United States Patent Office

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office 2,983,577 United States Patent Office Patented May 9, 1961 2 Thus, contrary to the teachings of the prior art, I have found that kernite can be prepared synthetically from 2.983,577 borax providing certain conditions are maintained. First, an aqueous solution must be used which contains at least METHOD OF PRODUCING SODUMTETRA 28.0% by weight of borax, and secondly, the temperature BoRATE TETRAHYDRATE of the borax solution must be at a temperature of at least Vincent Morgan, Boron, Calif., assignor to United States 57.59 C. Borax & Chemical Corporation, Los Angeles, Calify As stated, kernite must be crystallized from solutions a corporation of Nevada containing at least 28% NaBO-10H2O. This means No Drawing. Filed Apr. 15, 1958, Ser. No. 728,545 i., v 10 that kernite can be crystallized from a 28% solution up to and including a 100% solution of the 10 mol borax. 2 Claims. (C. 23-59). If 10 mol borax is dissolved in its own water of hydra tion this solution can be used for the crystallization of kernite. This invention relates as indicated to a method for 15 According to the process of the present invention the producing sodium tetraborate tetrahydrate and has more 4 mol hydrate of sodium tetraborate may be prepared particular reference to a method for synthetically pro by first forming the 5 mole hydrate and then redissolving ducing kernite (NaBO'4H2O) from water solution at the 5 mole, hydrate in a solution saturated with respect atmospheric pressure. to the 5 mol hydrate and then crystallizing out the 4 mol The mineral kernite (NaBO'4H2O) is known to be 20 hydrate, or it may be crystallized directly from aqueous naturally occurring, and at one time was the major borate solution without having the 5 mol present at any time. ore used in the production of borax, boric acid, etc. So that the present invention may be more clearly However, while kernite was used to produce refined borax understood, the following examples are offered by way (NaBO-10H2O), refined substantially pure crystals of of illustration. kernite (NaBO'4H2O) have never been produced. 25 - Over the years the kernite deposits have been used less and less and the present principal borate source is now A 60% borax solution was made by heating 300 grams borax (NaBO 10H2O). With the increasing interest of NaBO-10HO with 200 ml. of H2O in a flask. The of supplying a slowly soluble borate material for agricul flask was fitted with a condenser and heated for about tural purposes, a new interest has again been aroused in 30 18 hours at 100 C. kernite. Besides the advantage of slow water solubility, After about 18 hours the 5 mol hydrate, NaBO'5HO kernite has the additional advantages of greater density crystallized from solution. The mixture was then seeded and of only containing 4 mols of water which is quite with about 0.10 gram of natural kernite and the heating obviously a shipping advantage over 10 mol or even continued. 5 Inol borax. 35 At the end of about 62 hours' total heating time a Many futile attempts have been made to synthetically large crystalline mass was formed at the bottom of the produce kernite from borax at atmospheric pressure. flask. The crystals were filtered, washed with hot water The only known synthesis of kernite was accomplished and isopropyl alcohol, and then air-dried. ..., under laboratory conditions by the use of high tempera The crystals were chemically, microscopically analyzed, tures and pressures over long periods of time. Even with 40 and additionally an X-ray powder pattern was made. the foregoing ideal laboratory conditions the resultant The analysis provided conclusively that the product of product contained some 5 mol borax. the aforegoing example was substantially pure crystals The main reason that NaBO-10HO ore is used in of kernite. stead of kernite ore is that kernite is so insoluble and difficult to refine. High temperature and autoclaves are 300 grams of NaBO-10H2O was put into a flask necessary in the dissolution of kernite, whereas relatively 45 with 200 ml, of HO. The flask was fitted with a con simple straightforward hot water solution is all that is denser and stirrer, which turned at about 170 rp.m. necessary to dissolve borax ore. Thus it would be ex When all the borax was put in solution the temperature tremely desirable if kernite could be produced syntheti was maintained at about 84 C. cally at will from borax ore using the same plane equip 50 After 6 hours the solution was seeded with about 0.05 ment. gram of natural kernite. It is therefore the principal object of the present inven At about 23 hours' total elapsed time the solid phase tion to provide a method for producing a substantially consisted almost entirely of 5 mol hydrate. After 48 pure synthetic kernite (NaBO 4H2O) from borax ore. hours' total elapsed time the solid phase was examined A further object of this invention is to provide a meth 55 optically and found to be substantially pure kernite. od for producing kernite at atmospheric pressure. A chemical analysis revealed the following results: Other objects will become apparent as the description proceeds. Percent found Theoretical To the accomplishments of the foregoing and related in Sample 4 no ends, the invention then comprises the features herein after fully described and particularly pointed out in the 50.84 50,96 claims, the following description setting forth in detail 22.67 22.68 certain illustrative embodiments of the invention, these being indicative, however, of but a few of the ways in which the principle of the invention may be employed. 65 Broadly stated the present invention comprises the A solution of 10 mol borax in water was prepared method of synthetically producing kernite which com which assayed 55% borax. The solution was seeded with prises preparing an aqueous solution containing at least about 0.10 gram of natural kernite and the flask was 28.0% by weight of NaBO-10H2O, heating the solu equipped with a condenser and stirrer. The flask was tion to at least 57.5 C., seeding said solution with a 70 heated and maintained at a temperature of 91. C. Sam minor amount of kernite crystals and continuing the heat ples were studied at 18 hours and 25 hours' total elapsed ing until kernite crystallizes from said solution. time. No crystals of 5 mol borax were found in the 2,983,577. 3 4. solution. After. 67 hours the solution was filtered and the following claims or the equivalent of such be, em. the crystals washed and dried. ployed. A chemical analysis gave the following results: I, therefore, particularly point out and distinctly claim as my invention: Percent found Theoretical s 1. The method of synthetically producing kernite which in Sample, 4 mol comprises preparing an aqueous: solution containing at least 28.0% by weight of NaBO 10HO, heating the 50.94 - 50.96 solution under atmospheric pressure in a temperature 22.70. 22.68 range of from 57.5° C. to about 100° C., seeding said The foregoing experiments illustrate.o that the 4 mol 10 solution with a minor amount of kernite crystals and con hydrate of sodium tetraborate may be prepared directly tinuing the heating until conversion of the: from the 10 mol borax or it can be prepared from the NaBO, •1 OHO 10 mol borax by first going through the 5 mol borax to the tetrahydrate form is substantially complete and stage. - . 5 the desired synthetic kernite crystallizes out of said solu IV tion. A 300 gram portion of slightly damp 10 mol borax 2. The method of synthetically producing kernite which containing 96.2%. NaBO'10H2O, was heated in a flask comprises preparing an aqueous; solution containing at (without the addition of water) fitted with a stirrer and least 28% by weight of Na2B4O7:10H2O, heating said: a condenser. The temperature was maintained at ap-20 Solution under atmospheric pressure in a temperature. proximately 98 C. The mixture was seeded with a range of from 57.5 C, to about 100°C. until minor amount (0.10 gram) of natural kernite, and heat ing continued while stirring. NaBO'5HO After 24-hours the contents of the flask were examined crystallizes out of solution, seeding the mixture with a and found to consist of a mixture of the 4. and 5 mol. 2 minor amount of NagB4O4H2O, and continuing said. hydrates, and was of a pasty consistency. Heating was heating until the NagBO-5H2Oredissolves and continued until a total of 50 hours had elapsed, when - NaBO'4H.O. the contents of the flask were removed, washed with hot water and isopropyl alcohol, and dried at room tempera crystallizes out of solution. ture. Microscopic (optical) examination, showed the re-. 30 References Cited in the file of this patent covered material to be substantially pure kernite. An UNITED STATES PATENTs. analysis of the recovered material is given below: 2,032,388. Allen ------------------ Mar. 3, 1936 Percent found Theoretical 2,738,254 Suhr ------------------ Mar: 13, 1956 in Sample. 4 mol 35 OTHER REFERENCES 50,84 50.96 "Thorpe's Dictionary of Applied. Chemistry," vol. 2, Na2O. 22.77. 22.68 4th ed., 1938, page 49, Longmans, Green and Co., Ne York, N.Y. Other modes of applying the principle of the invention 40 "Crystallization of Borax," by Donald E. Garrett and may be employed, change being made as regards the Gerhard P. Rosenbaum, Ind; and Eng. Chem, November details described, provided the features stated in any of 1958, vol.
Recommended publications
  • Midterm 2 Examination Key
    GLY4200C Name 90 points October 26, 2011 16 took exam - Numbers to the left of the question number in red are the number of incorrect responses. Instructor comments are in blue. Florida Atlantic University MINERALOGY -- MIDTERM 2 EXAMINATION KEY True-False - Print the letter T or F in the blank to indicate if each of the following statements is true or false. Illegible answers are wrong. (1 point each) 0 T 1. All mathematical groups, including crystallographic point and space groups, must contain an identity operation. 2 F 2. All pyramidal forms are closed. 11 F 3. As nuclei grow, their surface area/volume ratio increases. 1 F 4. Growth twins are always penetration twins. 2 T 5. Low-spin Fe3+ is smaller than high-spin Fe3+. 0 T 6.As pressure increases, minerals transform to denser structures, with atoms packed more closely together 1 T 7. Although silicon normally has CN = IV, in the lower mantle the pressures are so great that the CN of silicon is VI. 2 F 8. If two ions have the same charge, the larger ion will enter a crystal structure preferentially. 2 T 9. Crystal classes are defined by the thirty-two possible point groups. 11 F 10. Possible symmetry operations include rotation axes, mirror planes, and an inversion center. What is wrong with this statement? 0 T 11. Faces composed of all anions or all cations are very high energy. They attract ions of opposite sign, grow rapidly, and may grow themselves out of existence. 1 T 12. The calculation of the zone axis is done using the same method as a vector cross- product.
    [Show full text]
  • Economic Diversification Plan for East Kern County
    FEBRUARY 2017 ECONOMIC DIVERSIFICATION PLAN EAST KERN COUNTY, CA KERN COUNTY ACKNOWLEDGEMENTS TIP Strategies would like to thank the many individuals who participated in the creation of this Economic Diversification Plan. We are especially grateful to the members of the East Kern Economic Alliance who contributed their time and input throughout this planning process. Their expertise helped us gain a deep understanding of the region’s range of assets and opportunities. We are also thankful for the US Department of Defense Office of Economic Adjustment for their visionary investments and support which helped make this project a reality. We also want to thank the leadership and staff of Kern County and the Kern EDC for their essential support, guidance, and feedback during the development of this plan. EAST KERN ECONOMIC ALLIANCE KEY STAKEHOLDERS Richard Chapman, President & CEO Jennifer Wood, Mayor Gary Parsons, Economic Kern Economic Development California City Development Manager Corporation City of Ridgecrest Karina Drees, CEO and General Bill Deaver, Michelle Vance, Economic Manager Edwards Community Alliance Development Coordinator Mojave Air & Spaceport City of Tehachapi Kimberly Maevers, President Kelly Bearden, Director Ryan Rush, Field Representative Greater Antelope Valley Economic CSU-Bakersfield SBDC Kern County Board of Supervisors, Alliance 2nd District KERN COUNTY PROJECT TEAM Supervisor Zach Scrivner, Chairman of the Kern County Board of Supervisors & 2nd District Supervisor Teresa Hitchcock, Assistant County Administrative
    [Show full text]
  • THE MAIN-GROUP ELEMENTS Atomic Properties
    THE MAIN-GROUP ELEMENTS Atomic Properties Properties of elements is based valence-shell electron configurations. Five atomic properties: 1. atomic radius 2. ionization energy 3. electron affinity 4. electronegativity 5. polarizability Atomic Size Adding more valence levels increases the distance from the electrons to the nucleus, it also decrease the effect the nucleus has on the outer electrons. decreases across a period Effective Nuclear Force increases down a group Valence levels Ionization Energy Ionization energy: the energy required to remove the most loosely held electron from an atom in the gaseous state. Size of Atom Ionization Energy Smaller size Higher ionization energy Electron Affinity The electron affinity is a release of energy to form an anion. Ionization Energy Electron Affinity Atoms with higher effective nuclear charges release more energy. Electronegativity Electronegativity is the tendency of an atom to attract electrons to itself. Ionization Energy Electronegativity Atoms with a greater effective nuclear charge have a stronger pull on bonding electrons. Large differences in electronegativity typically form ionic bonds and small differences from covalent bonds. Polarizability Polarizability is the ease an atoms electron cloud can be distorted. Size of Atom Polarizability Electron-rich, heavier atoms are easily polarized. High polarizing power atom-are small sized, highly charged atoms. Bonding Trends Elements in period 2 strictly follow the octet rule; carbon forms four bonds. Elements in Period 3 and higher periods exceed the octet. They reach higher oxidation states because they can access empty d-orbitals. Also, larger atoms can simply make more bonds to more neighbors . Group 1A: Alkali Metals The chemical properties of alkali metals are striking similar.
    [Show full text]
  • Origin of the Kramer Borax Deposit, Boron, CA
    A 50 year retrospective 1 OUTLINE 1. A brief history of borax 2. Kramer borax deposit a) Setting and Discovery b) Mineralogy of sedimentary borates c) Stratigraphy and Lithology d) Petrography and implications for geologic setting e) Solubility studies and modeling lake characteristics f) Comparable modern analogues 3. New evidence a) Turkish and Argentinian deposits b) Boron isotopic studies 4. Broader questions – Source water controls (thermal springs), B-As-Sb association, igneous-metamorphic controls on boron in thermal waters 2 Why give this talk? 1. Old (but rusty) material to me, new to most of you 2. Desire to see if ideas have changed in the past 50+ years. 3. Citation of my work even today suggests I did something right. 4. Wish to compare Kramer work with evidence from newer borate deposits in Turkey and South America 5. A wish to evaluate these ideas in light of new evidence using tools that weren’t available in 1964 6. A chance to ponder broader questions about boron’s geochemical cycle. 7. Work done so long ago that if you ask penetrating questions I can always plead a “senior moment” 3 What was unique about my research on the Kramer deposits? • Used a combination of geological tools (Field AND lab work – rare in 1964) • Stratigraphy, Petrography, and XRD based mineralogy • Experimental solubility studies of effects of other salts on Na-borate solubilities • Field studies of other possible borate environments (Borax Lake, Teels and Columbus Marsh, NV, Death Valley, Searles Lake) • Benefits of discussions with an all-star support team with similar interests (Mary Clark, Blair Jones, G.I.
    [Show full text]
  • Temperature and Relative Humidity (RH) Using Saturated Salt Solutions
    THERMODYNAMICS OF 1:2 SODIUM BORATE MINERALS By LAURA SUZANNE RUHL A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2008 1 © 2008 Laura Suzanne Ruhl 2 To my family, who have kept my inquisitive spirit and thirst for knowledge alive, always encouraging me, and giving me strength. 3 ACKNOWLEDGMENTS First and foremost, I thank the chair of my committee, Phil Neuhoff, for all of his time and all of the knowledge he has bestowed upon me throughout my time as his student. I would also like to thank my committee members, Ellen Martin and Guerry McClellan, for their time and support in my academic endeavors. I thank Jie Wang and Gökce Atalan for their help in the lab, for many scientific discussions and support. I also thank Derrick Newkirk for his unending encouragement and support. Major thanks go to my parents and siblings for always being there to help in any endeavor and their never-ending support and love. Lastly, I appreciate all of the never-ending encouragement from my friends and family. The National Science Foundation funded this project. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................6 LIST OF FIGURES .........................................................................................................................7
    [Show full text]
  • Kernite, a New Sodium Borate ::
    THE AMERICAN MINERA LOGIST KERNITE, A NEW SODIUM BORATE :: .:. War.rBuan T. ScnRr,rrin, U. S. GeologicalSaraey, Washingtoh D. C. The new mineral kernite, Na2B4OT'4HsO,was receivedthrough Hoyt S. Gale of Los Angeles, California, and is reported to occur in quantity in the southeast corner of Kern County, California, in the -The Kratner boron district. name kernite is proposed after the county name. The exact locality is about 4 miles north of Rich, a station on the Santa Fe R. R. and about 25 miles directly east of Mojave, being in Sec.22, T. 11 N., R. 8W. The mineral was discovered in exploratory borings at a depth of several hundred feet. Ulexite and possibly colemanite are associated rninerals. The geology of this field has been described by Galel and Noble.z The writer has a cleavage piece of kernite 2 by 2-l/2 by 6 inches. Apparently single crystals are of large size though no terminated crystals have so far been seen. The mineral is colorless to white, transparent, vitreous to pearly in luster, and greatly resembles some specimens of massive cleavable selenite. Ortho- rhombic. Perfect prismatic cleavage, rtuAm:71" 08'. Readily breaksinto long thin fibersandlaths. H:about 3. Sp. Gr.: 1.953. Optically probably negative, although 2V is nearly 90o and sign uncertain. Elongation (c axis) positive. Axial plane is parallel to elongation. a:I.454, 0:I.472, t:1.488. Before the blowpipe it swells considerably and finally fuses to a clear glass. Very slowly soluble in cold water, the clear cleavage pieces first be- coming opaque white due to abundant etch figures.
    [Show full text]
  • Diamond Dan's Mineral Names Dictionary
    A Dictionary of Mineral Names By Darryl Powell Mineral Names What do they mean? Who created them? What can I learn from them? This mineral diction‐ ary is unique because it is illustrated, both with mineral drawings as well as pictures of people and places after which some minerals are named. The people pictured on this page have all made a con‐ tribution to what is formally called “mineral nomenclature.” Keep reading and you will discover who they are and what they did. In 1995, Diamond Dan Publications pub‐ lished its first full book, “A Mineral Collector’s Guide to Common Mineral Names: Their Ori‐ gins & Meanings.” Now it is twenty years later. What you will discover in this issue and in the March issue is a re‐ vised and improved version of this book. This Mineral Names Dictionary contains mineral names that the average mineral collector will encounter while collecting minerals, attending shows and visiting museum displays. In addition to the most common min‐ eral names, there are some unofficial names which you will still find on labels. Each mineral name has a story to tell or a lesson to teach. If you wanted to take the time, each name could become a topic to study. Armalcolite, for example, could quickly be‐ come a study of a mineral, first discovered on the moon, and brought back to earth by the astronauts Armstrong, Aldrin and Collins (do you see parts of their names in this mineral name?) This could lead you to a study of American astronauts landing on the moon, what it took to get there and what we discovered by landing on the moon.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Group
    MINERALS SORTED BY MINERAL GROUP Most minerals are chemically classified as native elements, sulfides, sulfates, oxides, silicates, carbonates, phosphates, halides, nitrates, tungstates, molybdates, arsenates, or vanadates. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). NATIVE ELEMENTS (DIAMOND, SULFUR, GOLD) Native elements are minerals composed of only one element, such as copper, sulfur, gold, silver, and diamond. They are not common in Kentucky, but are mentioned because of their appeal to collectors. DIAMOND Crystal system: isometric. Cleavage: perfect octahedral. Color: colorless, pale shades of yellow, orange, or blue. Hardness: 10. Specific gravity: 3.5. Uses: jewelry, saws, polishing equipment. Diamond, the hardest of any naturally formed mineral, is also highly refractive, causing light to be split into a spectrum of colors commonly called play of colors. Because of its high specific gravity, it is easily concentrated in alluvial gravels, where it can be mined. This is one of the main mining methods used in South Africa, where most of the world's diamonds originate. The source rock of diamonds is the igneous rock kimberlite, also referred to as diamond pipe. A nongem variety of diamond is called bort. Kentucky has kimberlites in Elliott County in eastern Kentucky and Crittenden and Livingston Counties in western Kentucky, but no diamonds have ever been discovered in or authenticated from these rocks. A diamond was found in Adair County, but it was determined to have been brought in from somewhere else. SULFUR Crystal system: orthorhombic. Fracture: uneven. Color: yellow. Hardness 1 to 2.
    [Show full text]
  • Investigation of Kinetic Parameters of Dehydrated Ulexite Mineral in Boric Acide Solution
    Araştırma Makalesi / Research Article Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech. 8(2): 149-157, 2018 Investigation of Kinetic Parameters of Dehydrated Ulexite Mineral in Boric Acide Solution Mehmet Harbi ÇALIMLI1, Mehmet TUNÇ2 ABSTRACT: Ulexite used in the production of boron compounds is an important mineral. In this work, the kinetic parameters of dehydrated ulexite mineral and orginal ulexite in boric acid solution were investigated. According to the DTA diagram, it was seen that the mineral did not change the structure until around 170 oC. It was observed that the dissolution kinetics increased to this temperature. In the SEM images, it was observed that the number of pores in the mineral was increased until 170 oC and afterwards number of pores was decreased. The kinetic parameters of the original ulexite were evaluated. Study indicates that the dissolution kinetics model in the boric acide was found as below; -1 -1,013 0,4579 -1 -0650 0,0545 -2649,12 -1 1-(1-X) = [2.02(Rp) [CA]0 (S.L ) (M.S) e T ].t Keywords: Boric acide, dissolution rate, ulexite, kinetic parameters Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi Iğdır Iğdır University Journal of the Institute of Science and Technology Iğdır University Journal of the Institute Science and Technology Hidrate Edimiş Uleksit Mineralinin Borik Asit Çözeltisindeki Kinetik Parametrelerinin İncelenmesi ÖZET: Bor bileşiklerinin üretiminde kullanılan Uleksit çok önemli bir bor mineralidir. Bu çalışmada hidrate edilmiş uleksit minerali ve orginal mineralinin borik asit çözeltisindeki kinetik parametreleri incelenmiştir. DTA diyagramına göre 170 oC’ye kadar mineral yapısında değişim olmadığı görülmüştür.
    [Show full text]
  • Chapter 3 Molecular Shape and Structure
    2009년도 제2학기 화 학 2 담당교수: 신국조 Textbook: P. Atkins / L. Jones, Chemical Principles, 4th ed., Freeman (2008) Chapter 14 CHAPTER 14 THE ELEMENTS: THE FIRST FOUR MAIN GROUPS Beginning of the descriptive chemistry ! ▶ Nanotechnology Æ 1 ~ 100 nm particles Æ Biosensor, Microscopic computers, Artificial bones, Light weight, strong materials Fig. 14.1 The relative abundances of the principal elements. PREODIC TRENDS Congener (동족원소) ex. Li, Na, K, Rb, Cs, Fr 14.1 Atomic Properties Fig. 14.2 Atomic radius Fig. 14.3 Ionization energy Fig. 14.4 Electronegativity Fig. 14.5 Polarizability 14.2 Bonding Trends ▶ Multiple bond formation Æ Depends on the size of atomic radii Ex. Period 2 elements form π -bond (effective overlap of p-orbitals) contrary to Period 3 and heavier elements Fig. 14.6 Overlapping of p-orbitals: (a) Period 3 and heavier elements. (b) Period 2 elements (π -bond) ▶ Periodic trend in bonding of main-group elements Æ Binary hydrides: Formulas directly related to the group number showing typical valences of the elements CH4 (Group 14/IV), NH3 (Group 15/V), H2O (Group 16/VI), HF (Group 17/VII) Fig. 14.7 Chemical formulas of hydrides vs. valences 1 2009년도 제2학기 화 학 2 담당교수: 신국조 Textbook: P. Atkins / L. Jones, Chemical Principles, 4th ed., Freeman (2008) Chapter 14 ▶ Binary hydrides Saline hydrides (이온성 수소화물): s-block elements, white, high m.p., crystals, portable fuel, H– ∆ 2 K(sg) +⎯H2 ( ) ⎯→2 KH(s) Metallic hydrides: d-block elements, black, conducting powder, portable fuel ∆ 2 Cu(sg) +⎯H2 ( ) ⎯→2 CuH(s) Molecular hydrides: non-metal elements, low melting volatile Brønsted acid NH3, HX, hydrocarbons Fig.
    [Show full text]
  • Kernite from Tincalayu, Salta, Argentina
    American Mineralogist, Volume 58, pages 308'313, 1973 Kernitefrom Tincalayu,Salta, Argentina C. S. Hunrsut, Jn. D epartment ol Geological Sciences, Hansmd (Jniuersity, Cambridge, Massochusetts02138r, L. F. AnrsrAn^crN ObseraatorioNacional De Fisica Cosmica, San Miguel, Pcia. B. A., Argentina AND R. C. Enu U.S. Geological Suroey, Menlo Park, Calilornia 940252 Abshact The Tincalayu mine (Salta, Argentina) is essentially a monomineralic deposit of borax partly transformed to kernite with minor amounts of several rare borates. The deposit is interpreted as an old playa accumulation, buried, metamorphosed and deformed by folding and faulting. It is intercalated with clastic continental sediments of Pliocene or post-Pliocene age. The principal explored lens is more than 30 m thick and approximately 100 m in diameter. Kernite crystals are clear, transparent and well developed; many exceed 30 cm in length and l0 crn across; no terminal faces were observed. X-ray powder data are given with the orienta- - - -+ tion: c > a, p 2 9O'.The spacegroup is Ph/c; a 7.016 ! 0.001A, b 9.152 0.0024; - - c = 15.678 -{- 0.002A. p - 108"52.8' !. o.7'; cell volume 952.6 -r 0.2A3; Z 4. a:b:c 0.7666:l:1.7131. Cleavage:{100} and {00I} perfect, {TOZ} poor. Optically biaxial (-);a: 1.545,P-1.473,.y-1.488-F0.001(Nalight);2V-80",r)o(slight);XAc-70'30', Z - b.Density (calc) 1.905 + 0.001 g/cma, specificgravity (meas) 1.906 = 0.003. A chemical analysisby wet methods gives wt percent Na,O 23.1, B,O, 51'0, and H'O 26.1 (total 100.2).
    [Show full text]