Phase Transformations in Amorphous Solids

Total Page:16

File Type:pdf, Size:1020Kb

Phase Transformations in Amorphous Solids Phase Transformations in Amorphous Solids L. Stoch and I. Waclawska University of Mining and Metallurgy 30-059 Cracow, Poland ABSTRACT exactly defined, and it comprises substances of different ordering degree of internal structure, varying micro- This paper presents the results of investigations of and macrohomogeneity and varying origin. amorphous substances formed as a result of thermal Amorphous substances are formed as a result of decomposition of inorganic crystalline solid bodies by different processes. Gels are obtained through preci- way of their structural rearrangement in a solid phase pitation from solutions in which the parent compound as an order-disorder transformation. The investigations is in a state of molecular dispersion. Glasses are most were conducted on model substances represented by often obtained by supercooling a liquid, but also by hydrated borates of alkalis and alkaline earths as well means of the deposition from a vapour and by as silica-rich zeolites. We examined the glass transition sputtering in a vacuum system. phenomenon as a mode of cancellation of internal The amorphous state can also be formed through stresses induced by the state of structure randomness, destruction of a crystalline structure under the influence and next the recrystallization process of thermally of energy supplied from the outside in various forms, amorphized substances. Recrystallization processes such as heat, pressure or radiation. proceed usually in several stages with their structural The degree of the randomness and inhomogeneity mechanism changing with temperature. of the internal structure of amorphous substances The formation of the amorphous states and their depends to a high extent on the degree of the dispersion recrystallization represent a cycle of phase transition of the primary substance. The highest homogeneity is realised by means of continuous rearrangement of the demonstrated, for example, by glass obtained by con- internal structure. densation of vapours or from solutions (in the sol-gel These processes may be utilized as an alternate method) when the parent substance was in the state of method of obtaining vitreous and glass-ceramic molecular dispersion. materials of various relations between the crystalline Amorphous substances formed through destruction phase and the glassy matrix. of the crystalline structure of the precursor in a solid state, at low temperature, preserve to a considerable degree the elements of the primary structure. An 1. INTRODUCTION example here are the metamictic minerals rendered amorphous by radiation. Solid bodies may occur in two forms differing in Depending on the mode of their formation and their internal structure, i.e. as crystalline substances of chemical composition, the degree of randomness of the ordered internal structure, and as amorphous bodies of internal structure of a solid body may vary. It may random structure. The amorphous state has not yet been overcome only the long range ordering, manifested by 181 Vol. 13, No. 3, 1994 Phase Transformation in Amorphous Solids the geometry of the crystal lattice of the given amorphous state, on the other hand, does not introduce substance, i.e. long range order with preserved medium any essential changes in the nature of chemical bonds, range order, for example, such as the assemblage of or such changes are relatively small. The coordination coordination polyhedra. Examples are the amorphous number of some cations, however, is occasionally substances formed by thermal decomposition of changed. These factors, together with the degree of inorganic polymers (silicates, borates, phosphates) and randomness of the internal structure, determine the certain glasses of complex composition. differences in the properties of the amorphous and In some amorphous substances there occurs only crystalline substances. short-range ordering limited to the particular coordina- The subject of the present study is the chemical and tion polyhedra. Glasses of simple composition are structural transformations occurring in amorphous examples of this. inorganic polymers obtained by heat treatment of The randomness may also extend to a first coordina- crystalline substances. tion zone, i.e. the nearest surroundings of atoms As already shown earlier 111, it is possible to obtain forming the amorphous structure. This takes place in an amorphous substance by heat treatment in cases the case of elements in a glassy form or certain glassy where the destruction rate of the primary crystalline metals. structure is greater than the recrystallization rate of the It has been assumed in this paper that the internal amorphous matrix which is then formed. structure order in the amorphous substances has been Thermal amorphization of crystalline solids can be distorted or destroyed to a degree excluding the obtained by (1) thermal dissociation of compounds appearance of the X-ray diffraction lines characteristic (dehydration of some hydrous silicates, borates, of their crystalline forms. This means that the phosphates, etc.), (2) destruction or distortion of the disappearance of long-range ordering in the structure is crystal structure of a solid under prolonged heat a sufficient reason to regard the substance as an treatment (quartz). amorphous one; the state of randomness in X-ray The investigations were carried out on a few amorphous substances may, obviously, have a wider selected borates and zeolites rich in silica. The range of occurrence and include even the first occurring phase transitions, consisting in rearrange- coordination sphere. ment of the internal structure under the influence of The state of randomness in the area of the first temperature, were determined and the observed coordination sphere may change the nature of the inter- phenomena compared with those occurring in other atomic interactions and thus affect the electrical and substances rendered amorphous by heat treatment and magnetic properties of the substance. These states are in glasses. the subject of investigations in solid state physics. The aim of the investigations was to recognize the To investigate the amorphous substances, especially regularities controlling the phase transformations by those in which the short- and medium-range ordering the structural rearrangement of amorphous solids. has been retained, attempts are being made to apply An attempt has also been made to define the mutual methods used in structural chemistry and crystallo- relations between substances rendered amorphous by chemistry. With respect to their chemical and physical heat treatment and glasses. properties, these substances show considerable Thermal amorphization appears to be a promising similarity to the affinated crystalline substances. They method of obtaining some glasses and glass-ceramic contain the same type of coordination polyhedra as the materials, as well as ceramic powders, especially those corresponding crystalline substances. Occasionally, the that cannot be obtained by the sol-gel method. transition into the amorphous state cancels the Moreover, the examined processes correspond to deformations of coordination polyhedra to which they those occurring during vitrification and crystallization are subjected in a crystal structure. This takes place, for of xero-gels in the sol-gel method of obtaining glasses example, in the case of Si04 tetrahedra in vitrified and glass-ceramic materials. framework silicates III. The transition into the 182 L. Stoch and /. Waclawska High Temperature Materials and Processes 2. MATERIALS Zeiss Ur-10 spectrometer and with a Digilab FTS-60V Fourier Transform Infrared Spectrometer. Samples The model substances selected for the examinations were prepared as KBr pellets. were the borates of alkalis and metals of alkaline earths In the case of some substances, of which there were which have different complex borate anions. They have sufficiently large amounts available, the changes in their equivalents among the borate glasses. Moreover, density and microporosity induced by phase transitions these borates belong to substances of low melting tem- were also determined. perature. Coarse-crystalline, pure borate minerals from Measurements of the specific surface (BET), pore the collection of the Mineralogical Museum of the volume and size were conducted, taking advantage of Wroclaw University were examined. They included: the phenomena of adsorption and desorption of pure colemanite Ca2B608(0H)6-2H20, nitrogen at the temperature of liquid nitrogen by means pandermite Ca2B508(0H)3-2H20, of a computer-controlled ASAP 2000 apparatus kaliborite HKMg2B12Oi6(OH)i0-4H2O), (Micromeritics). Density measurements were performed ulexite NaCaB506(0H)6-5H20, in an Accu-Pyc 1330 helium pycnometer tincalconite Na2B40j(0H)4-3H20, and (Micromeritics). kernite Na2B406(0H)2-3H20. Synthetic borax was also examined. Synthetic zeolites: ZSM-5 zeolite of high Si0 2 4. RESULTS content and NaA zeolite containing aluminium in its structure were examined too. They belong to framework A Phase Transformations in Amorphous Borates silicates and are built of Si04 and A104 tetrahedra. They may be regarded as substances corresponding to Results of the thermal analysis (Fig. 1), X-ray minerals of the Si02 groups and aluminium-doped patterns (Fig. 2) as well as IR spectra (Figs. 3, 4, 5) quartz glass on account of their chemical composition indicate the range of amorphous structure stability and and the kind of short-range order of internal structure. the course of its reciystallization. They depend
Recommended publications
  • Mg2sio4) in a H2O-H2 Gas DANIEL TABERSKY1, NORMAN LUECHINGER2, SAMUEL S
    Goldschmidt2013 Conference Abstracts 2297 Compacted Nanoparticles for Evaporation behavior of forsterite Quantification in LA-ICPMS (Mg2SiO4) in a H2O-H2 gas DANIEL TABERSKY1, NORMAN LUECHINGER2, SAMUEL S. TACHIBANA1* AND A. TAKIGAWA2 2 2 1 , HALIM , MICHAEL ROSSIER AND DETLEF GÜNTHER * 1 Department of Natural History Sciences, Hokkaido 1ETH Zurich, Department of Chemistry and Applied University, N10 W8, Sapporo 060-0810, Japan. Biosciences, Laboratory of Inorganic Chemistry (*correspondence: [email protected]) (*correspondence: [email protected]) 2Carnegie Institution of Washington, Department of Terrestrial 2Nanograde, Staefa, Switzerland Magnetism, 5241 Broad Branch Road NW, Washington DC, 20015 USA. Gray et al. did first studies of LA-ICPMS in 1985 [1]. Ever since, extensive research has been performed to Forsterite (Mg2SiO4) is one of the most abundant overcome the problem of so-called “non-stoichiometric crystalline silicates in extraterrestrial materials and in sampling” and/or analysis, the origins of which are commonly circumstellar environments, and its evaporation behavior has referred to as elemental fractionation (EF). EF mainly consists been intensively studied in vacuum and in the presence of of laser-, transport- and ICP-induced effects, and often results low-pressure hydrogen gas [e.g., 1-4]. It has been known that in inaccurate analyses as pointed out in, e.g. references [2,3]. the evaporation rate of forsterite is controlled by a A major problem that has to be addressed is the lack of thermodynamic driving force (i.e., equilibrium vapor reference materials. Though the glass series of NIST SRM 61x pressure), and the evaporation rate increases linearly with 1/2 have been the most commonly reference material used in LA- pH2 in the presence of hydrogen gas due to the increase of ICPMS, heterogeneities have been reported for some sample the equilibrium vapor pressure.
    [Show full text]
  • The Regional Distribution of Zeolites in the Basalts of the Faroe Islands and the Significance of Zeolites As Palaeo- Temperature Indicators
    The regional distribution of zeolites in the basalts of the Faroe Islands and the significance of zeolites as palaeo- temperature indicators Ole Jørgensen The first maps of the regional distribution of zeolites in the Palaeogene basalt plateau of the Faroe Islands are presented. The zeolite zones (thomsonite-chabazite, analcite, mesolite, stilbite-heulandite, laumontite) continue below sea level and reach a depth of 2200 m in the Lopra-1/1A well. Below this level, a high temperature zone occurs characterised by prehnite and pumpellyite. The stilbite-heulan- dite zone is the dominant mineral zone on the northern island, Vágar, the analcite and mesolite zones are the dominant ones on the southern islands of Sandoy and Suðuroy and the thomsonite-chabazite zone is dominant on the two northeastern islands of Viðoy and Borðoy. It is estimated that zeolitisa- tion of the basalts took place at temperatures between about 40°C and 230°C. Palaeogeothermal gradients are estimated to have been 66 ± 9°C/km in the lower basalt formation of the Lopra area of Suðuroy, the southernmost island, 63 ± 8°C/km in the middle basalt formation on the northernmost island of Vágar and 56 ± 7°C/km in the upper basalt formation on the central island of Sandoy. A linear extrapolation of the gradient from the Lopra area places the palaeosurface of the basalt plateau near to the top of the lower basalt formation. On Vágar, the palaeosurface was somewhere between 1700 m and 2020 m above the lower formation while the palaeosurface on Sandoy was between 1550 m and 1924 m above the base of the upper formation.
    [Show full text]
  • Midterm 2 Examination Key
    GLY4200C Name 90 points October 26, 2011 16 took exam - Numbers to the left of the question number in red are the number of incorrect responses. Instructor comments are in blue. Florida Atlantic University MINERALOGY -- MIDTERM 2 EXAMINATION KEY True-False - Print the letter T or F in the blank to indicate if each of the following statements is true or false. Illegible answers are wrong. (1 point each) 0 T 1. All mathematical groups, including crystallographic point and space groups, must contain an identity operation. 2 F 2. All pyramidal forms are closed. 11 F 3. As nuclei grow, their surface area/volume ratio increases. 1 F 4. Growth twins are always penetration twins. 2 T 5. Low-spin Fe3+ is smaller than high-spin Fe3+. 0 T 6.As pressure increases, minerals transform to denser structures, with atoms packed more closely together 1 T 7. Although silicon normally has CN = IV, in the lower mantle the pressures are so great that the CN of silicon is VI. 2 F 8. If two ions have the same charge, the larger ion will enter a crystal structure preferentially. 2 T 9. Crystal classes are defined by the thirty-two possible point groups. 11 F 10. Possible symmetry operations include rotation axes, mirror planes, and an inversion center. What is wrong with this statement? 0 T 11. Faces composed of all anions or all cations are very high energy. They attract ions of opposite sign, grow rapidly, and may grow themselves out of existence. 1 T 12. The calculation of the zone axis is done using the same method as a vector cross- product.
    [Show full text]
  • Rocks and Minerals in This Station-Based Event
    Gary Vorwald NYS Rock & Mineral Supervisor Paul J. Gelinas JHS [email protected] Event Description Participants will demonstrate their knowledge of rocks and minerals in this station-based event. A team of up to 2 Approximate time: 40 – 50 Minutes Event Parameters Each team may bring: one magnifying glass One 3-ring binder (1 inch) containing information in any form from any source Materials MUST be 3-hole punched and inserted into the rings (sheet protectors allowed) The Competition Station Event: 15-24 stations with samples & questions Equal time intervals will be allotted for each station. When the signal is given, participants will begin work at their initial station. Participants may not move to the next station until prompted to do so, may not skip stations, nor return to any previously-visited station Mineral and Rock Stations The Competition HCl will not be provided, nor may it be brought to, or be used during the competition. Written descriptions as to how a specimen might react were it to be tested with HCl may be provided. The Competition Identification will be limited to specimens appearing on the Official Science Olympiad Rock and Mineral List (see www.soinc.org) Other rocks or minerals may be used to illustrate key concepts. Tournament Directors may include up to five additional specimens important to their own state. If additional specimens are to be included, all teams must be notified no later than 3 weeks prior to the competition. 2017 Rock & Mineral List Available at: https://www. soinc.org Students should place list in front of notebook Minerals are organized by mineral family Consists of: 59 Minerals 7 Metamorphic Rocks 10 Igneous Rocks 17 Sedimentary Rocks (or varieties) Minerals Native Elements 31.
    [Show full text]
  • Zeolite Application in Crop Production: Importance to Soil Nutrient, Soil Water, Soil Health, and Environmental Pollution Management Isaac K
    az1851 September 2020 Zeolite Application in Crop Production: Importance to Soil Nutrient, Soil Water, Soil Health, and Environmental Pollution Management Isaac K. Mpanga, Hattie Braun and James Walworth Introduction Benefits of zeolites as a soil conditioner According to the United States Geological Service (USGS), and growth media zeolites (Fig. 1) are hydrated aluminosilicates of alkaline Zeolite soil conditioners or amendments may provide and alkaline-earth metals with very porous structure. many benefits such as improved water infiltration and Zeolites are used as pet litter, in animal feed, in wastewater reduced surface water run-off and nutrient leaching (Fig. 2). treatment, and as soil amendments. Identified about 200 Benefits from zeolite application could translate to increased years ago, there are over 40 different types that include yield, more efficient use of nutrient inputs, and reduction in analcime, chabazite, clinoptilolite, erionite, ferrierite, environmental pollution of nitrogen (N) and phosphorus heulandite, laumontite, mordenite, and phillipsite. Those (P) in bodies of water, as well as reduction in greenhouse commonly used in crop production as soil conditioners are gas emissions (Fig. 2). The high cation exchange capacity clinoptilolite, erionite, and mordenite. Zeolites are mostly (CEC) and porosity of zeolites allows them to absorb and present in soils and sediments, with clinoptilolite as the trap greenhouse gases such as methane (CH4) and carbon most abundant type. In 2019, the United States had nine dioxide (CO2). zeolite mines producing an estimated 98,000 tons of natural zeolites, a 14% increase from 2018. Chabazite is mined in Effects of zeolites on soil physical properties and Arizona (Hyde, 1982; Flanagan, 2020) and clinoptilolite soil water holding capacity in New Mexico (Hyde, 1982).
    [Show full text]
  • Economic Diversification Plan for East Kern County
    FEBRUARY 2017 ECONOMIC DIVERSIFICATION PLAN EAST KERN COUNTY, CA KERN COUNTY ACKNOWLEDGEMENTS TIP Strategies would like to thank the many individuals who participated in the creation of this Economic Diversification Plan. We are especially grateful to the members of the East Kern Economic Alliance who contributed their time and input throughout this planning process. Their expertise helped us gain a deep understanding of the region’s range of assets and opportunities. We are also thankful for the US Department of Defense Office of Economic Adjustment for their visionary investments and support which helped make this project a reality. We also want to thank the leadership and staff of Kern County and the Kern EDC for their essential support, guidance, and feedback during the development of this plan. EAST KERN ECONOMIC ALLIANCE KEY STAKEHOLDERS Richard Chapman, President & CEO Jennifer Wood, Mayor Gary Parsons, Economic Kern Economic Development California City Development Manager Corporation City of Ridgecrest Karina Drees, CEO and General Bill Deaver, Michelle Vance, Economic Manager Edwards Community Alliance Development Coordinator Mojave Air & Spaceport City of Tehachapi Kimberly Maevers, President Kelly Bearden, Director Ryan Rush, Field Representative Greater Antelope Valley Economic CSU-Bakersfield SBDC Kern County Board of Supervisors, Alliance 2nd District KERN COUNTY PROJECT TEAM Supervisor Zach Scrivner, Chairman of the Kern County Board of Supervisors & 2nd District Supervisor Teresa Hitchcock, Assistant County Administrative
    [Show full text]
  • Inyoite Cab3o3(OH)5 • 4H2O C 2001-2005 Mineral Data Publishing, Version 1
    Inyoite CaB3O3(OH)5 • 4H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Typically as crystals, short prismatic along [001], tabular on {001}, exhibiting prominent {110} and {001} and a dozen other minor forms, to 2.5 cm; in cockscomb aggregates of pseudorhombohedral crystals; also coarse spherulitic, granular. Physical Properties: Cleavage: {001}, good; {010}, distinct. Fracture: Irregular. Tenacity: Brittle. Hardness = 2 D(meas.) = 1.875 D(calc.) = 1.87 Soluble in H2O. Optical Properties: Transparent, translucent on dehydration. Color: Colorless, white on dehydration. Luster: Vitreous. Optical Class: Biaxial (–). Orientation: Y = b; X ∧ c =37◦; Z ∧ c = –53◦. Dispersion: r< v, slight. α = 1.490–1.495 β = 1.501–1.505 γ = 1.516–1.520 2V(meas.) = 70◦–86◦ Cell Data: Space Group: P 21/a. a = 10.621(1)) b = 12.066(1) c = 8.408(1) β = 114◦1.2◦ Z=4 X-ray Powder Pattern: Monte Azul mine, Argentina. 7.67 (100), 2.526 (25), 3.368 (22), 1.968 (22), 2.547 (21), 3.450 (20), 2.799 (19) Chemistry: (1) (2) B2O3 37.44 37.62 CaO 20.42 20.20 + H2O 9.46 − H2O 32.46 H2O 42.18 rem. 0.55 Total 100.33 100.00 • (1) Hillsborough, Canada; remnant is gypsum. (2) CaB3O3(OH)5 4H2O. Occurrence: Along fractures and nodular in sedimentary borate deposits; may be authigenic in playa sediments. Association: Meyerhofferite, colemanite, priceite, hydroboracite, ulexite, gypsum. Distribution: In the USA, in California, from an adit on Mount Blanco, Furnace Creek district, Death Valley, Inyo Co., and in the Kramer borate deposit, Boron, Kern Co.
    [Show full text]
  • Bose-Einstein Condensation Measurements and Superflow in Condensed Helium
    JLowTempPhys DOI 10.1007/s10909-013-0855-0 Bose-Einstein Condensation Measurements and Superflow in Condensed Helium H.R. Glyde Received: 9 November 2012 / Accepted: 18 January 2013 © Springer Science+Business Media New York 2013 Abstract We review the formulation and measurement of Bose-Einstein condensa- tion (BEC) in liquid and solid helium. BEC is defined for a Bose gas and subsequently for interacting systems via the one-body density matrix (OBDM) valid for both uni- form and non-uniform systems. The connection between the phase coherence created by BEC and superflow is made. Recent measurements show that the condensate frac- tion in liquid 4He drops from 7.25 ± 0.75 % at saturated vapor pressure (p ≈ 0) to 2.8 ± 0.2 % at pressure p = 24 bars near the solidification pressure (p = 25.3 bar). Extrapolation to solid densities suggests a condensate fraction in the solid of 1 % or less, assuming a frozen liquid structure such as an amorphous solid. Measurements in the crystalline solid have not been able to detect a condensate with an upper limit 4 set at n0 ≤ 0.3 %. Opportunities to observe BEC directly in liquid He confined in porous media, where BEC is localized to patches by disorder, and in amorphous solid helium is discussed. Keywords Solid · Liquid · Helium · BEC · OBDM · Neutron scattering 1 Introduction This article is part of a series motivated by reports of possible superfluidity in solid helium, initially in 2004 [1, 2]. Other articles in this series survey extensively the experiments and theory in this new field and the current status of the field.
    [Show full text]
  • Drug-Rich Phases Induced by Amorphous Solid Dispersion: Arbitrary Or Intentional Goal in Oral Drug Delivery?
    pharmaceutics Review Drug-Rich Phases Induced by Amorphous Solid Dispersion: Arbitrary or Intentional Goal in Oral Drug Delivery? Kaijie Qian 1 , Lorenzo Stella 2,3 , David S. Jones 1, Gavin P. Andrews 1,4, Huachuan Du 5,6,* and Yiwei Tian 1,* 1 Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; [email protected] (K.Q.); [email protected] (D.S.J.); [email protected] (G.P.A.) 2 Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, 7–9 College Park E, Belfast BT7 1PS, UK; [email protected] 3 David Keir Building, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, UK 4 School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China 5 Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland 6 Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, IL 60611, USA * Correspondence: [email protected] (H.D.); [email protected] (Y.T.); Tel.: +41-446339049 (H.D.); +44-2890972689 (Y.T.) Abstract: Among many methods to mitigate the solubility limitations of drug compounds, amor- Citation: Qian, K.; Stella, L.; Jones, phous solid dispersion (ASD) is considered to be one of the most promising strategies to enhance D.S.; Andrews, G.P.; Du, H.; Tian, Y. the dissolution and bioavailability of poorly water-soluble drugs.
    [Show full text]
  • Synthesis and Characterization of Zeolites from Sodium Aluminosilicate Solution
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository@USM SYNTHESIS AND CHARACTERIZATION OF ZEOLITES FROM SODIUM ALUMINOSILICATE SOLUTION by SITI AIDA BINTI IBRAHIM Thesis submitted in fulfillment of the requirements for the degree of Master of Science August 2007 ACKNOWLEDGEMENTS Thank you to Allah for His Blessing and giving me an ability and strength to complete this thesis. Firstly, I would like to express my deepest gratitude to my supervisor Dr. Norlia Baharun for her expert guidance, constant attention, valuable suggestions, enthusiastic support and personal concern during the research and through the course of my study. Her fruitful ideas throughout the research project has helped me accomplished this work successfully. Special thanks to the Dean of School of Material and Mineral Resources Engineering, Associate Professor Dr. Khairun Azizi Azizli for her permission to let me use all the brilliant facilities and equipment in completing my project. Under her leadership, she has created a healthy learning environment in the school. I would also like to extend my sincere appreciation for all the lecturers in the school especially to Associate Professor Dr. Azizan Aziz for his support and guidance throughout my study. I would like to thank the technical staffs of School of Materials and Mineral Resources Engineering, especially to Mdm. Fong Lee Lee, Mr. Shaarani, Miss Mahani and Mr. Hasnor for their various contributions in one way or another. To my dear friends, Nurul’Ain, Norwanis, Roshazita , Faizul, Shahrizam, Suhaina, Dr. Hasmaliza, Dr. Zuhailawati and all close members of postgraduate room of School of Materials and Mineral Resources Engineering, thank you for making my life in USM so colorful and enjoyable.
    [Show full text]
  • Ulexite Nacab5o6(OH)6 • 5H2O C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Triclinic
    Ulexite NaCaB5O6(OH)6 • 5H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic. Point Group: 1. Rare as measurable crystals, which may have many forms; typically elongated to acicular along [001], to 5 cm, then forming fibrous cottonball-like masses; in compact parallel fibrous veins, and radiating and compact nodular groups. Twinning: Polysynthetic on {010} and {100}; possibly also on {340}, {230}, and others. Physical Properties: Cleavage: On {010}, perfect; on {110}, good; on {110}, poor. Fracture: Uneven across fiber groups. Tenacity: Brittle. Hardness = 2.5 D(meas.) = 1.955 D(calc.) = 1.955 Slightly soluble in H2O; parallel fibrous masses can act as fiber optical light pipes; may fluoresce yellow, greenish yellow, cream, white under SW and LW UV. Optical Properties: Transparent to opaque. Color: Colorless; white in aggregates, gray if included with clays. Luster: Vitreous; silky or satiny in fibrous aggregates. Optical Class: Biaxial (+). Orientation: X (11.5◦,81◦); Y (100◦,21.5◦); Z (107◦,70◦) [with c (0◦,0◦) and b∗ (0◦,90◦) using (φ,ρ)]. α = 1.491–1.496 β = 1.504–1.506 γ = 1.519–1.520 2V(meas.) = 73◦–78◦ Cell Data: Space Group: P 1. a = 8.816(3) b = 12.870(7) c = 6.678(1) α =90.36(2)◦ β = 109.05(2)◦ γ = 104.98(4)◦ Z=2 X-ray Powder Pattern: Jenifer mine, Boron, California, USA. 12.2 (100), 7.75 (80), 6.00 (30), 4.16 (30), 8.03 (15), 4.33 (15), 3.10 (15b) Chemistry: (1) (2) B2O3 43.07 42.95 CaO 13.92 13.84 Na2O 7.78 7.65 H2O 35.34 35.56 Total 100.11 100.00 • (1) Suckow mine, Boron, California, USA.
    [Show full text]
  • THE MAIN-GROUP ELEMENTS Atomic Properties
    THE MAIN-GROUP ELEMENTS Atomic Properties Properties of elements is based valence-shell electron configurations. Five atomic properties: 1. atomic radius 2. ionization energy 3. electron affinity 4. electronegativity 5. polarizability Atomic Size Adding more valence levels increases the distance from the electrons to the nucleus, it also decrease the effect the nucleus has on the outer electrons. decreases across a period Effective Nuclear Force increases down a group Valence levels Ionization Energy Ionization energy: the energy required to remove the most loosely held electron from an atom in the gaseous state. Size of Atom Ionization Energy Smaller size Higher ionization energy Electron Affinity The electron affinity is a release of energy to form an anion. Ionization Energy Electron Affinity Atoms with higher effective nuclear charges release more energy. Electronegativity Electronegativity is the tendency of an atom to attract electrons to itself. Ionization Energy Electronegativity Atoms with a greater effective nuclear charge have a stronger pull on bonding electrons. Large differences in electronegativity typically form ionic bonds and small differences from covalent bonds. Polarizability Polarizability is the ease an atoms electron cloud can be distorted. Size of Atom Polarizability Electron-rich, heavier atoms are easily polarized. High polarizing power atom-are small sized, highly charged atoms. Bonding Trends Elements in period 2 strictly follow the octet rule; carbon forms four bonds. Elements in Period 3 and higher periods exceed the octet. They reach higher oxidation states because they can access empty d-orbitals. Also, larger atoms can simply make more bonds to more neighbors . Group 1A: Alkali Metals The chemical properties of alkali metals are striking similar.
    [Show full text]