 2011 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2011 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. -
The Nabidae (Insecta, Hemiptera, Heteroptera) of Argentina
A peer-reviewed open-access journal ZooKeys 333: 1–30 (2013) The Nabidae( Insecta, Hemiptera, Heteroptera) of Argentina 1 doi: 10.3897/zookeys.333.5084 RESEARCH articLE www.zookeys.org Launched to accelerate biodiversity research The Nabidae (Insecta, Hemiptera, Heteroptera) of Argentina Marcela Cornelis1, María C. Coscarón2 1 Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Uruguay 151 L6300CLB, Santa Rosa, La Pampa. Argentina 2 Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología. Paseo del Bosque s/n 1900, La Plata, Buenos Aires. Argentina Corresponding author: Marcela Cornelis ([email protected]), María C. Coscarón ([email protected]) Academic editor: Thomas Henry | Received 8 March 2013 | Accepted 14 August 2013 | Published 20 September 2013 Citation: Cornelis M, Coscarón MC (2013) The Nabidae (Insecta, Hemiptera, Heteroptera) of Argentina. ZooKeys 333: 1–30. doi: 10.3897/zookeys.333.5084 Abstract In Argentina, five genera and 14 species are recorded in the subfamilies Prostemmatinae and Nabinae: Hoplistoscelis sordidus Reuter, Lasiomerus constrictus Champion, Metatropiphorus alvarengai Reuter, Nabis argentinus Meyer-Dür, Nabis (Tropiconabis) capsiformis Germar, Nabis faminei Stål, Nabis paranensis Har- ris, Nabis punctipennis Blanchard, Nabis roripes Stål, Nabis setricus Harris, Nabis tandilensis Berg, Pagasa (Pagasa) costalis Reuter, Pagasa (Lampropagasa) fuscipennis Reuter and Pagasa (Pagasa) signatipennis Reuter. Keywords Nabidae, key, Argentina, taxonomy, distribution Introduction The Nabidae, often called damsel bugs, are a small group of predatory insects of vari- ous shapes and colours, ranging from 5 to 15 mm. In the Neotropical catalogue, Volpi and Coscarón (2010) and Coscarón and Volpi (2013) provided a summary of the classification of the group and an exhaustive intro- duction to the literature. -
David Stasek Dissertation Final
MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of David Jon Stasek Candidate for the Degree: Doctor of Philosophy ____________________________________________ Director Thomas O. Crist ____________________________________________ Reader Ann L. Rypstra ____________________________________________ Reader Bruce A. Steinly ____________________________________________ Michael J. Vanni ____________________________________________ Graduate School Representative Martin Henry H. Stevens ABSTRACT POPULATION RESPONSES OF A GENERALIST INSECT PREDATOR AND ITS PREY TO PATCH CHARACTERISTICS IN FORAGE CROPS by David Jon Stasek There is a large body of literature documenting the effect of habitat features on populations of single species, but there are fewer studies documenting the effects of patch characteristics on community and ecosystem processes. Specifically, there are few studies that document the effect of dispersal among habitat patches on species interactions. Using an experimental field of forage crops, I assessed the population response of a generalist predatory insect, the damsel bug ( Nabis spp.), to prey density and the patch characteristics of size, matrix type, and habitat fragmentation. I then determined the functional response and preference of the damsel bug to two common leafhopper species in the forage-crop system: the constricted leafhopper ( Agallia constricta ) and the clover leafhopper ( Ceratagallia agricola ). Finally, I studied how dispersal among habitat patches and leafhopper and damsel bug density affected the survival of A. constricta using connected experimental mesocosms. In the experimental field, damsel bugs had higher abundances in large patches and patches surrounded by an orchard-grass matrix. Both damsel bug nymphs and adults aggregated in patches with high densities of constricted leafhoppers and aphids. There was no effect of habitat fragmentation.